/** * Copyright (c) 2021 The Bitcoin ABC developers * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "schnorr.h" #include "hmac_drbg.h" #include "memzero.h" #include "rfc6979.h" #include <assert.h> #include <stdio.h> #include <string.h> static int jacobi(const bignum256 *_n, const bignum256 *_k) { assert(!bn_is_zero(_k) && bn_is_odd(_k)); bignum256 n_copy = {0}; bignum256 *n = &n_copy; bn_copy(_n, n); bignum256 k_copy = {0}; bignum256 *k = &k_copy; bn_copy(_k, k); int t = 0; while (!bn_is_zero(n)) { while (bn_is_even(n)) { // jacobi(2 * n, k) = jacobi(n, k) if k = 1 (mod 8) or k = 7 (mod 8) // jacobi(2 * n, k) = -jacobi(n, k) if k = 3 (mod 8) or k = 5 (mod 8) uint32_t r = k->val[0] & 0x07; t ^= (r == 3 || r == 5); bn_rshift(n); } if (bn_is_less(n, k)) { // jacobi(n, k) = jacobi(k, n) if k = n = 1 (mod 4) // jacobi(n, k) = -jacobi(k, n) if k = n = 3 (mod 4) t ^= ((n->val[0] & k->val[0] & 3) == 3); bignum256 *temp = n; n = k; k = temp; } // jacobi(n, k) = jacobi(n - k, k) bn_subtract(n, k, n); } int k_is_one = bn_is_one(k); // Cleanup memzero(&n_copy, sizeof(n_copy)); memzero(&k_copy, sizeof(k_copy)); // Map t: [0] => 1, [1] => -1 t = -2 * t + 1; return k_is_one * t; } static int is_non_quad_residue(const bignum256 *n, const bignum256 *prime) { return jacobi(n, prime) == -1; } static int generate_k_schnorr(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *hash, bignum256 *k) { rfc6979_state rng = {0}; uint8_t hmac_data[SHA256_DIGEST_LENGTH + 16] = {0}; /* * Init the HMAC with additional data specific to Schnorr. This prevents from * leaking the private key in the case the same message is signed with both * Schnorr and ECDSA. */ memcpy(hmac_data, hash, SHA256_DIGEST_LENGTH); memcpy(hmac_data + SHA256_DIGEST_LENGTH, "Schnorr+SHA256 ", 16); hmac_drbg_init(&rng, priv_key, 32, hmac_data, SHA256_DIGEST_LENGTH + 16); for (int i = 0; i < 10000; i++) { generate_k_rfc6979(k, &rng); // If k is too big or too small, we don't like it if (bn_is_zero(k) || !bn_is_less(k, &curve->order)) { continue; } memzero(&rng, sizeof(rng)); return 0; } memzero(&rng, sizeof(rng)); return 1; } // e = H(Rx, pub_key, msg_hash) static void calc_e(const ecdsa_curve *curve, const bignum256 *Rx, const uint8_t pub_key[33], const uint8_t *msg_hash, bignum256 *e) { uint8_t Rxbuf[32] = {0}; SHA256_CTX ctx = {0}; uint8_t digest[SHA256_DIGEST_LENGTH] = {0}; bn_write_be(Rx, Rxbuf); sha256_Init(&ctx); sha256_Update(&ctx, Rxbuf, sizeof(Rxbuf)); sha256_Update(&ctx, pub_key, 33); sha256_Update(&ctx, msg_hash, SHA256_DIGEST_LENGTH); sha256_Final(&ctx, digest); bn_read_be(digest, e); bn_fast_mod(e, &curve->order); bn_mod(e, &curve->order); } int schnorr_sign_digest(const ecdsa_curve *curve, const uint8_t *priv_key, const uint8_t *digest, uint8_t *sign) { uint8_t pub_key[33] = {0}; curve_point R = {0}; bignum256 e = {0}, s = {0}, k = {0}; if (ecdsa_get_public_key33(curve, priv_key, pub_key) != 0) { return 1; } // Compute k if (generate_k_schnorr(curve, priv_key, digest, &k) != 0) { memzero(&k, sizeof(k)); return 1; } // Compute R = k * G scalar_multiply(curve, &k, &R); // If R.y is not a quadratic residue, negate the nonce bn_cnegate(is_non_quad_residue(&R.y, &curve->prime), &k, &curve->order); bn_write_be(&R.x, sign); // Compute e = H(Rx, pub_key, msg_hash) calc_e(curve, &R.x, pub_key, digest, &e); // Compute s = k + e * priv_key bn_read_be(priv_key, &s); bn_multiply(&e, &s, &curve->order); bn_addmod(&s, &k, &curve->order); memzero(&k, sizeof(k)); bn_mod(&s, &curve->order); bn_write_be(&s, sign + 32); return 0; } int schnorr_verify_digest(const ecdsa_curve *curve, const uint8_t *pub_key, const uint8_t *digest, const uint8_t *sign) { curve_point P = {0}, sG = {0}, R = {0}; bignum256 r = {0}, s = {0}, e = {0}; bn_read_be(sign, &r); bn_read_be(sign + 32, &s); // Signature is invalid if s >= n or r >= p. if (!bn_is_less(&r, &curve->prime) || !bn_is_less(&s, &curve->order)) { return 1; } if (!ecdsa_read_pubkey(curve, pub_key, &P)) { return 2; } // Compute e calc_e(curve, &r, pub_key, digest, &e); if (bn_is_zero(&e)) { return 3; } // Compute R = sG - eP bn_subtract(&curve->order, &e, &e); scalar_multiply(curve, &s, &sG); point_multiply(curve, &e, &P, &R); point_add(curve, &sG, &R); if (point_is_infinity(&R)) { return 4; } // Check r == Rx if (!bn_is_equal(&r, &R.x)) { return 5; } // Check Ry is a quadratic residue if (is_non_quad_residue(&R.y, &curve->prime)) { return 6; } return 0; }