/*
* This file is part of the TREZOR project, https://trezor.io/
*
* Copyright (c) SatoshiLabs
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
#include "inflate.h"
#include "font_bitmap.h"
#ifdef TREZOR_FONT_MONO_ENABLE
#include "font_robotomono_regular_20.h"
#endif
#ifdef TREZOR_FONT_NORMAL_ENABLE
#include "font_roboto_regular_20.h"
#endif
#ifdef TREZOR_FONT_BOLD_ENABLE
#include "font_roboto_bold_20.h"
#endif
#include "trezor-qrenc/qr_encode.h"
#include "common.h"
#include "display.h"
#include
#include
static int DISPLAY_BACKLIGHT = -1;
static int DISPLAY_ORIENTATION = -1;
static struct {
int x, y;
} DISPLAY_OFFSET;
#if defined TREZOR_MODEL_T
#include "display-stm32.h"
#elif defined TREZOR_MODEL_EMU
#include "display-unix.h"
#else
#error Unsupported TREZOR port. Only STM32 and UNIX ports are supported.
#endif
// common display functions
static inline uint16_t interpolate_color(uint16_t color0, uint16_t color1, uint8_t step)
{
uint8_t cr, cg, cb;
cr = (((color0 & 0xF800) >> 11) * step + ((color1 & 0xF800) >> 11) * (15 - step)) / 15;
cg = (((color0 & 0x07E0) >> 5) * step + ((color1 & 0x07E0) >> 5) * (15 - step)) / 15;
cb = ((color0 & 0x001F) * step + (color1 & 0x001F) * (15 - step)) / 15;
return (cr << 11) | (cg << 5) | cb;
}
static inline void set_color_table(uint16_t colortable[16], uint16_t fgcolor, uint16_t bgcolor)
{
for (int i = 0; i < 16; i++) {
colortable[i] = interpolate_color(fgcolor, bgcolor, i);
}
}
static inline void clamp_coords(int x, int y, int w, int h, int *x0, int *y0, int *x1, int *y1)
{
*x0 = MAX(x, 0);
*y0 = MAX(y, 0);
*x1 = MIN(x + w - 1, DISPLAY_RESX - 1);
*y1 = MIN(y + h - 1, DISPLAY_RESY - 1);
}
void display_clear(void)
{
const int saved_orientation = DISPLAY_ORIENTATION;
display_orientation(0); // set MADCTL first so that we can set the window correctly next
display_set_window(0, 0, MAX_DISPLAY_RESX - 1, MAX_DISPLAY_RESY - 1); // address the complete frame memory
for (uint32_t i = 0; i < MAX_DISPLAY_RESX * MAX_DISPLAY_RESY; i++) {
PIXELDATA(0x0000); // 2 bytes per pixel because we're using RGB 5-6-5 format
}
display_set_window(0, 0, DISPLAY_RESX - 1, DISPLAY_RESY - 1); // go back to restricted window
display_orientation(saved_orientation); // if valid, go back to the saved orientation
}
void display_bar(int x, int y, int w, int h, uint16_t c)
{
x += DISPLAY_OFFSET.x;
y += DISPLAY_OFFSET.y;
int x0, y0, x1, y1;
clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1);
display_set_window(x0, y0, x1, y1);
for (int i = 0; i < (x1 - x0 + 1) * (y1 - y0 + 1); i++) {
PIXELDATA(c);
}
}
#define CORNER_RADIUS 16
static const uint8_t cornertable[CORNER_RADIUS * CORNER_RADIUS] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 12, 14, 15,
0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 15, 15, 15, 15, 15, 15,
0, 0, 0, 0, 0, 0, 0, 8, 15, 15, 15, 15, 15, 15, 15, 15,
0, 0, 0, 0, 0, 3, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15,
0, 0, 0, 0, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
0, 0, 0, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
0, 0, 0, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
0, 0, 8, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
0, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
1, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
5, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15,
};
void display_bar_radius(int x, int y, int w, int h, uint16_t c, uint16_t b, uint8_t r)
{
if (r != 2 && r != 4 && r != 8 && r != 16) {
return;
} else {
r = 16 / r;
}
uint16_t colortable[16];
set_color_table(colortable, c, b);
x += DISPLAY_OFFSET.x;
y += DISPLAY_OFFSET.y;
int x0, y0, x1, y1;
clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1);
display_set_window(x0, y0, x1, y1);
for (int j = y0; j <= y1; j++) {
for (int i = x0; i <= x1; i++) {
int rx = i - x;
int ry = j - y;
if (rx < CORNER_RADIUS / r && ry < CORNER_RADIUS / r) {
uint8_t c = cornertable[rx * r + ry * r * CORNER_RADIUS];
PIXELDATA(colortable[c]);
} else
if (rx < CORNER_RADIUS / r && ry >= h - CORNER_RADIUS / r) {
uint8_t c = cornertable[rx * r + (h - 1 - ry) * r * CORNER_RADIUS];
PIXELDATA(colortable[c]);
} else
if (rx >= w - CORNER_RADIUS / r && ry < CORNER_RADIUS / r) {
uint8_t c = cornertable[(w - 1 - rx) * r + ry * r * CORNER_RADIUS];
PIXELDATA(colortable[c]);
} else
if (rx >= w - CORNER_RADIUS / r && ry >= h - CORNER_RADIUS / r) {
uint8_t c = cornertable[(w - 1 - rx) * r + (h - 1 - ry) * r * CORNER_RADIUS];
PIXELDATA(colortable[c]);
} else {
PIXELDATA(c);
}
}
}
}
static void inflate_callback_image(uint8_t byte1, uint32_t pos, void *userdata)
{
static uint8_t byte0;
if (pos % 2 == 0) {
byte0 = byte1;
return;
}
const int w = ((const int *)userdata)[0];
const int x0 = ((const int *)userdata)[1];
const int x1 = ((const int *)userdata)[2];
const int y0 = ((const int *)userdata)[3];
const int y1 = ((const int *)userdata)[4];
const int px = (pos / 2) % w;
const int py = (pos / 2) / w;
if (px >= x0 && px <= x1 && py >= y0 && py <= y1) {
PIXELDATA((byte0 << 8) | byte1);
}
}
void display_image(int x, int y, int w, int h, const void *data, int datalen)
{
x += DISPLAY_OFFSET.x;
y += DISPLAY_OFFSET.y;
int x0, y0, x1, y1;
clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1);
display_set_window(x0, y0, x1, y1);
int userdata[5] = {w, x0 - x, x1 - x, y0 - y, y1 - y};
sinf_inflate(data, datalen, inflate_callback_image, userdata);
}
static void inflate_callback_avatar(uint8_t byte1, uint32_t pos, void *userdata)
{
#define AVATAR_BORDER_SIZE 4
#define AVATAR_BORDER_LOW (AVATAR_IMAGE_SIZE / 2 - AVATAR_BORDER_SIZE) * (AVATAR_IMAGE_SIZE / 2 - AVATAR_BORDER_SIZE)
#define AVATAR_BORDER_HIGH (AVATAR_IMAGE_SIZE / 2) * (AVATAR_IMAGE_SIZE / 2)
#define AVATAR_ANTIALIAS 1
static uint8_t byte0;
if (pos % 2 == 0) {
byte0 = byte1;
return;
}
const int w = ((const int *)userdata)[0];
const int x0 = ((const int *)userdata)[1];
const int x1 = ((const int *)userdata)[2];
const int y0 = ((const int *)userdata)[3];
const int y1 = ((const int *)userdata)[4];
const int fgcolor = ((const int *)userdata)[5];
const int bgcolor = ((const int *)userdata)[6];
const int px = (pos / 2) % w;
const int py = (pos / 2) / w;
if (px >= x0 && px <= x1 && py >= y0 && py <= y1) {
int d = (px - w / 2) * (px - w / 2) + (py - w / 2) * (py - w / 2);
// inside border area
if (d < AVATAR_BORDER_LOW) {
PIXELDATA((byte0 << 8) | byte1);
} else
// outside border area
if (d > AVATAR_BORDER_HIGH) {
PIXELDATA(bgcolor);
// border area
} else {
#if AVATAR_ANTIALIAS
d = 31 * (d - AVATAR_BORDER_LOW) / (AVATAR_BORDER_HIGH - AVATAR_BORDER_LOW);
uint16_t c;
if (d >= 16) {
c = interpolate_color(bgcolor, fgcolor, d - 16);
} else {
c = interpolate_color(fgcolor, (byte0 << 8) | byte1 , d);
}
PIXELDATA(c);
#else
PIXELDATA(fgcolor);
#endif
}
}
}
void display_avatar(int x, int y, const void *data, int datalen, uint16_t fgcolor, uint16_t bgcolor)
{
x += DISPLAY_OFFSET.x;
y += DISPLAY_OFFSET.y;
int x0, y0, x1, y1;
clamp_coords(x, y, AVATAR_IMAGE_SIZE, AVATAR_IMAGE_SIZE, &x0, &y0, &x1, &y1);
display_set_window(x0, y0, x1, y1);
int userdata[7] = {AVATAR_IMAGE_SIZE, x0 - x, x1 - x, y0 - y, y1 - y, fgcolor, bgcolor};
sinf_inflate(data, datalen, inflate_callback_avatar, userdata);
}
static void inflate_callback_icon(uint8_t byte, uint32_t pos, void *userdata)
{
const uint16_t *colortable = (const uint16_t *)(((const int *)userdata) + 5);
const int w = ((const int *)userdata)[0];
const int x0 = ((const int *)userdata)[1];
const int x1 = ((const int *)userdata)[2];
const int y0 = ((const int *)userdata)[3];
const int y1 = ((const int *)userdata)[4];
const int px = (pos * 2) % w;
const int py = (pos * 2) / w;
if (px >= x0 && px <= x1 && py >= y0 && py <= y1) {
PIXELDATA(colortable[byte >> 4]);
PIXELDATA(colortable[byte & 0x0F]);
}
}
void display_icon(int x, int y, int w, int h, const void *data, int datalen, uint16_t fgcolor, uint16_t bgcolor)
{
x += DISPLAY_OFFSET.x;
y += DISPLAY_OFFSET.y;
x &= ~1; // cannot draw at odd coordinate
int x0, y0, x1, y1;
clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1);
display_set_window(x0, y0, x1, y1);
int userdata[5 + 16 * sizeof(uint16_t) / sizeof(int)] = {w, x0 - x, x1 - x, y0 - y, y1 - y};
set_color_table((uint16_t *)(userdata + 5), fgcolor, bgcolor);
sinf_inflate(data, datalen, inflate_callback_icon, userdata);
}
static const uint8_t *get_glyph(uint8_t font, uint8_t c)
{
if (c >= ' ' && c <= '~') {
// do nothing - valid ASCII
} else
// UTF-8 handling: https://en.wikipedia.org/wiki/UTF-8#Description
if (c >= 0xC0) {
// bytes 11xxxxxx are first byte of UTF-8 characters
c = '_';
} else {
// bytes 10xxxxxx are successive UTF-8 characters
return 0;
}
switch (font) {
#ifdef TREZOR_FONT_MONO_ENABLE
case FONT_MONO:
return Font_RobotoMono_Regular_20[c - ' '];
#endif
#ifdef TREZOR_FONT_NORMAL_ENABLE
case FONT_NORMAL:
return Font_Roboto_Regular_20[c - ' '];
#endif
#ifdef TREZOR_FONT_BOLD_ENABLE
case FONT_BOLD:
return Font_Roboto_Bold_20[c - ' '];
#endif
}
return 0;
}
#ifndef TREZOR_PRINT_DISABLE
#define DISPLAY_PRINT_COLS (DISPLAY_RESX / 6)
#define DISPLAY_PRINT_ROWS (DISPLAY_RESY / 8)
static char display_print_buf[DISPLAY_PRINT_ROWS][DISPLAY_PRINT_COLS];
static uint16_t display_print_fgcolor = COLOR_WHITE, display_print_bgcolor = COLOR_BLACK;
// set colors for display_print function
void display_print_color(uint16_t fgcolor, uint16_t bgcolor)
{
display_print_fgcolor = fgcolor;
display_print_bgcolor = bgcolor;
}
// display text using bitmap font
void display_print(const char *text, int textlen)
{
static uint8_t row = 0, col = 0;
// determine text length if not provided
if (textlen < 0) {
textlen = strlen(text);
}
// print characters to internal buffer (display_print_buf)
for (int i = 0; i < textlen; i++) {
switch (text[i]) {
case '\r':
break;
case '\n':
row++;
col = 0;
break;
default:
display_print_buf[row][col] = text[i];
col++;
break;
}
if (col >= DISPLAY_PRINT_COLS) {
col = 0;
row++;
}
if (row >= DISPLAY_PRINT_ROWS) {
for (int j = 0; j < DISPLAY_PRINT_ROWS - 1; j++) {
memcpy(display_print_buf[j], display_print_buf[j + 1], DISPLAY_PRINT_COLS);
}
memset(display_print_buf[DISPLAY_PRINT_ROWS - 1], 0x00, DISPLAY_PRINT_COLS);
row = DISPLAY_PRINT_ROWS - 1;
}
}
// render buffer to display
display_set_window(0, 0, DISPLAY_RESX - 1, DISPLAY_RESY - 1);
for (int i = 0; i < DISPLAY_RESX * DISPLAY_RESY; i++) {
int x = (i % DISPLAY_RESX);
int y = (i / DISPLAY_RESX);
int j = y % 8; y /= 8;
int k = x % 6; x /= 6;
char c = display_print_buf[y][x] & 0x7F;
// char invert = display_print_buf[y][x] & 0x80;
if (c < ' ') c = ' ';
const uint8_t *g = Font_Bitmap + (5 * (c - ' '));
if (k < 5 && (g[k] & (1 << j))) {
PIXELDATA(display_print_fgcolor);
} else {
PIXELDATA(display_print_bgcolor);
}
}
display_refresh();
}
#ifdef TREZOR_MODEL_EMU
#define mini_vsnprintf vsnprintf
#include
#else
#include "mini_printf.h"
#endif
// variadic display_print
void display_printf(const char *fmt, ...)
{
if (!strchr(fmt, '%')) {
display_print(fmt, strlen(fmt));
} else {
va_list va;
va_start(va, fmt);
char buf[256];
int len = mini_vsnprintf(buf, sizeof(buf), fmt, va);
display_print(buf, len);
va_end(va);
}
}
#endif // TREZOR_PRINT_DISABLE
static void display_text_render(int x, int y, const char *text, int textlen, uint8_t font, uint16_t fgcolor, uint16_t bgcolor)
{
// determine text length if not provided
if (textlen < 0) {
textlen = strlen(text);
}
uint16_t colortable[16];
set_color_table(colortable, fgcolor, bgcolor);
// render glyphs
for (int i = 0; i < textlen; i++) {
const uint8_t *g = get_glyph(font, (uint8_t)text[i]);
if (!g) continue;
const uint8_t w = g[0]; // width
const uint8_t h = g[1]; // height
const uint8_t adv = g[2]; // advance
const uint8_t bearX = g[3]; // bearingX
const uint8_t bearY = g[4]; // bearingY
if (w && h) {
const int sx = x + bearX;
const int sy = y - bearY;
int x0, y0, x1, y1;
clamp_coords(sx, sy, w, h, &x0, &y0, &x1, &y1);
display_set_window(x0, y0, x1, y1);
for (int j = y0; j <= y1; j++) {
for (int i = x0; i <= x1; i++) {
const int rx = i - sx;
const int ry = j - sy;
const int a = rx + ry * w;
#if FONT_BPP == 2
const uint8_t c = ((g[5 + a / 4] >> (6 - (a % 4) * 2)) & 0x03) * 5;
#elif FONT_BPP == 4
const uint8_t c = (g[5 + a / 2] >> (4 - (a % 2) * 4)) & 0x0F;
#else
#error Unsupported FONT_BPP value
#endif
PIXELDATA(colortable[c]);
}
}
}
x += adv;
}
}
void display_text(int x, int y, const char *text, int textlen, uint8_t font, uint16_t fgcolor, uint16_t bgcolor)
{
x += DISPLAY_OFFSET.x;
y += DISPLAY_OFFSET.y;
display_text_render(x, y, text, textlen, font, fgcolor, bgcolor);
}
void display_text_center(int x, int y, const char *text, int textlen, uint8_t font, uint16_t fgcolor, uint16_t bgcolor)
{
x += DISPLAY_OFFSET.x;
y += DISPLAY_OFFSET.y;
int w = display_text_width(text, textlen, font);
display_text_render(x - w / 2, y, text, textlen, font, fgcolor, bgcolor);
}
void display_text_right(int x, int y, const char *text, int textlen, uint8_t font, uint16_t fgcolor, uint16_t bgcolor)
{
x += DISPLAY_OFFSET.x;
y += DISPLAY_OFFSET.y;
int w = display_text_width(text, textlen, font);
display_text_render(x - w, y, text, textlen, font, fgcolor, bgcolor);
}
// compute the width of the text (in pixels)
int display_text_width(const char *text, int textlen, uint8_t font)
{
int width = 0;
// determine text length if not provided
if (textlen < 0) {
textlen = strlen(text);
}
for (int i = 0; i < textlen; i++) {
const uint8_t *g = get_glyph(font, (uint8_t)text[i]);
if (!g) continue;
const uint8_t adv = g[2]; // advance
width += adv;
/*
if (i != textlen - 1) {
const uint8_t adv = g[2]; // advance
width += adv;
} else { // last character
const uint8_t w = g[0]; // width
const uint8_t bearX = g[3]; // bearingX
width += (bearX + w);
}
*/
}
return width;
}
void display_qrcode(int x, int y, const char *data, int datalen, uint8_t scale)
{
if (scale < 1 || scale > 10) return;
uint8_t bitdata[QR_MAX_BITDATA];
int side = qr_encode(QR_LEVEL_M, 0, data, datalen, bitdata);
x += DISPLAY_OFFSET.x - (side + 2) * scale / 2;
y += DISPLAY_OFFSET.y - (side + 2) * scale / 2;
int x0, y0, x1, y1;
clamp_coords(x, y, (side + 2) * scale, (side + 2) * scale, &x0, &y0, &x1, &y1);
display_set_window(x0, y0, x1, y1);
for (int j = y0; j <= y1; j++) {
for (int i = x0; i <= x1; i++) {
int rx = (i - x) / scale - 1;
int ry = (j - y) / scale - 1;
// 1px border
if (rx < 0 || ry < 0 || rx >= side || ry >= side) {
PIXELDATA(0xFFFF);
continue;
}
int a = rx * side + ry;
if (bitdata[a / 8] & (1 << (7 - a % 8))) {
PIXELDATA(0x0000);
} else {
PIXELDATA(0xFFFF);
}
}
}
}
#include "loader.h"
static void inflate_callback_loader(uint8_t byte, uint32_t pos, void *userdata)
{
uint8_t *out = (uint8_t *)userdata;
out[pos] = byte;
}
void display_loader(uint16_t progress, int yoffset, uint16_t fgcolor, uint16_t bgcolor, const uint8_t *icon, uint32_t iconlen, uint16_t iconfgcolor)
{
uint16_t colortable[16], iconcolortable[16];
set_color_table(colortable, fgcolor, bgcolor);
if (icon) {
set_color_table(iconcolortable, iconfgcolor, bgcolor);
}
if ((DISPLAY_RESY / 2 - img_loader_size + yoffset < 0) ||
(DISPLAY_RESY / 2 + img_loader_size - 1 + yoffset >= DISPLAY_RESY)) {
return;
}
display_set_window(DISPLAY_RESX / 2 - img_loader_size, DISPLAY_RESY / 2 - img_loader_size + yoffset, DISPLAY_RESX / 2 + img_loader_size - 1, DISPLAY_RESY / 2 + img_loader_size - 1 + yoffset);
if (icon && memcmp(icon, "TOIg", 4) == 0 && LOADER_ICON_SIZE == *(uint16_t *)(icon + 4) && LOADER_ICON_SIZE == *(uint16_t *)(icon + 6) && iconlen == 12 + *(uint32_t *)(icon + 8)) {
uint8_t icondata[LOADER_ICON_SIZE * LOADER_ICON_SIZE / 2];
sinf_inflate(icon + 12, iconlen - 12, inflate_callback_loader, icondata);
icon = icondata;
} else {
icon = NULL;
}
for (int y = 0; y < img_loader_size * 2; y++) {
for (int x = 0; x < img_loader_size * 2; x++) {
int mx = x, my = y;
uint16_t a;
if ((mx >= img_loader_size) && (my >= img_loader_size)) {
mx = img_loader_size * 2 - 1 - x;
my = img_loader_size * 2 - 1 - y;
a = 499 - (img_loader[my][mx] >> 8);
} else
if (mx >= img_loader_size) {
mx = img_loader_size * 2 - 1 - x;
a = img_loader[my][mx] >> 8;
} else
if (my >= img_loader_size) {
my = img_loader_size * 2 - 1 - y;
a = 500 + (img_loader[my][mx] >> 8);
} else {
a = 999 - (img_loader[my][mx] >> 8);
}
// inside of circle - draw glyph
#define LOADER_ICON_CORNER_CUT 2
if (icon && mx + my > (((LOADER_ICON_SIZE / 2) + LOADER_ICON_CORNER_CUT) * 2) && mx >= img_loader_size - (LOADER_ICON_SIZE / 2) && my >= img_loader_size - (LOADER_ICON_SIZE / 2)) {
int i = (x - (img_loader_size - (LOADER_ICON_SIZE / 2))) + (y - (img_loader_size - (LOADER_ICON_SIZE / 2))) * LOADER_ICON_SIZE;
uint8_t c;
if (i % 2) {
c = icon[i / 2] & 0x0F;
} else {
c = (icon[i / 2] & 0xF0) >> 4;
}
PIXELDATA(iconcolortable[c]);
} else {
uint8_t c;
if (progress > a) {
c = (img_loader[my][mx] & 0x00F0) >> 4;
} else {
c = img_loader[my][mx] & 0x000F;
}
PIXELDATA(colortable[c]);
}
}
}
}
void display_offset(int set_xy[2], int *get_x, int *get_y)
{
if (set_xy) {
DISPLAY_OFFSET.x = set_xy[0];
DISPLAY_OFFSET.y = set_xy[1];
}
*get_x = DISPLAY_OFFSET.x;
*get_y = DISPLAY_OFFSET.y;
}
int display_orientation(int degrees)
{
if (degrees != DISPLAY_ORIENTATION) {
if (degrees == 0 || degrees == 90 || degrees == 180 || degrees == 270) {
DISPLAY_ORIENTATION = degrees;
display_set_orientation(degrees);
}
}
return DISPLAY_ORIENTATION;
}
int display_backlight(int val)
{
if (DISPLAY_BACKLIGHT != val && val >= 0 && val <= 255) {
DISPLAY_BACKLIGHT = val;
display_set_backlight(val);
}
return DISPLAY_BACKLIGHT;
}
void display_fade(int start, int end, int delay)
{
for (int i = 0; i < 100; i++) {
display_backlight(start + i * (end - start) / 100);
hal_delay(delay / 100);
}
display_backlight(end);
}