/* * This file is part of the Trezor project, https://trezor.io/ * * Copyright (c) SatoshiLabs * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include // required by #ifdef STM32U5 below (see #4306 issue) #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "prodtest_common.h" #include "version.h" #ifdef USE_BUTTON #include #endif #ifdef USE_SBU #include #endif #ifdef USE_SD_CARD #include #endif #ifdef USE_TOUCH #include #endif #ifdef USE_OPTIGA #include #include #include "optiga_prodtest.h" #endif #ifdef USE_HAPTIC #include #endif #ifdef USE_HASH_PROCESSOR #include #endif #include "memzero.h" #ifdef USE_POWERCTL #include #include "../../sys/powerctl/npm1300/npm1300.h" #include "../../sys/powerctl/stwlc38/stwlc38.h" #endif #ifdef USE_STORAGE_HWKEY #include #endif #ifdef STM32U5 #include "stm32u5xx_ll_utils.h" #else #include "stm32f4xx_ll_utils.h" #endif #ifdef TREZOR_MODEL_T #define MODEL_IDENTIFIER "TREZOR2-" #else #define MODEL_IDENTIFIER MODEL_INTERNAL_NAME "-" #endif static gfx_text_attr_t bold = { .font = FONT_BOLD, .fg_color = COLOR_WHITE, .bg_color = COLOR_BLACK, }; static secbool startswith(const char *s, const char *prefix) { return sectrue * (0 == strncmp(s, prefix, strlen(prefix))); } static void vcp_intr(void) { gfx_clear(); error_shutdown("vcp_intr"); } static char vcp_getchar(void) { uint8_t c = 0; int r = usb_vcp_read_blocking(VCP_IFACE, &c, 1, -1); (void)r; return (char)c; } static void vcp_readline(char *buf, size_t len) { for (;;) { char c = vcp_getchar(); if (c == '\r') { vcp_puts("\r\n", 2); break; } if (c < 32 || c > 126) { // not printable continue; } if (len > 1) { // leave space for \0 *buf = c; buf++; len--; vcp_puts(&c, 1); } } if (len > 0) { *buf = '\0'; } } static void usb_init_all(void) { enum { VCP_PACKET_LEN = 64, VCP_BUFFER_LEN = 1024, }; static const usb_dev_info_t dev_info = { .device_class = 0xEF, // Composite Device Class .device_subclass = 0x02, // Common Class .device_protocol = 0x01, // Interface Association Descriptor .vendor_id = 0x1209, .product_id = 0x53C1, .release_num = 0x0400, .manufacturer = MODEL_USB_MANUFACTURER, .product = MODEL_USB_PRODUCT, .serial_number = "000000000000", .interface = "TREZOR Interface", .usb21_enabled = secfalse, .usb21_landing = secfalse, }; static uint8_t tx_packet[VCP_PACKET_LEN]; static uint8_t tx_buffer[VCP_BUFFER_LEN]; static uint8_t rx_packet[VCP_PACKET_LEN]; static uint8_t rx_buffer[VCP_BUFFER_LEN]; static const usb_vcp_info_t vcp_info = { .tx_packet = tx_packet, .tx_buffer = tx_buffer, .rx_packet = rx_packet, .rx_buffer = rx_buffer, .tx_buffer_len = VCP_BUFFER_LEN, .rx_buffer_len = VCP_BUFFER_LEN, .rx_intr_fn = vcp_intr, .rx_intr_byte = 3, // Ctrl-C .iface_num = VCP_IFACE, .data_iface_num = 0x01, .ep_cmd = 0x02, .ep_in = 0x01, .ep_out = 0x01, .polling_interval = 10, .max_packet_len = VCP_PACKET_LEN, }; ensure(usb_init(&dev_info), NULL); ensure(usb_vcp_add(&vcp_info), "usb_vcp_add"); ensure(usb_start(), NULL); } void extract_params(const char *str, int *numbers, int *count, int max_count) { int i = 0; int num_index = 0; int len = strlen(str); char buffer[20]; // buffer to hold the current number string while (i < len && num_index < max_count) { if (isdigit((int)str[i])) { int buffer_index = 0; // Extract the number while (isdigit((int)str[i]) && i < len) { buffer[buffer_index++] = str[i++]; } buffer[buffer_index] = '\0'; // null-terminate the string // Convert the extracted string to an integer numbers[num_index++] = atoi(buffer); } else { i++; } } *count = num_index; } static void draw_border(int width, int padding) { const int W = width, P = padding, RX = DISPLAY_RESX, RY = DISPLAY_RESY; gfx_clear(); gfx_rect_t r_out = gfx_rect_wh(P, P, RX - 2 * P, RY - 2 * P); gfx_rect_t r_in = gfx_rect_wh(P + W, P + W, RX - 2 * (P + W), RY - 2 * (P + W)); gfx_draw_bar(r_out, COLOR_WHITE); gfx_draw_bar(r_in, COLOR_BLACK); display_refresh(); } static void draw_welcome_screen(void) { #if defined TREZOR_MODEL_R || defined TREZOR_MODEL_T3B1 gfx_draw_bar(gfx_rect_wh(0, 0, DISPLAY_RESX, DISPLAY_RESY), COLOR_WHITE); display_refresh(); #else draw_border(1, 3); #endif } static void test_border(void) { draw_border(2, 0); vcp_println("OK"); } static void test_display(const char *colors) { gfx_clear(); size_t l = strlen(colors); size_t w = DISPLAY_RESX / l; for (size_t i = 0; i < l; i++) { gfx_color_t c = COLOR_BLACK; // black switch (colors[i]) { case 'R': c = gfx_color_rgb(255, 0, 0); break; case 'G': c = gfx_color_rgb(0, 255, 0); break; case 'B': c = gfx_color_rgb(0, 0, 255); break; case 'W': c = COLOR_WHITE; break; } gfx_rect_t r = gfx_rect_wh(i * w, 0, i * w + w, DISPLAY_RESY); gfx_draw_bar(r, c); } display_refresh(); vcp_println("OK"); } #ifdef USE_BUTTON static secbool test_btn_press(uint32_t deadline, uint32_t btn) { while (button_get_event() != (btn | BTN_EVT_DOWN)) { if (systick_ms() > deadline) { vcp_println("ERROR TIMEOUT"); return secfalse; } } while (button_get_event() != (btn | BTN_EVT_UP)) { if (systick_ms() > deadline) { vcp_println("ERROR TIMEOUT"); return secfalse; } } return sectrue; } static secbool test_btn_all(uint32_t deadline) { bool left_pressed = 0; bool right_pressed = 0; while (true) { uint32_t buttons = button_get_event(); if (buttons == (BTN_LEFT | BTN_EVT_DOWN)) { left_pressed = 1; } if (buttons == (BTN_RIGHT | BTN_EVT_DOWN)) { right_pressed = 1; } if (buttons == (BTN_LEFT | BTN_EVT_UP)) { left_pressed = 0; } if (buttons == (BTN_RIGHT | BTN_EVT_UP)) { right_pressed = 0; } if (left_pressed && right_pressed) { break; } if (systick_ms() > deadline) { vcp_println("ERROR TIMEOUT"); return secfalse; } } while (true) { uint32_t buttons = button_get_event(); if (buttons == (BTN_LEFT | BTN_EVT_DOWN)) { left_pressed = 1; } if (buttons == (BTN_RIGHT | BTN_EVT_DOWN)) { right_pressed = 1; } if (buttons == (BTN_LEFT | BTN_EVT_UP)) { left_pressed = 0; } if (buttons == (BTN_RIGHT | BTN_EVT_UP)) { right_pressed = 0; } if (!left_pressed && !right_pressed) { break; } if (systick_ms() > deadline) { vcp_println("ERROR TIMEOUT"); return secfalse; } } return sectrue; } static void test_button(const char *args) { int timeout = 0; if (startswith(args, "LEFT ")) { timeout = args[5] - '0'; uint32_t deadline = systick_ms() + timeout * 1000; secbool r = test_btn_press(deadline, BTN_LEFT); if (r == sectrue) vcp_println("OK"); } if (startswith(args, "RIGHT ")) { timeout = args[6] - '0'; uint32_t deadline = systick_ms() + timeout * 1000; secbool r = test_btn_press(deadline, BTN_RIGHT); if (r == sectrue) vcp_println("OK"); } if (startswith(args, "BOTH ")) { timeout = args[5] - '0'; uint32_t deadline = systick_ms() + timeout * 1000; secbool r = test_btn_all(deadline); if (r == sectrue) vcp_println("OK"); } } #endif #ifdef USE_TOUCH static secbool touch_click_timeout(uint32_t *touch, uint32_t timeout_ms) { uint32_t deadline = systick_ms() + timeout_ms; uint32_t r = 0; while (touch_get_event()) ; while ((touch_get_event() & TOUCH_START) == 0) { if (systick_ms() > deadline) return secfalse; } while (((r = touch_get_event()) & TOUCH_END) == 0) { if (systick_ms() > deadline) return secfalse; } while (touch_get_event()) ; *touch = r; return sectrue; } static void test_touch(const char *args) { int column = args[0] - '0'; int timeout = args[1] - '0'; const int width = DISPLAY_RESX / 2; const int height = DISPLAY_RESY / 2; gfx_clear(); switch (column) { case 1: gfx_draw_bar(gfx_rect_wh(0, 0, width, height), COLOR_WHITE); break; case 2: gfx_draw_bar(gfx_rect_wh(width, 0, width, height), COLOR_WHITE); break; case 3: gfx_draw_bar(gfx_rect_wh(width, height, width, height), COLOR_WHITE); break; default: gfx_draw_bar(gfx_rect_wh(0, height, width, height), COLOR_WHITE); break; } display_refresh(); touch_init(); uint32_t evt = 0; if (touch_click_timeout(&evt, timeout * 1000)) { uint16_t x = touch_unpack_x(evt); uint16_t y = touch_unpack_y(evt); vcp_println("OK %d %d", x, y); } else { vcp_println("ERROR TIMEOUT"); } gfx_clear(); display_refresh(); touch_deinit(); } static void test_touch_custom(const char *args) { static const int expected_params = 5; int params[expected_params]; int num_params = 0; extract_params(args, params, &num_params, expected_params); if (num_params != expected_params) { vcp_println("ERROR PARAM"); return; } #undef NUM_PARAMS int x = params[0]; int y = params[1]; int width = params[2]; int height = params[3]; int timeout = params[4]; uint32_t ticks_start = hal_ticks_ms(); gfx_clear(); gfx_draw_bar(gfx_rect_wh(x, y, width, height), COLOR_WHITE); display_refresh(); touch_init(); while (true) { if (hal_ticks_ms() - ticks_start > timeout * 1000) { vcp_println("ERROR TIMEOUT"); break; } uint32_t touch_event = touch_get_event(); if (touch_event != 0) { uint16_t touch_x = touch_unpack_x(touch_event); uint16_t touch_y = touch_unpack_y(touch_event); if (touch_event & TOUCH_START) { vcp_println("TOUCH D %d %d %d", touch_x, touch_y, hal_ticks_ms()); } if (touch_event & TOUCH_MOVE) { vcp_println("TOUCH C %d %d %d", touch_x, touch_y, hal_ticks_ms()); } if (touch_event & TOUCH_END) { vcp_println("TOUCH U %d %d %d", touch_x, touch_y, hal_ticks_ms()); vcp_println("OK"); break; } } } gfx_clear(); display_refresh(); touch_deinit(); } static void test_touch_idle(const char *args) { static const int expected_params = 1; int num_params = 0; int params[expected_params]; extract_params(args, params, &num_params, expected_params); if (num_params != expected_params) { vcp_println("ERROR PARAM"); return; } int timeout = params[0]; uint32_t ticks_start = hal_ticks_ms(); gfx_clear(); gfx_offset_t pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY / 2); gfx_draw_text(pos, "DON'T TOUCH", -1, &bold, GFX_ALIGN_CENTER); display_refresh(); touch_init(); while (true) { if (hal_ticks_ms() - ticks_start > timeout * 1000) { vcp_println("OK"); break; } if (touch_activity() == sectrue) { vcp_println("ERROR TOUCH DETECTED"); break; } } gfx_clear(); display_refresh(); touch_deinit(); } static void test_touch_power(const char *args) { static const int expected_params = 1; int num_params = 0; int params[expected_params]; extract_params(args, params, &num_params, expected_params); if (num_params != expected_params) { vcp_println("ERROR PARAM"); return; } int timeout = params[0]; gfx_clear(); gfx_offset_t pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY / 2); gfx_draw_text(pos, "MEASURING", -1, &bold, GFX_ALIGN_CENTER); display_refresh(); touch_power_set(true); systick_delay_ms(timeout * 1000); vcp_println("OK"); touch_power_set(false); gfx_clear(); display_refresh(); } static void test_sensitivity(const char *args) { int v = atoi(args); touch_init(); touch_set_sensitivity(v & 0xFF); gfx_clear(); display_refresh(); for (;;) { uint32_t evt = touch_get_event(); if (evt & TOUCH_START || evt & TOUCH_MOVE) { int x = touch_unpack_x(evt); int y = touch_unpack_y(evt); gfx_clear(); gfx_draw_bar(gfx_rect_wh(x - 48, y - 48, 96, 96), COLOR_WHITE); display_refresh(); } else if (evt & TOUCH_END) { gfx_clear(); display_refresh(); } } touch_deinit(); } static void touch_version(void) { touch_init(); uint8_t version = touch_get_version(); vcp_println("OK %d", version); touch_deinit(); } #endif static void test_pwm(const char *args) { int v = atoi(args); display_set_backlight(v); display_refresh(); vcp_println("OK"); } #ifdef USE_SD_CARD static void test_sd(void) { #define BLOCK_SIZE (32 * 1024) static uint32_t buf1[BLOCK_SIZE / sizeof(uint32_t)]; static uint32_t buf2[BLOCK_SIZE / sizeof(uint32_t)]; bool low_speed = false; #ifndef TREZOR_MODEL_T3T1 if (sectrue != sdcard_is_present()) { vcp_println("ERROR NOCARD"); return; } #else low_speed = true; #endif if (sectrue != sdcard_power_on_unchecked(low_speed)) { vcp_println("ERROR POWER ON"); return; } if (sectrue != sdcard_read_blocks(buf1, 0, BLOCK_SIZE / SDCARD_BLOCK_SIZE)) { vcp_println("ERROR sdcard_read_blocks (0)"); goto power_off; } for (int j = 1; j <= 2; j++) { for (int i = 0; i < BLOCK_SIZE / sizeof(uint32_t); i++) { buf1[i] ^= 0xFFFFFFFF; } if (sectrue != sdcard_write_blocks(buf1, 0, BLOCK_SIZE / SDCARD_BLOCK_SIZE)) { vcp_println("ERROR sdcard_write_blocks (%d)", j); goto power_off; } systick_delay_ms(1000); if (sectrue != sdcard_read_blocks(buf2, 0, BLOCK_SIZE / SDCARD_BLOCK_SIZE)) { vcp_println("ERROR sdcard_read_blocks (%d)", j); goto power_off; } if (0 != memcmp(buf1, buf2, sizeof(buf1))) { vcp_println("ERROR DATA MISMATCH"); goto power_off; } } vcp_println("OK"); power_off: sdcard_power_off(); } #endif static void test_firmware_version(void) { vcp_println("OK %d.%d.%d", VERSION_MAJOR, VERSION_MINOR, VERSION_PATCH); } static uint32_t read_bootloader_version(void) { uint32_t version = 0; mpu_mode_t mpu_mode = mpu_reconfig(MPU_MODE_BOOTUPDATE); const image_header *header = read_image_header((const uint8_t *)BOOTLOADER_START, BOOTLOADER_IMAGE_MAGIC, BOOTLOADER_MAXSIZE); if (header != NULL) { version = header->version; } mpu_restore(mpu_mode); return version; } static void test_bootloader_version(uint32_t version) { vcp_println("OK %d.%d.%d", version & 0xFF, (version >> 8) & 0xFF, (version >> 16) & 0xFF); } static const boardloader_version_t *read_boardloader_version(void) { parse_boardloader_capabilities(); return get_boardloader_version(); } static void test_boardloader_version(const boardloader_version_t *version) { vcp_println("OK %d.%d.%d", version->version_major, version->version_minor, version->version_patch); } static void test_wipe(void) { firmware_invalidate_header(); gfx_clear(); gfx_offset_t pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY / 2 + 10); gfx_draw_text(pos, "WIPED", -1, &bold, GFX_ALIGN_CENTER); display_refresh(); vcp_println("OK"); } #ifdef USE_SBU static void test_sbu(const char *args) { secbool sbu1 = sectrue * (args[0] == '1'); secbool sbu2 = sectrue * (args[1] == '1'); sbu_set(sbu1, sbu2); vcp_println("OK"); } #endif #ifdef USE_HAPTIC static void test_haptic(const char *args) { int duration_ms = atoi(args); if (duration_ms <= 0) { vcp_println("ERROR HAPTIC DURATION"); return; } if (haptic_test(duration_ms)) { vcp_println("OK"); } else { vcp_println("ERROR HAPTIC"); } } #endif static void test_otp_read(void) { uint8_t data[FLASH_OTP_BLOCK_SIZE + 1]; memzero(data, sizeof(data)); ensure(flash_otp_read(FLASH_OTP_BLOCK_BATCH, 0, data, FLASH_OTP_BLOCK_SIZE), NULL); // strip trailing 0xFF for (size_t i = 0; i < sizeof(data); i++) { if (data[i] == 0xFF) { data[i] = 0x00; break; } } // use (null) for empty data if (data[0] == 0x00) { vcp_println("OK (null)"); } else { vcp_println("OK %s", (const char *)data); } } static void test_otp_write(const char *args) { if (sectrue == flash_otp_is_locked(FLASH_OTP_BLOCK_BATCH)) { vcp_println("ERROR ALREADY WRITTEN"); return; } char data[FLASH_OTP_BLOCK_SIZE]; memzero(data, sizeof(data)); strncpy(data, args, sizeof(data) - 1); ensure(flash_otp_write(FLASH_OTP_BLOCK_BATCH, 0, (const uint8_t *)data, sizeof(data)), NULL); ensure(flash_otp_lock(FLASH_OTP_BLOCK_BATCH), NULL); vcp_println("OK"); } static void test_otp_read_device_variant() { uint8_t data[FLASH_OTP_BLOCK_SIZE] = {0}; if (sectrue != flash_otp_read(FLASH_OTP_BLOCK_DEVICE_VARIANT, 0, data, sizeof(data))) { vcp_println("ERROR"); return; } vcp_print("OK "); for (int i = 0; i < sizeof(data); i++) { vcp_print("%d ", data[i]); } vcp_println(""); } static void test_otp_write_device_variant(const char *args) { #ifdef USE_OPTIGA optiga_locked_status status = get_optiga_locked_status(); if (status == OPTIGA_LOCKED_FALSE) { vcp_println("ERROR NOT LOCKED"); return; } if (status != OPTIGA_LOCKED_TRUE) { // Error reported by get_optiga_locked_status(). return; } #endif if (sectrue == flash_otp_is_locked(FLASH_OTP_BLOCK_DEVICE_VARIANT)) { vcp_println("ERROR ALREADY WRITTEN"); return; } volatile char data[FLASH_OTP_BLOCK_SIZE]; memzero((char *)data, sizeof(data)); data[0] = 1; int arg_start = 0; int arg_num = 1; int arg_len = 0; int n = 0; while (args[n] != 0) { if (args[n] == ' ') { if (arg_len != 0) { if (arg_num < sizeof(data)) { data[arg_num] = (uint8_t)atoi(&args[arg_start]); } arg_num++; } arg_start = n + 1; arg_len = 0; } else { arg_len++; } n++; } if (arg_len != 0 && arg_num < sizeof(data)) { data[arg_num] = (uint8_t)atoi(&args[arg_start]); } ensure(flash_otp_write(FLASH_OTP_BLOCK_DEVICE_VARIANT, 0, (const uint8_t *)data, sizeof(data)), NULL); ensure(flash_otp_lock(FLASH_OTP_BLOCK_DEVICE_VARIANT), NULL); vcp_println("OK"); } static void test_reboot(void) { reboot_device(); } void cpuid_read(void) { mpu_mode_t mpu_mode = mpu_reconfig(MPU_MODE_OTP); uint32_t cpuid[3]; cpuid[0] = LL_GetUID_Word0(); cpuid[1] = LL_GetUID_Word1(); cpuid[2] = LL_GetUID_Word2(); mpu_restore(mpu_mode); vcp_print("OK "); vcp_println_hex((uint8_t *)cpuid, sizeof(cpuid)); } #ifdef USE_POWERCTL void test_pmic(const char *args) { if (strcmp(args, "INIT") == 0) { npm1300_deinit(); bool ok = npm1300_init(); if (ok) { vcp_println("OK"); } else { vcp_println("ERROR # I/O error"); } } else if (strcmp(args, "CHGSTART") == 0) { bool ok = npm1300_set_charging(true); if (ok) { vcp_println("OK # Charging started with %dmA current limit", npm1300_get_charging_limit()); } else { vcp_println("ERROR"); } } else if (strcmp(args, "CHGSTOP") == 0) { bool ok = npm1300_set_charging(false); if (ok) { vcp_println("OK # Charging stopped"); } else { vcp_println("ERROR # I/O error"); } } else if (strncmp(args, "CHGLIMIT", 8) == 0) { int i_charge = atoi(&args[8]); if (i_charge < NPM1300_CHARGING_LIMIT_MIN || i_charge > NPM1300_CHARGING_LIMIT_MAX) { vcp_println("ERROR # Out of range"); return; } else { bool ok = npm1300_set_charging_limit(i_charge); if (ok) { vcp_println("OK # %dmA current limit", npm1300_get_charging_limit()); } else { vcp_println("ERROR # I/O error"); } } } else if (strcmp(args, "BUCK PWM") == 0) { bool ok = npm1300_set_buck_mode(NPM1300_BUCK_MODE_PWM); if (ok) { vcp_println("OK # PWM mode set"); } else { vcp_println("ERROR # I/O error"); } } else if (strcmp(args, "BUCK PFM") == 0) { bool ok = npm1300_set_buck_mode(NPM1300_BUCK_MODE_PFM); if (ok) { vcp_println("OK # PFM mode set"); } else { vcp_println("ERROR # I/O error"); } } else if (strcmp(args, "BUCK AUTO") == 0) { bool ok = npm1300_set_buck_mode(NPM1300_BUCK_MODE_AUTO); if (ok) { vcp_println("OK # AUTO mode set"); } else { vcp_println("ERROR # I/O error"); } } else if (strncmp(args, "MEASURE", 7) == 0) { int seconds = atoi(&args[7]); uint32_t ticks = hal_ticks_ms(); vcp_println( "time; vbat; ibat; ntc_temp; vsys; die_temp; iba_meas_status; " "buck_status; mode"); do { npm1300_report_t report; bool ok = npm1300_measure_sync(&report); if (!ok) { vcp_println("ERROR # I/O error"); break; } vcp_print("%09d; ", ticks); vcp_print("%d.%03d; ", (int)report.vbat, (int)(report.vbat * 1000) % 1000); vcp_print("%d.%03d; ", (int)report.ibat, (int)abs(report.ibat * 1000) % 1000); vcp_print("%d.%03d; ", (int)report.ntc_temp, (int)abs(report.ntc_temp * 1000) % 1000); vcp_print("%d.%03d; ", (int)report.vsys, (int)(report.vsys * 1000) % 1000); vcp_print("%d.%03d; ", (int)report.die_temp, (int)abs(report.die_temp * 1000) % 1000); vcp_print("%02X; ", report.ibat_meas_status); vcp_print("%02X; ", report.buck_status); bool ibat_discharging = ((report.ibat_meas_status >> 2) & 0x03) == 1; bool ibat_charging = ((report.ibat_meas_status >> 2) & 0x03) == 3; if (ibat_discharging) { vcp_print("DISCHARGING"); } else if (ibat_charging) { vcp_print("CHARGING"); } else { vcp_print("IDLE"); } vcp_println(""); while (!ticks_expired(ticks + 1000)) { }; ticks += 1000; } while (seconds-- > 0); vcp_println("OK # Measurement finished"); } } #endif // USE_POWERCTL #ifdef USE_POWERCTL void test_wpc(const char *args) { stwlc38_init(); if (strcmp(args, "EN") == 0) { if (!stwlc38_enable(true)) { vcp_println("ERROR # STWLC38 not initialized"); return; } vcp_println("OK"); } else if (strcmp(args, "DIS") == 0) { if (!stwlc38_enable(false)) { vcp_println("ERROR # STWLC38 not initialized"); return; } vcp_println("OK"); } else if (strcmp(args, "VEN") == 0) { if (!stwlc38_enable_vout(true)) { vcp_println("ERROR # STWLC38 not initialized"); return; } vcp_println("OK"); } else if (strcmp(args, "VDIS") == 0) { if (!stwlc38_enable_vout(false)) { vcp_println("ERROR # STWLC38 not initialized"); return; } vcp_println("OK"); } else if (strncmp(args, "MEASURE", 7) == 0) { stwlc38_report_t report; int seconds = atoi(&args[7]); uint32_t ticks = hal_ticks_ms(); vcp_println( "time; ready; vout_ready; vrect; vout; icur; tmeas; opfreq; ntc"); do { if (!stwlc38_get_report(&report)) { vcp_println("ERROR # STWLC38 not initialized"); return; } else { vcp_print("%09d; ", ticks); vcp_print("%d; ", report.ready ? 1 : 0); vcp_print("%d; ", report.vout_ready ? 1 : 0); vcp_print("%d.%03d; ", (int)report.vrect, (int)abs(report.vrect * 1000) % 1000); vcp_print("%d.%03d; ", (int)report.vout, (int)(report.vout * 1000) % 1000); vcp_print("%d.%03d; ", (int)report.icur, (int)abs(report.icur * 1000) % 1000); vcp_print("%d.%03d; ", (int)report.tmeas, (int)abs(report.tmeas * 1000) % 1000); vcp_print("%d; ", report.opfreq); vcp_print("%d.%03d; ", (int)report.ntc, (int)abs(report.ntc * 1000) % 1000); vcp_println(""); } while (!ticks_expired(ticks + 1000)) { }; ticks += 1000; } while (seconds-- > 0); vcp_println("OK # Measurement finished"); } } #endif // USE_POWERCTL #ifdef USE_POWERCTL void test_suspend(void) { vcp_println("# Going to suspend mode (press power button to resume)"); systick_delay_ms(500); powerctl_suspend(); systick_delay_ms(1500); vcp_println("OK # Resumed"); } #endif // USE_POWERCTL #define BACKLIGHT_NORMAL 150 int main(void) { system_init(&rsod_panic_handler); #ifdef USE_POWERCTL npm1300_init(); #endif display_init(DISPLAY_JUMP_BEHAVIOR); #ifdef USE_STORAGE_HWKEY secure_aes_init(); #endif #ifdef USE_HASH_PROCESSOR hash_processor_init(); #endif #ifdef USE_SD_CARD sdcard_init(); #endif #ifdef USE_BUTTON button_init(); #endif #ifdef USE_TOUCH touch_init(); #endif #ifdef USE_SBU sbu_init(); #endif #ifdef USE_HAPTIC haptic_init(); #endif usb_init_all(); uint32_t bootloader_version = read_bootloader_version(); const boardloader_version_t *boardloader_version = read_boardloader_version(); #ifdef USE_OPTIGA optiga_init(); optiga_open_application(); pair_optiga(); #endif gfx_clear(); draw_welcome_screen(); char dom[32]; // format: {MODEL_IDENTIFIER}-YYMMDD if (sectrue == flash_otp_read(FLASH_OTP_BLOCK_BATCH, 0, (uint8_t *)dom, 32) && sectrue == startswith(dom, MODEL_IDENTIFIER) && dom[31] == 0) { gfx_offset_t pos; pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY / 2); gfx_draw_qrcode(pos, 4, dom); pos = gfx_offset(DISPLAY_RESX / 2, DISPLAY_RESY - 30); gfx_draw_text(pos, dom + 8, -1, &bold, GFX_ALIGN_CENTER); display_refresh(); } display_fade(0, BACKLIGHT_NORMAL, 1000); char line[2048]; // expecting hundreds of bytes represented as hexadecimal // characters for (;;) { vcp_readline(line, sizeof(line)); if (startswith(line, "PING")) { vcp_println("OK"); } else if (startswith(line, "CPUID READ")) { cpuid_read(); } else if (startswith(line, "BORDER")) { test_border(); } else if (startswith(line, "DISP ")) { test_display(line + 5); #ifdef USE_BUTTON } else if (startswith(line, "BUTTON ")) { test_button(line + 7); #endif #ifdef USE_TOUCH } else if (startswith(line, "TOUCH VERSION")) { touch_version(); } else if (startswith(line, "TOUCH ")) { test_touch(line + 6); } else if (startswith(line, "TOUCH_CUSTOM ")) { test_touch_custom(line + 13); } else if (startswith(line, "TOUCH_IDLE ")) { test_touch_idle(line + 11); } else if (startswith(line, "TOUCH_POWER ")) { test_touch_power(line + 12); } else if (startswith(line, "SENS ")) { test_sensitivity(line + 5); #endif } else if (startswith(line, "PWM ")) { test_pwm(line + 4); #ifdef USE_SD_CARD } else if (startswith(line, "SD")) { test_sd(); #endif #ifdef USE_SBU } else if (startswith(line, "SBU ")) { test_sbu(line + 4); #endif #ifdef USE_HAPTIC } else if (startswith(line, "HAPTIC ")) { test_haptic(line + 7); #endif #ifdef USE_OPTIGA } else if (startswith(line, "OPTIGAID READ")) { optigaid_read(); } else if (startswith(line, "CERTINF READ")) { cert_read(OID_CERT_INF); } else if (startswith(line, "CERTDEV WRITE ")) { cert_write(OID_CERT_DEV, line + 14); } else if (startswith(line, "CERTDEV READ")) { cert_read(OID_CERT_DEV); } else if (startswith(line, "CERTFIDO WRITE ")) { cert_write(OID_CERT_FIDO, line + 15); } else if (startswith(line, "CERTFIDO READ")) { cert_read(OID_CERT_FIDO); } else if (startswith(line, "KEYFIDO WRITE ")) { keyfido_write(line + 14); } else if (startswith(line, "KEYFIDO READ")) { pubkey_read(OID_KEY_FIDO); } else if (startswith(line, "LOCK")) { optiga_lock(); } else if (startswith(line, "CHECK LOCKED")) { check_locked(); } else if (startswith(line, "SEC READ")) { sec_read(); #endif } else if (startswith(line, "OTP READ")) { test_otp_read(); } else if (startswith(line, "OTP WRITE ")) { test_otp_write(line + 10); } else if (startswith(line, "VARIANT READ")) { test_otp_read_device_variant(); } else if (startswith(line, "VARIANT ")) { test_otp_write_device_variant(line + 8); } else if (startswith(line, "FIRMWARE VERSION")) { test_firmware_version(); } else if (startswith(line, "BOOTLOADER VERSION")) { test_bootloader_version(bootloader_version); } else if (startswith(line, "BOARDLOADER VERSION")) { test_boardloader_version(boardloader_version); } else if (startswith(line, "WIPE")) { test_wipe(); } else if (startswith(line, "REBOOT")) { test_reboot(); #ifdef USE_POWERCTL } else if (startswith(line, "PMIC ")) { test_pmic(line + 5); } else if (startswith(line, "WPC ")) { test_wpc(line + 4); } else if (startswith(line, "SUSPEND")) { test_suspend(); #endif } else { vcp_println("UNKNOWN"); } } return 0; }