/** * Copyright (c) 2013-2014 Tomas Dzetkulic * Copyright (c) 2013-2014 Pavol Rusnak * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include "bignum.h" #include "rand.h" #include "sha2.h" #include "ripemd160.h" #include "hmac.h" #include "ecdsa.h" #include "base58.h" #include "macros.h" #include "secp256k1.h" #include "nist256p1.h" // Set cp2 = cp1 void point_copy(const curve_point *cp1, curve_point *cp2) { *cp2 = *cp1; } // cp2 = cp1 + cp2 void point_add(const ecdsa_curve *curve, const curve_point *cp1, curve_point *cp2) { bignum256 lambda, inv, xr, yr; if (point_is_infinity(cp1)) { return; } if (point_is_infinity(cp2)) { point_copy(cp1, cp2); return; } if (point_is_equal(cp1, cp2)) { point_double(curve, cp2); return; } if (point_is_negative_of(cp1, cp2)) { point_set_infinity(cp2); return; } bn_subtractmod(&(cp2->x), &(cp1->x), &inv, &curve->prime); bn_inverse(&inv, &curve->prime); bn_subtractmod(&(cp2->y), &(cp1->y), &lambda, &curve->prime); bn_multiply(&inv, &lambda, &curve->prime); // xr = lambda^2 - x1 - x2 xr = lambda; bn_multiply(&xr, &xr, &curve->prime); yr = cp1->x; bn_addmod(&yr, &(cp2->x), &curve->prime); bn_subtractmod(&xr, &yr, &xr, &curve->prime); bn_fast_mod(&xr, &curve->prime); bn_mod(&xr, &curve->prime); // yr = lambda (x1 - xr) - y1 bn_subtractmod(&(cp1->x), &xr, &yr, &curve->prime); bn_multiply(&lambda, &yr, &curve->prime); bn_subtractmod(&yr, &(cp1->y), &yr, &curve->prime); bn_fast_mod(&yr, &curve->prime); bn_mod(&yr, &curve->prime); cp2->x = xr; cp2->y = yr; } // cp = cp + cp void point_double(const ecdsa_curve *curve, curve_point *cp) { bignum256 lambda, xr, yr; if (point_is_infinity(cp)) { return; } if (bn_is_zero(&(cp->y))) { point_set_infinity(cp); return; } // lambda = (3 x^2 + a) / (2 y) lambda = cp->y; bn_mult_k(&lambda, 2, &curve->prime); bn_inverse(&lambda, &curve->prime); xr = cp->x; bn_multiply(&xr, &xr, &curve->prime); bn_mult_k(&xr, 3, &curve->prime); bn_addmod(&xr, &curve->a, &curve->prime); bn_multiply(&xr, &lambda, &curve->prime); // xr = lambda^2 - 2*x xr = lambda; bn_multiply(&xr, &xr, &curve->prime); yr = cp->x; bn_lshift(&yr); bn_subtractmod(&xr, &yr, &xr, &curve->prime); bn_fast_mod(&xr, &curve->prime); bn_mod(&xr, &curve->prime); // yr = lambda (x - xr) - y bn_subtractmod(&(cp->x), &xr, &yr, &curve->prime); bn_multiply(&lambda, &yr, &curve->prime); bn_subtractmod(&yr, &(cp->y), &yr, &curve->prime); bn_fast_mod(&yr, &curve->prime); bn_mod(&yr, &curve->prime); cp->x = xr; cp->y = yr; } // set point to internal representation of point at infinity void point_set_infinity(curve_point *p) { bn_zero(&(p->x)); bn_zero(&(p->y)); } // return true iff p represent point at infinity // both coords are zero in internal representation int point_is_infinity(const curve_point *p) { return bn_is_zero(&(p->x)) && bn_is_zero(&(p->y)); } // return true iff both points are equal int point_is_equal(const curve_point *p, const curve_point *q) { return bn_is_equal(&(p->x), &(q->x)) && bn_is_equal(&(p->y), &(q->y)); } // returns true iff p == -q // expects p and q be valid points on curve other than point at infinity int point_is_negative_of(const curve_point *p, const curve_point *q) { // if P == (x, y), then -P would be (x, -y) on this curve if (!bn_is_equal(&(p->x), &(q->x))) { return 0; } // we shouldn't hit this for a valid point if (bn_is_zero(&(p->y))) { return 0; } return !bn_is_equal(&(p->y), &(q->y)); } // Negate a (modulo prime) if cond is 0xffffffff, keep it if cond is 0. // The timing of this function does not depend on cond. void conditional_negate(uint32_t cond, bignum256 *a, const bignum256 *prime) { int j; uint32_t tmp = 1; for (j = 0; j < 8; j++) { tmp += 0x3fffffff + prime->val[j] - a->val[j]; a->val[j] = ((tmp & 0x3fffffff) & cond) | (a->val[j] & ~cond); tmp >>= 30; } tmp += 0x3fffffff + prime->val[j] - a->val[j]; a->val[j] = ((tmp & 0x3fffffff) & cond) | (a->val[j] & ~cond); } typedef struct jacobian_curve_point { bignum256 x, y, z; } jacobian_curve_point; void curve_to_jacobian(const curve_point *p, jacobian_curve_point *jp, const bignum256 *prime) { int i; // randomize z coordinate for (i = 0; i < 8; i++) { jp->z.val[i] = random32() & 0x3FFFFFFF; } jp->z.val[8] = (random32() & 0x7fff) + 1; jp->x = jp->z; bn_multiply(&jp->z, &jp->x, prime); // x = z^2 jp->y = jp->x; bn_multiply(&jp->z, &jp->y, prime); // y = z^3 bn_multiply(&p->x, &jp->x, prime); bn_multiply(&p->y, &jp->y, prime); bn_mod(&jp->x, prime); bn_mod(&jp->y, prime); } void jacobian_to_curve(const jacobian_curve_point *jp, curve_point *p, const bignum256 *prime) { p->y = jp->z; bn_mod(&p->y, prime); bn_inverse(&p->y, prime); // p->y = z^-1 p->x = p->y; bn_multiply(&p->x, &p->x, prime); // p->x = z^-2 bn_multiply(&p->x, &p->y, prime); // p->y = z^-3 bn_multiply(&jp->x, &p->x, prime); // p->x = jp->x * z^-2 bn_multiply(&jp->y, &p->y, prime); // p->y = jp->y * z^-3 bn_mod(&p->x, prime); bn_mod(&p->y, prime); } void point_jacobian_add(const curve_point *p1, jacobian_curve_point *p2, const bignum256 *prime) { bignum256 r, h; bignum256 rsq, hcb, hcby2, hsqx2; /* usual algorithm: * * lambda = (y1 - y2/z2^3) / (x1 - x2/z2^2) * x3/z3^2 = lambda^2 - x1 - x2/z2^2 * y3/z3^3 = lambda * (x2/z2^2 - x3/z3^2) - y2/z2^3 * * to get rid of fraction we set * r = (y1 * z2^3 - y2) (the numerator of lambda * z2^3) * h = (x1 * z2^2 - x2) (the denominator of lambda * z2^2) * Hence, * lambda = r / (h*z2) * * With z3 = h*z2 (the denominator of lambda) * we get x3 = lambda^2*z3^2 - x1*z3^2 - x2/z2^2*z3^2 * = r^2 - x1*h^2*z2^2 - x2*h^2 * = r^2 - h^2*(x1*z2^2 + x2) * = r^2 - h^2*(h + 2*x2) * = r^2 - h^3 - 2*h^2*x2 * and y3 = (lambda * (x2/z2^2 - x3/z3^2) - y2/z2^3) * z3^3 * = r * (h^2*x2 - x3) - h^3*y2 */ /* h = x1*z2^2 - x2 * r = y1*z2^3 - y2 * x3 = r^2 - h^3 - 2*h^2*x2 * y3 = r*(h^2*x2 - x3) - h^3*y2 * z3 = h*z2 */ // h = x1 * z2^2 - x2; // r = y1 * z2^3 - y2; h = p2->z; bn_multiply(&h, &h, prime); // h = z2^2 r = p2->z; bn_multiply(&h, &r, prime); // r = z2^3 bn_multiply(&p1->x, &h, prime); bn_subtractmod(&h, &p2->x, &h, prime); // h = x1 * z2^2 - x2; bn_multiply(&p1->y, &r, prime); bn_subtractmod(&r, &p2->y, &r, prime); // r = y1 * z2^3 - y2; // hsqx2 = h^2 hsqx2 = h; bn_multiply(&hsqx2, &hsqx2, prime); // hcb = h^3 hcb = h; bn_multiply(&hsqx2, &hcb, prime); // hsqx2 = h^2 * x2 bn_multiply(&p2->x, &hsqx2, prime); // hcby2 = h^3 * y2 hcby2 = hcb; bn_multiply(&p2->y, &hcby2, prime); // rsq = r^2 rsq = r; bn_multiply(&rsq, &rsq, prime); // z3 = h*z2 bn_multiply(&h, &p2->z, prime); bn_mod(&p2->z, prime); // x3 = r^2 - h^3 - 2h^2x2 bn_addmod(&hcb, &hsqx2, prime); bn_addmod(&hcb, &hsqx2, prime); bn_subtractmod(&rsq, &hcb, &p2->x, prime); bn_fast_mod(&p2->x, prime); bn_mod(&p2->x, prime); // y3 = r*(h^2x2 - x3) - y2*h^3 bn_subtractmod(&hsqx2, &p2->x, &p2->y, prime); bn_multiply(&r, &p2->y, prime); bn_subtractmod(&p2->y, &hcby2, &p2->y, prime); bn_fast_mod(&p2->y, prime); bn_mod(&p2->y, prime); } void point_jacobian_double(jacobian_curve_point *p, const ecdsa_curve *curve) { bignum256 az4, m, msq, ysq, xysq; const bignum256 *prime = &curve->prime; /* usual algorithm: * * lambda = (3((x/z^2)^2 + a) / 2y/z^3) = (3x^2 + az^4)/2yz * x3/z3^2 = lambda^2 - 2x/z^2 * y3/z3^3 = lambda * (x/z^2 - x3/z3^2) - y/z^3 * * to get rid of fraction we set * m = (3 x^2 + az^4) / 2 * Hence, * lambda = m / yz = m / z3 * * With z3 = yz (the denominator of lambda) * we get x3 = lambda^2*z3^2 - 2*x/z^2*z3^2 * = m^2 - 2*xy^2 * and y3 = (lambda * (x/z^2 - x3/z3^2) - y/z^3) * z3^3 * = m * (xy^2 - x3) - y^4 */ /* m = (3*x^2 + a z^4) / 2 * x3 = m^2 - 2*xy^2 * y3 = m*(xy^2 - x3) - 8y^4 * z3 = y*z */ m = p->x; bn_multiply(&m, &m, prime); bn_mult_k(&m, 3, prime); az4 = p->z; bn_multiply(&az4, &az4, prime); bn_multiply(&az4, &az4, prime); bn_multiply(&curve->a, &az4, prime); bn_addmod(&m, &az4, prime); bn_mult_half(&m, prime); // msq = m^2 msq = m; bn_multiply(&msq, &msq, prime); // ysq = y^2 ysq = p->y; bn_multiply(&ysq, &ysq, prime); // xysq = xy^2 xysq = p->x; bn_multiply(&ysq, &xysq, prime); // z3 = yz bn_multiply(&p->y, &p->z, prime); bn_mod(&p->z, prime); // x3 = m^2 - 2*xy^2 p->x = xysq; bn_mod(&p->x, prime); bn_lshift(&p->x); bn_subtractmod(&msq, &p->x, &p->x, prime); bn_fast_mod(&p->x, prime); bn_mod(&p->x, prime); // y3 = m*(xy^2 - x3) - y^4 bn_subtractmod(&xysq, &p->x, &p->y, prime); bn_multiply(&m, &p->y, prime); bn_multiply(&ysq, &ysq, prime); bn_subtractmod(&p->y, &ysq, &p->y, prime); bn_fast_mod(&p->y, prime); bn_mod(&p->y, prime); } // res = k * p void point_multiply(const ecdsa_curve *curve, const bignum256 *k, const curve_point *p, curve_point *res) { // this algorithm is loosely based on // Katsuyuki Okeya and Tsuyoshi Takagi, The Width-w NAF Method Provides // Small Memory and Fast Elliptic Scalar Multiplications Secure against // Side Channel Attacks. assert (bn_is_less(k, &curve->order)); int i, j; int pos, shift; bignum256 a; uint32_t is_even = (k->val[0] & 1) - 1; uint32_t bits, sign, nsign; jacobian_curve_point jres; curve_point pmult[8]; const bignum256 *prime = &curve->prime; // is_even = 0xffffffff if k is even, 0 otherwise. // add 2^256. // make number odd: subtract curve->order if even uint32_t tmp = 1; uint32_t is_non_zero = 0; for (j = 0; j < 8; j++) { is_non_zero |= k->val[j]; tmp += 0x3fffffff + k->val[j] - (curve->order.val[j] & is_even); a.val[j] = tmp & 0x3fffffff; tmp >>= 30; } is_non_zero |= k->val[j]; a.val[j] = tmp + 0xffff + k->val[j] - (curve->order.val[j] & is_even); assert((a.val[0] & 1) != 0); // special case 0*p: just return zero. We don't care about constant time. if (!is_non_zero) { point_set_infinity(res); return; } // Now a = k + 2^256 (mod curve->order) and a is odd. // // The idea is to bring the new a into the form. // sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd. // a[0] is odd, since a is odd. If a[i] would be even, we can // add 1 to it and subtract 16 from a[i-1]. Afterwards, // a[64] = 1, which is the 2^256 that we added before. // // Since k = a - 2^256 (mod curve->order), we can compute // k*p = sum_{i=0..63} a[i] 16^i * p // // We compute |a[i]| * p in advance for all possible // values of |a[i]| * p. pmult[i] = (2*i+1) * p // We compute p, 3*p, ..., 15*p and store it in the table pmult. // store p^2 temporarily in pmult[7] pmult[7] = *p; point_double(curve, &pmult[7]); // compute 3*p, etc by repeatedly adding p^2. pmult[0] = *p; for (i = 1; i < 8; i++) { pmult[i] = pmult[7]; point_add(curve, &pmult[i-1], &pmult[i]); } // now compute res = sum_{i=0..63} a[i] * 16^i * p step by step, // starting with i = 63. // initialize jres = |a[63]| * p. // Note that a[i] = a>>(4*i) & 0xf if (a&0x10) != 0 // and - (16 - (a>>(4*i) & 0xf)) otherwise. We can compute this as // ((a ^ (((a >> 4) & 1) - 1)) & 0xf) >> 1 // since a is odd. bits = a.val[8] >> 12; sign = (bits >> 4) - 1; bits ^= sign; bits &= 15; curve_to_jacobian(&pmult[bits>>1], &jres, prime); for (i = 62; i >= 0; i--) { // sign = sign(a[i+1]) (0xffffffff for negative, 0 for positive) // invariant jres = (-1)^sign sum_{j=i+1..63} (a[j] * 16^{j-i-1} * p) point_jacobian_double(&jres, curve); point_jacobian_double(&jres, curve); point_jacobian_double(&jres, curve); point_jacobian_double(&jres, curve); // get lowest 5 bits of a >> (i*4). pos = i*4/30; shift = i*4 % 30; bits = (a.val[pos+1]<<(30-shift) | a.val[pos] >> shift) & 31; nsign = (bits >> 4) - 1; bits ^= nsign; bits &= 15; // negate last result to make signs of this round and the // last round equal. conditional_negate(sign ^ nsign, &jres.z, prime); // add odd factor point_jacobian_add(&pmult[bits >> 1], &jres, prime); sign = nsign; } conditional_negate(sign, &jres.z, prime); jacobian_to_curve(&jres, res, prime); } #if USE_PRECOMPUTED_CP // res = k * G // k must be a normalized number with 0 <= k < curve->order void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k, curve_point *res) { assert (bn_is_less(k, &curve->order)); int i, j; bignum256 a; uint32_t is_even = (k->val[0] & 1) - 1; uint32_t lowbits; jacobian_curve_point jres; const bignum256 *prime = &curve->prime; // is_even = 0xffffffff if k is even, 0 otherwise. // add 2^256. // make number odd: subtract curve->order if even uint32_t tmp = 1; uint32_t is_non_zero = 0; for (j = 0; j < 8; j++) { is_non_zero |= k->val[j]; tmp += 0x3fffffff + k->val[j] - (curve->order.val[j] & is_even); a.val[j] = tmp & 0x3fffffff; tmp >>= 30; } is_non_zero |= k->val[j]; a.val[j] = tmp + 0xffff + k->val[j] - (curve->order.val[j] & is_even); assert((a.val[0] & 1) != 0); // special case 0*G: just return zero. We don't care about constant time. if (!is_non_zero) { point_set_infinity(res); return; } // Now a = k + 2^256 (mod curve->order) and a is odd. // // The idea is to bring the new a into the form. // sum_{i=0..64} a[i] 16^i, where |a[i]| < 16 and a[i] is odd. // a[0] is odd, since a is odd. If a[i] would be even, we can // add 1 to it and subtract 16 from a[i-1]. Afterwards, // a[64] = 1, which is the 2^256 that we added before. // // Since k = a - 2^256 (mod curve->order), we can compute // k*G = sum_{i=0..63} a[i] 16^i * G // // We have a big table curve->cp that stores all possible // values of |a[i]| 16^i * G. // curve->cp[i][j] = (2*j+1) * 16^i * G // now compute res = sum_{i=0..63} a[i] * 16^i * G step by step. // initial res = |a[0]| * G. Note that a[0] = a & 0xf if (a&0x10) != 0 // and - (16 - (a & 0xf)) otherwise. We can compute this as // ((a ^ (((a >> 4) & 1) - 1)) & 0xf) >> 1 // since a is odd. lowbits = a.val[0] & ((1 << 5) - 1); lowbits ^= (lowbits >> 4) - 1; lowbits &= 15; curve_to_jacobian(&curve->cp[0][lowbits >> 1], &jres, prime); for (i = 1; i < 64; i ++) { // invariant res = sign(a[i-1]) sum_{j=0..i-1} (a[j] * 16^j * G) // shift a by 4 places. for (j = 0; j < 8; j++) { a.val[j] = (a.val[j] >> 4) | ((a.val[j + 1] & 0xf) << 26); } a.val[j] >>= 4; // a = old(a)>>(4*i) // a is even iff sign(a[i-1]) = -1 lowbits = a.val[0] & ((1 << 5) - 1); lowbits ^= (lowbits >> 4) - 1; lowbits &= 15; // negate last result to make signs of this round and the // last round equal. conditional_negate((lowbits & 1) - 1, &jres.y, prime); // add odd factor point_jacobian_add(&curve->cp[i][lowbits >> 1], &jres, prime); } conditional_negate(((a.val[0] >> 4) & 1) - 1, &jres.y, prime); jacobian_to_curve(&jres, res, prime); } #else void scalar_multiply(const ecdsa_curve *curve, const bignum256 *k, curve_point *res) { point_multiply(curve, k, &curve->G, res); } #endif // generate random K for signing int generate_k_random(const ecdsa_curve *curve, bignum256 *k) { int i, j; for (j = 0; j < 10000; j++) { for (i = 0; i < 8; i++) { k->val[i] = random32() & 0x3FFFFFFF; } k->val[8] = random32() & 0xFFFF; // if k is too big or too small, we don't like it if ( !bn_is_zero(k) && bn_is_less(k, &curve->order) ) { return 0; // good number - no error } } // we generated 10000 numbers, none of them is good -> fail return 1; } // generate K in a deterministic way, according to RFC6979 // http://tools.ietf.org/html/rfc6979 int generate_k_rfc6979(const ecdsa_curve *curve, bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash) { int i, error; uint8_t v[32], k[32], bx[2*32], buf[32 + 1 + sizeof(bx)]; bignum256 z1; memcpy(bx, priv_key, 32); bn_read_be(hash, &z1); bn_mod(&z1, &curve->order); bn_write_be(&z1, bx + 32); memset(v, 1, sizeof(v)); memset(k, 0, sizeof(k)); memcpy(buf, v, sizeof(v)); buf[sizeof(v)] = 0x00; memcpy(buf + sizeof(v) + 1, bx, 64); hmac_sha256(k, sizeof(k), buf, sizeof(buf), k); hmac_sha256(k, sizeof(k), v, sizeof(v), v); memcpy(buf, v, sizeof(v)); buf[sizeof(v)] = 0x01; memcpy(buf + sizeof(v) + 1, bx, 64); hmac_sha256(k, sizeof(k), buf, sizeof(buf), k); hmac_sha256(k, sizeof(k), v, sizeof(v), v); error = 1; for (i = 0; i < 10000; i++) { hmac_sha256(k, sizeof(k), v, sizeof(v), v); bn_read_be(v, secret); if ( !bn_is_zero(secret) && bn_is_less(secret, &curve->order) ) { error = 0; // good number -> no error break; } memcpy(buf, v, sizeof(v)); buf[sizeof(v)] = 0x00; hmac_sha256(k, sizeof(k), buf, sizeof(v) + 1, k); hmac_sha256(k, sizeof(k), v, sizeof(v), v); } // we generated 10000 numbers, none of them is good -> fail MEMSET_BZERO(v, sizeof(v)); MEMSET_BZERO(k, sizeof(k)); MEMSET_BZERO(bx, sizeof(bx)); MEMSET_BZERO(buf, sizeof(buf)); return error; } // msg is a data to be signed // msg_len is the message length int ecdsa_sign(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby) { uint8_t hash[32]; sha256_Raw(msg, msg_len, hash); int res = ecdsa_sign_digest(curve, priv_key, hash, sig, pby); MEMSET_BZERO(hash, sizeof(hash)); return res; } // msg is a data to be signed // msg_len is the message length int ecdsa_sign_double(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby) { uint8_t hash[32]; sha256_Raw(msg, msg_len, hash); sha256_Raw(hash, 32, hash); int res = ecdsa_sign_digest(curve, priv_key, hash, sig, pby); MEMSET_BZERO(hash, sizeof(hash)); return res; } // uses secp256k1 curve // priv_key is a 32 byte big endian stored number // sig is 64 bytes long array for the signature // digest is 32 bytes of digest int ecdsa_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *digest, uint8_t *sig, uint8_t *pby) { uint32_t i; curve_point R; bignum256 k, z; bignum256 *da = &R.y; int result = 0; bn_read_be(digest, &z); #if USE_RFC6979 // generate K deterministically if (generate_k_rfc6979(curve, &k, priv_key, digest) != 0) { result = 1; } #else // generate random number k if (generate_k_random(curve, &k) != 0) { result = 1; } #endif if (result == 0) { // compute k*G scalar_multiply(curve, &k, &R); if (pby) { *pby = R.y.val[0] & 1; } // r = (rx mod n) bn_mod(&R.x, &curve->order); // if r is zero, we fail if (bn_is_zero(&R.x)) { result = 2; } } if (result == 0) { bn_inverse(&k, &curve->order); bn_read_be(priv_key, da); bn_multiply(&R.x, da, &curve->order); for (i = 0; i < 8; i++) { da->val[i] += z.val[i]; da->val[i + 1] += (da->val[i] >> 30); da->val[i] &= 0x3FFFFFFF; } da->val[8] += z.val[8]; bn_multiply(da, &k, &curve->order); bn_mod(&k, &curve->order); // if k is zero, we fail if (bn_is_zero(&k)) { result = 3; } } if (result == 0) { // we are done, R.x and k is the result signature bn_write_be(&R.x, sig); bn_write_be(&k, sig + 32); } MEMSET_BZERO(&k, sizeof(k)); MEMSET_BZERO(&z, sizeof(z)); MEMSET_BZERO(&R, sizeof(R)); return result; } void ecdsa_get_public_key33(const ecdsa_curve *curve, const uint8_t *priv_key, uint8_t *pub_key) { curve_point R; bignum256 k; bn_read_be(priv_key, &k); // compute k*G scalar_multiply(curve, &k, &R); pub_key[0] = 0x02 | (R.y.val[0] & 0x01); bn_write_be(&R.x, pub_key + 1); MEMSET_BZERO(&R, sizeof(R)); MEMSET_BZERO(&k, sizeof(k)); } void ecdsa_get_public_key65(const ecdsa_curve *curve, const uint8_t *priv_key, uint8_t *pub_key) { curve_point R; bignum256 k; bn_read_be(priv_key, &k); // compute k*G scalar_multiply(curve, &k, &R); pub_key[0] = 0x04; bn_write_be(&R.x, pub_key + 1); bn_write_be(&R.y, pub_key + 33); MEMSET_BZERO(&R, sizeof(R)); MEMSET_BZERO(&k, sizeof(k)); } void ecdsa_get_pubkeyhash(const uint8_t *pub_key, uint8_t *pubkeyhash) { uint8_t h[32]; if (pub_key[0] == 0x04) { // uncompressed format sha256_Raw(pub_key, 65, h); } else if (pub_key[0] == 0x00) { // point at infinity sha256_Raw(pub_key, 1, h); } else { sha256_Raw(pub_key, 33, h); // expecting compressed format } ripemd160(h, 32, pubkeyhash); MEMSET_BZERO(h, sizeof(h)); } void ecdsa_get_address_raw(const uint8_t *pub_key, uint8_t version, uint8_t *addr_raw) { addr_raw[0] = version; ecdsa_get_pubkeyhash(pub_key, addr_raw + 1); } void ecdsa_get_address(const uint8_t *pub_key, uint8_t version, char *addr, int addrsize) { uint8_t raw[21]; ecdsa_get_address_raw(pub_key, version, raw); base58_encode_check(raw, 21, addr, addrsize); // not as important to clear this one, but we might as well MEMSET_BZERO(raw, sizeof(raw)); } void ecdsa_get_wif(const uint8_t *priv_key, uint8_t version, char *wif, int wifsize) { uint8_t data[34]; data[0] = version; memcpy(data + 1, priv_key, 32); data[33] = 0x01; base58_encode_check(data, 34, wif, wifsize); // private keys running around our stack can cause trouble MEMSET_BZERO(data, sizeof(data)); } int ecdsa_address_decode(const char *addr, uint8_t *out) { if (!addr) return 0; return base58_decode_check(addr, out, 21) == 21; } void uncompress_coords(const ecdsa_curve *curve, uint8_t odd, const bignum256 *x, bignum256 *y) { // y^2 = x^3 + 0*x + 7 memcpy(y, x, sizeof(bignum256)); // y is x bn_multiply(x, y, &curve->prime); // y is x^2 bn_multiply(x, y, &curve->prime); // y is x^3 bn_addmodi(y, 7, &curve->prime); // y is x^3 + 7 bn_sqrt(y, &curve->prime); // y = sqrt(y) if ((odd & 0x01) != (y->val[0] & 1)) { bn_subtract(&curve->prime, y, y); // y = -y } } int ecdsa_read_pubkey(const ecdsa_curve *curve, const uint8_t *pub_key, curve_point *pub) { if (pub_key[0] == 0x04) { bn_read_be(pub_key + 1, &(pub->x)); bn_read_be(pub_key + 33, &(pub->y)); return ecdsa_validate_pubkey(curve, pub); } if (pub_key[0] == 0x02 || pub_key[0] == 0x03) { // compute missing y coords bn_read_be(pub_key + 1, &(pub->x)); uncompress_coords(curve, pub_key[0], &(pub->x), &(pub->y)); return ecdsa_validate_pubkey(curve, pub); } // error return 0; } // Verifies that: // - pub is not the point at infinity. // - pub->x and pub->y are in range [0,p-1]. // - pub is on the curve. int ecdsa_validate_pubkey(const ecdsa_curve *curve, const curve_point *pub) { bignum256 y_2, x_3_b; if (point_is_infinity(pub)) { return 0; } if (!bn_is_less(&(pub->x), &curve->prime) || !bn_is_less(&(pub->y), &curve->prime)) { return 0; } memcpy(&y_2, &(pub->y), sizeof(bignum256)); memcpy(&x_3_b, &(pub->x), sizeof(bignum256)); // y^2 bn_multiply(&(pub->y), &y_2, &curve->prime); bn_mod(&y_2, &curve->prime); // x^3 + b bn_multiply(&(pub->x), &x_3_b, &curve->prime); bn_multiply(&(pub->x), &x_3_b, &curve->prime); bn_addmodi(&x_3_b, 7, &curve->prime); if (!bn_is_equal(&x_3_b, &y_2)) { return 0; } return 1; } // uses secp256k1 curve // pub_key - 65 bytes uncompressed key // signature - 64 bytes signature // msg is a data that was signed // msg_len is the message length int ecdsa_verify(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len) { uint8_t hash[32]; sha256_Raw(msg, msg_len, hash); int res = ecdsa_verify_digest(curve, pub_key, sig, hash); MEMSET_BZERO(hash, sizeof(hash)); return res; } int ecdsa_verify_double(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len) { uint8_t hash[32]; sha256_Raw(msg, msg_len, hash); sha256_Raw(hash, 32, hash); int res = ecdsa_verify_digest(curve, pub_key, sig, hash); MEMSET_BZERO(hash, sizeof(hash)); return res; } // returns 0 if verification succeeded int ecdsa_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *sig, const uint8_t *digest) { curve_point pub, res; bignum256 r, s, z; if (!ecdsa_read_pubkey(curve, pub_key, &pub)) { return 1; } bn_read_be(sig, &r); bn_read_be(sig + 32, &s); bn_read_be(digest, &z); if (bn_is_zero(&r) || bn_is_zero(&s) || (!bn_is_less(&r, &curve->order)) || (!bn_is_less(&s, &curve->order))) return 2; bn_inverse(&s, &curve->order); // s^-1 bn_multiply(&s, &z, &curve->order); // z*s^-1 bn_mod(&z, &curve->order); bn_multiply(&r, &s, &curve->order); // r*s^-1 bn_mod(&s, &curve->order); int result = 0; if (bn_is_zero(&z)) { // our message hashes to zero // I don't expect this to happen any time soon result = 3; } else { scalar_multiply(curve, &z, &res); } if (result == 0) { // both pub and res can be infinity, can have y = 0 OR can be equal -> false negative point_multiply(curve, &s, &pub, &pub); point_add(curve, &pub, &res); bn_mod(&(res.x), &curve->order); // signature does not match if (!bn_is_equal(&res.x, &r)) { result = 5; } } MEMSET_BZERO(&pub, sizeof(pub)); MEMSET_BZERO(&res, sizeof(res)); MEMSET_BZERO(&r, sizeof(r)); MEMSET_BZERO(&s, sizeof(s)); MEMSET_BZERO(&z, sizeof(z)); // all OK return result; } int ecdsa_sig_to_der(const uint8_t *sig, uint8_t *der) { int i; uint8_t *p = der, *len, *len1, *len2; *p = 0x30; p++; // sequence *p = 0x00; len = p; p++; // len(sequence) *p = 0x02; p++; // integer *p = 0x00; len1 = p; p++; // len(integer) // process R i = 0; while (sig[i] == 0 && i < 32) { i++; } // skip leading zeroes if (sig[i] >= 0x80) { // put zero in output if MSB set *p = 0x00; p++; *len1 = *len1 + 1; } while (i < 32) { // copy bytes to output *p = sig[i]; p++; *len1 = *len1 + 1; i++; } *p = 0x02; p++; // integer *p = 0x00; len2 = p; p++; // len(integer) // process S i = 32; while (sig[i] == 0 && i < 64) { i++; } // skip leading zeroes if (sig[i] >= 0x80) { // put zero in output if MSB set *p = 0x00; p++; *len2 = *len2 + 1; } while (i < 64) { // copy bytes to output *p = sig[i]; p++; *len2 = *len2 + 1; i++; } *len = *len1 + *len2 + 4; return *len + 2; } const ecdsa_curve *get_curve_by_name(const char *curve_name) { if (curve_name == 0) { return 0; } if (strcmp(curve_name, "secp256k1") == 0) { return &secp256k1; } if (strcmp(curve_name, "nist256p1") == 0) { return &nist256p1; } return 0; }