#include #include #include #include "messages.pb.h" #include "usb.h" #include "version.h" #include "messages.h" bool msg_parse_header(const uint8_t *buf, uint16_t *msg_id, uint32_t *msg_size) { if (buf[0] != '?' || buf[1] != '#' || buf[2] != '#') { return false; } *msg_id = (buf[3] << 8) + buf[4]; *msg_size = (buf[5] << 24) + (buf[6] << 16) + (buf[7] << 8) + buf[8]; return true; } typedef struct { uint8_t iface_num; uint8_t packet_index; uint8_t packet_pos; uint8_t buf[USB_PACKET_SIZE]; } usb_write_state; static bool _usb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count) { usb_write_state *state = (usb_write_state *)(stream->state); size_t written = 0; // while we have data left while (written < count) { size_t remaining = count - written; // if all remaining data fit into our packet if (state->packet_pos + remaining <= USB_PACKET_SIZE) { // append data from buf to state->buf memcpy(state->buf + state->packet_pos, buf + written, remaining); // advance position state->packet_pos += remaining; // and return return true; } else { // append data that fits memcpy(state->buf + state->packet_pos, buf + written, USB_PACKET_SIZE - state->packet_pos); written += USB_PACKET_SIZE - state->packet_pos; // send packet usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 1); // prepare new packet state->packet_index++; memset(state->buf, 0, USB_PACKET_SIZE); state->buf[0] = '?'; state->packet_pos = MSG_HEADER2_LEN; } } return true; } static void _usb_write_flush(usb_write_state *state) { // if packet is not filled up completely if (state->packet_pos < USB_PACKET_SIZE) { // pad it with zeroes memset(state->buf + state->packet_pos, 0, USB_PACKET_SIZE - state->packet_pos); } // send packet usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 1); } static bool _send_msg(uint8_t iface_num, uint16_t msg_id, const pb_field_t fields[], const void *msg) { // determine message size by serializing it into a dummy stream pb_ostream_t sizestream = { .callback = NULL, .state = NULL, .max_size = SIZE_MAX, .bytes_written = 0, .errmsg = NULL}; if (!pb_encode(&sizestream, fields, msg)) { return false; } const uint32_t msg_size = sizestream.bytes_written; usb_write_state state = { .iface_num = iface_num, .packet_index = 0, .packet_pos = MSG_HEADER1_LEN, .buf = { '?', '#', '#', (msg_id >> 8) & 0xFF, msg_id & 0xFF, (msg_size >> 24) & 0xFF, (msg_size >> 16) & 0xFF, (msg_size >> 8) & 0xFF, msg_size & 0xFF, }, }; pb_ostream_t stream = { .callback = &_usb_write, .state = &state, .max_size = SIZE_MAX, .bytes_written = 0, .errmsg = NULL }; if (!pb_encode(&stream, fields, msg)) { return false; } _usb_write_flush(&state); return true; } #define MSG_SEND_INIT(TYPE) TYPE msg_send = TYPE##_init_default #define MSG_SEND_ASSIGN_VALUE(FIELD, VALUE) do { msg_send.has_##FIELD = true; msg_send.FIELD = VALUE; } while (0) // FIXME: strcpy -> strncpy #define MSG_SEND_ASSIGN_STRING(FIELD, VALUE) do { msg_send.has_##FIELD = true; strcpy(msg_send.FIELD, VALUE); } while (0) #define MSG_SEND(TYPE) do { _send_msg(iface_num, MessageType_MessageType_##TYPE, TYPE##_fields, &msg_send); } while (0) typedef struct { uint8_t iface_num; uint8_t packet_index; uint8_t packet_pos; uint8_t *buf; } usb_read_state; static bool _usb_read(pb_istream_t *stream, uint8_t *buf, size_t count) { usb_read_state *state = (usb_read_state *)(stream->state); size_t read = 0; // while we have data left while (read < count) { size_t remaining = count - read; // if all remaining data fit into our packet if (state->packet_pos + remaining <= USB_PACKET_SIZE) { // append data from buf to state->buf memcpy(buf + read, state->buf + state->packet_pos, remaining); // advance position state->packet_pos += remaining; // and return return true; } else { // append data that fits memcpy(buf + read, state->buf + state->packet_pos, USB_PACKET_SIZE - state->packet_pos); read += USB_PACKET_SIZE - state->packet_pos; // read next packet usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 1); // prepare next packet state->packet_index++; state->packet_pos = MSG_HEADER2_LEN; } } return true; } static void _usb_read_flush(usb_read_state *state) { (void)state; } static bool _recv_msg(uint8_t iface_num, uint32_t msg_size, uint8_t *buf, const pb_field_t fields[], void *msg) { usb_read_state state = { .iface_num = iface_num, .packet_index = 0, .packet_pos = MSG_HEADER1_LEN, .buf = buf }; pb_istream_t stream = { .callback = &_usb_read, .state = &state, .bytes_left = msg_size, .errmsg = NULL }; if (!pb_decode_noinit(&stream, fields, msg)) { return false; } _usb_read_flush(&state); return true; } #define MSG_RECV_INIT(TYPE) TYPE msg_recv = TYPE##_init_default #define MSG_RECV_CALLBACK(FIELD, CALLBACK) do { msg_recv.FIELD.funcs.decode = &CALLBACK; } while (0) #define MSG_RECV(TYPE) do { _recv_msg(iface_num, msg_size, buf, TYPE##_fields, &msg_recv); } while(0) void process_msg_Initialize(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { MSG_RECV_INIT(Initialize); MSG_RECV(Initialize); MSG_SEND_INIT(Features); MSG_SEND_ASSIGN_STRING(vendor, "trezor.io"); MSG_SEND_ASSIGN_VALUE(major_version, VERSION_MAJOR); MSG_SEND_ASSIGN_VALUE(minor_version, VERSION_MINOR); MSG_SEND_ASSIGN_VALUE(patch_version, VERSION_PATCH); MSG_SEND_ASSIGN_VALUE(bootloader_mode, true); // TODO: properly detect firmware MSG_SEND_ASSIGN_VALUE(firmware_present, false); MSG_SEND(Features); } void process_msg_Ping(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { MSG_RECV_INIT(Ping); MSG_RECV(Ping); MSG_SEND_INIT(Success); MSG_SEND_ASSIGN_STRING(message, msg_recv.message); MSG_SEND(Success); } static uint32_t firmware_size, firmware_flashed, chunk_requested; void process_msg_FirmwareErase(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { firmware_size = 0; firmware_flashed = 0; chunk_requested = 0; MSG_RECV_INIT(FirmwareErase); MSG_RECV(FirmwareErase); firmware_size = msg_recv.has_length ? msg_recv.length : 0; if (firmware_size > 0 && firmware_size % 4 == 0) { chunk_requested = (firmware_size > FIRMWARE_CHUNK_SIZE) ? FIRMWARE_CHUNK_SIZE : firmware_size; MSG_SEND_INIT(FirmwareRequest); MSG_SEND_ASSIGN_VALUE(offset, 0); MSG_SEND_ASSIGN_VALUE(length, chunk_requested); MSG_SEND(FirmwareRequest); } else { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError); MSG_SEND_ASSIGN_STRING(message, "Wrong firmware size"); MSG_SEND(Failure); } } static uint32_t chunk_size = 0; static bool _read_payload(pb_istream_t *stream, const pb_field_t *field, void **arg) { #define BUFSIZE 1024 pb_byte_t buf[BUFSIZE]; chunk_size = stream->bytes_left; while (stream->bytes_left) { if (!pb_read(stream, buf, (stream->bytes_left > BUFSIZE) ? BUFSIZE : stream->bytes_left)) { return false; } } return true; } void process_msg_FirmwareUpload(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { MSG_RECV_INIT(FirmwareUpload); MSG_RECV_CALLBACK(payload, _read_payload); MSG_RECV(FirmwareUpload); if (chunk_size != chunk_requested) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError); MSG_SEND_ASSIGN_STRING(message, "Invalid chunk size"); MSG_SEND(Failure); } firmware_size -= chunk_requested; firmware_flashed += chunk_requested; if (firmware_size > 0) { chunk_requested = (firmware_size > FIRMWARE_CHUNK_SIZE) ? FIRMWARE_CHUNK_SIZE : firmware_size; MSG_SEND_INIT(FirmwareRequest); MSG_SEND_ASSIGN_VALUE(offset, firmware_flashed); MSG_SEND_ASSIGN_VALUE(length, chunk_requested); MSG_SEND(FirmwareRequest); } else { MSG_SEND_INIT(Success); MSG_SEND(Success); } } void process_msg_unknown(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { // consume remaining message int remaining_chunks = (msg_size - (USB_PACKET_SIZE - MSG_HEADER1_LEN)) / (USB_PACKET_SIZE - MSG_HEADER2_LEN); for (int i = 0; i < remaining_chunks; i++) { int r = usb_hid_read_blocking(USB_IFACE_NUM, buf, USB_PACKET_SIZE, 100); if (r != USB_PACKET_SIZE) { break; } } MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_UnexpectedMessage); MSG_SEND_ASSIGN_STRING(message, "Unexpected message"); MSG_SEND(Failure); }