''' Implements an event loop with cooperative multitasking and async I/O. Tasks in the form of python coroutines (either plain generators or `async` functions) are stepped through until completion, and can get asynchronously blocked by `yield`ing or `await`ing a syscall. See `schedule`, `run`, and syscalls `sleep`, `select`, `signal` and `wait`. ''' import utime import utimeq from micropython import const from trezor import log from trezor import io after_step_hook = None # function, called after each task step _QUEUE_SIZE = const(64) # maximum number of scheduled tasks _queue = utimeq.utimeq(_QUEUE_SIZE) _paused = {} if __debug__: # for performance stats import array log_delay_pos = 0 log_delay_rb_len = const(10) log_delay_rb = array.array('i', [0] * log_delay_rb_len) def schedule(task, value=None, deadline=None): ''' Schedule task to be executed with `value` on given `deadline` (in microseconds). Does not start the event loop itself, see `run`. ''' if deadline is None: deadline = utime.ticks_us() _queue.push(deadline, task, value) def unschedule(task): ''' Remove task from the time queue. Cancels previous `schedule`. ''' global _queue task_entry = [0, 0, 0] # deadline, task, value queue_copy = utimeq.utimeq(_QUEUE_SIZE) while _queue: _queue.pop(task_entry) t, v, d = task_entry if t is not task: queue_copy.push(t, v, d) _queue = queue_copy def pause(task, iface): tasks = _paused.get(iface) if tasks is None: tasks = _paused[iface] = [] tasks.append(task) def unpause(task): for iface in _paused: if task in _paused[iface]: _paused[iface].remove(task) def run(): ''' Loop forever, stepping through scheduled tasks and awaiting I/O events inbetween. Use `schedule` first to add a coroutine to the task queue. Tasks yield back to the scheduler on any I/O, usually by calling `await` on a `Syscall`. ''' if __debug__: global log_delay_pos max_delay = const(1000000) # usec delay if queue is empty task_entry = [0, 0, 0] # deadline, task, value msg_entry = [0, 0] # iface | flags, value while True: # compute the maximum amount of time we can wait for a message if _queue: delay = utime.ticks_diff(_queue.peektime(), utime.ticks_us()) else: delay = max_delay if __debug__: # add current delay to ring buffer for performance stats log_delay_rb[log_delay_pos] = delay log_delay_pos = (log_delay_pos + 1) % log_delay_rb_len if io.poll(_paused, msg_entry, delay): # message received, run tasks paused on the interface msg_tasks = _paused.get(msg_entry[0]) if msg_tasks is not None: for task in msg_tasks: _step(task, msg_entry[1]) msg_tasks.clear() else: # timeout occurred, run the first scheduled task if _queue: _queue.pop(task_entry) _step(task_entry[1], task_entry[2]) def _step(task, value): try: if isinstance(value, Exception): result = task.throw(value) else: result = task.send(value) except StopIteration as e: if __debug__: log.debug(__name__, 'finish: %s', task) except Exception as e: if __debug__: log.exception(__name__, e) else: if isinstance(result, Syscall): result.handle(task) elif result is None: schedule(task) else: if __debug__: log.error(__name__, 'unknown syscall: %s', result) if after_step_hook: after_step_hook() class Syscall: ''' When tasks want to perform any I/O, or do any sort of communication with the scheduler, they do so through instances of a class derived from `Syscall`. ''' def __iter__(self): # support `yield from` or `await` on syscalls return (yield self) class sleep(Syscall): ''' Pause current task and resume it after given delay. Although the delay is given in microseconds, sub-millisecond precision is not guaranteed. Result value is the calculated deadline. Example: >>> planned = await loop.sleep(1000 * 1000) # sleep for 1ms >>> print('missed by %d us', utime.ticks_diff(utime.ticks_us(), planned)) ''' def __init__(self, delay_us): self.delay_us = delay_us def handle(self, task): deadline = utime.ticks_add(utime.ticks_us(), self.delay_us) schedule(task, deadline, deadline) class select(Syscall): ''' Pause current task, and resume only after a message on `msg_iface` is received. Messages are received either from an USB interface, or the touch display. Result value a tuple of message values. Example: >>> hid_report, = await loop.select(0xABCD) # await USB HID report >>> event, x, y = await loop.select(io.TOUCH) # await touch event ''' def __init__(self, msg_iface): self.msg_iface = msg_iface def handle(self, task): pause(task, self.msg_iface) _NO_VALUE = () class signal(Syscall): ''' Pause current task, and let other running task to resume it later with a result value or an exception. Example: >>> # in task #1: >>> signal = loop.signal() >>> result = await signal >>> print('awaited result:', result) >>> # in task #2: >>> signal.send('hello from task #2') >>> # prints in the next iteration of the event loop ''' def __init__(self): self.value = _NO_VALUE self.task = None def handle(self, task): self.task = task self._deliver() def send(self, value): self.value = value self._deliver() def _deliver(self): if self.task is not None and self.value is not _NO_VALUE: schedule(self.task, self.value) self.task = None self.value = _NO_VALUE class wait(Syscall): ''' Execute one or more children tasks and wait until one or more of them exit. Return value of `wait` is the return value of task that triggered the completion. By default, `wait` returns after the first child completes, and other running children are killed (by cancelling any pending schedules and calling `close()`). Example: >>> # async def wait_for_touch(): ... >>> # async def animate_logo(): ... >>> touch_task = wait_for_touch() >>> animation_task = animate_logo() >>> waiter = loop.wait(touch_task, animation_task) >>> result = await waiter >>> if animation_task in waiter.finished: >>> print('animation task returned', result) >>> else: >>> print('touch task returned', result) Note: You should not directly `yield` a `wait` instance, see logic in `wait.__iter__` for explanation. Always use `await`. ''' def __init__(self, *children, wait_for=1, exit_others=True): self.children = children self.wait_for = wait_for self.exit_others = exit_others self.scheduled = None self.finished = None self.callback = None def handle(self, task): self.callback = task self.finished = [] self.scheduled = [self._wait(c) for c in self.children] for ct in self.scheduled: schedule(ct) def exit(self): for task in self.scheduled: if task not in self.finished: unpause(task) unschedule(task) task.close() async def _wait(self, child): try: result = await child except Exception as e: self._finish(child, e) else: self._finish(child, result) def _finish(self, child, result): self.finished.append(child) if self.wait_for == len(self.finished) or isinstance(result, Exception): if self.exit_others: self.exit() schedule(self.callback, result) def __iter__(self): try: return (yield self) except: # exception was raised on the waiting task externally with # close() or throw(), kill the children tasks and re-raise self.exit() raise class put(Syscall): def __init__(self, ch, value=None): self.ch = ch self.value = value def __call__(self, value): self.value = value return self def handle(self, task): self.ch.schedule_put(schedule, task, self.value) class take(Syscall): def __init__(self, ch): self.ch = ch def __call__(self): return self def handle(self, task): if self.ch.schedule_take(schedule, task) and self.ch.id is not None: pause(self.ch, self.ch.id) class chan: def __init__(self, id=None): self.id = id self.putters = [] self.takers = [] self.put = put(self) self.take = take(self) def schedule_publish(self, schedule, value): if self.takers: for taker in self.takers: schedule(taker, value) self.takers.clear() return True else: return False def schedule_put(self, schedule, putter, value): if self.takers: taker = self.takers.pop(0) schedule(taker, value) schedule(putter, value) return True else: self.putters.append((putter, value)) return False def schedule_take(self, schedule, taker): if self.putters: putter, value = self.putters.pop(0) schedule(taker, value) schedule(putter, value) return True else: self.takers.append(taker) return False