/* * This file is part of the Trezor project, https://trezor.io/ * * Copyright (c) SatoshiLabs * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /* * Implements driver for IN-PI15TAT5R5G5B 1515 RGB LED 4-Pin with Integrated IC * * The communication protocol prescribes encoding of 0 as a short pulse * (200-400ns) and 1 as a long pulse (580ns-1us). Before sending the data reset * period is required: at least 80us without pulses. * * The data send to LED is 24 bit RGB. These data are encoded as the long and * short pulses. * * After data is sent, the PWM compare level is set to 0 to stop pulsing. * * For pulse generation with precise timing PWM implemented via TIM8 is used. * To avoid any glitches when setting the CCR register, preloading is used, * therefore sync with TIM4 is needed (to generate COM event on TIM update) * * DMA is used to set the CCR register to avoid need for interrupt after every * bit is sent. */ #include "common.h" #include STM32_HAL_H #define RESET_DATA_LEN 18 // >80us no pulse before sending data #define DATA_LEN 25 // 24 RGB bits and a final zero #define TIMER_PERIOD 832 // cca 200 KHz @ 180MHz #define BIT_0_LEN 52 // 312ns #define BIT_1_LEN 125 // 750ns #if defined BOARDLOADER #error Not implemented for boardloader! #endif #if defined BOOTLOADER __attribute__((section(".buf"))) #endif uint32_t rgb_led_data[RESET_DATA_LEN + DATA_LEN] = {0}; static void rgb_led_set(uint32_t* start, uint8_t color) { for (int i = 0; i < 8; i++) { uint32_t bit_mask = (1 << (7 - i)); if (color & bit_mask) { start[i] = BIT_1_LEN; } else { start[i] = BIT_0_LEN; } } } void rgb_led_set_color(uint32_t color) { uint16_t red = (0xFF0000 & color) >> 16; uint16_t green = (0xFF00 & color) >> 8; uint16_t blue = (0xFF & color); // wait for previous command to finish while (DMA2_Stream1->CR & DMA_SxCR_EN) ; rgb_led_set(&rgb_led_data[RESET_DATA_LEN + 0], green); rgb_led_set(&rgb_led_data[RESET_DATA_LEN + 8], red); rgb_led_set(&rgb_led_data[RESET_DATA_LEN + 16], blue); rgb_led_data[RESET_DATA_LEN + DATA_LEN - 1] = 0; DMA2->LIFCR |= 0xFC0; DMA2_Stream1->M0AR = (uint32_t)rgb_led_data; DMA2_Stream1->PAR = (uint32_t)&TIM8->CCR1; DMA2_Stream1->NDTR = RESET_DATA_LEN + DATA_LEN; DMA2_Stream1->CR |= DMA_SxCR_EN; } void rgb_led_init(void) { __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStructure.Alternate = GPIO_AF3_TIM8; GPIO_InitStructure.Pin = GPIO_PIN_6; HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); __HAL_RCC_TIM4_CLK_ENABLE(); TIM_HandleTypeDef TIM4_Handle; TIM4_Handle.State = HAL_TIM_STATE_RESET; TIM4_Handle.Instance = TIM4; TIM4_Handle.Init.Period = TIMER_PERIOD; TIM4_Handle.Init.Prescaler = 0; TIM4_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; TIM4_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; TIM4_Handle.Init.RepetitionCounter = 0; HAL_TIM_PWM_Init(&TIM4_Handle); __HAL_RCC_TIM8_CLK_ENABLE(); TIM_HandleTypeDef TIM8_Handle; TIM8_Handle.State = HAL_TIM_STATE_RESET; TIM8_Handle.Instance = TIM8; TIM8_Handle.Init.Period = TIMER_PERIOD; TIM8_Handle.Init.Prescaler = 0; TIM8_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; TIM8_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; TIM8_Handle.Init.RepetitionCounter = 0; HAL_TIM_PWM_Init(&TIM8_Handle); TIM_OC_InitTypeDef TIM_OC_InitStructure; TIM_OC_InitStructure.Pulse = 0; TIM_OC_InitStructure.OCMode = TIM_OCMODE_PWM1; TIM_OC_InitStructure.OCPolarity = TIM_OCPOLARITY_LOW; TIM_OC_InitStructure.OCFastMode = TIM_OCFAST_DISABLE; TIM_OC_InitStructure.OCNPolarity = TIM_OCNPOLARITY_HIGH; TIM_OC_InitStructure.OCIdleState = TIM_OCIDLESTATE_SET; TIM_OC_InitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET; HAL_TIM_PWM_ConfigChannel(&TIM8_Handle, &TIM_OC_InitStructure, TIM_CHANNEL_1); __HAL_RCC_DMA2_CLK_ENABLE(); DMA_HandleTypeDef DMA_InitStructure = {0}; DMA_InitStructure.Instance = DMA2_Stream1; DMA_InitStructure.State = HAL_DMA_STATE_RESET; DMA_InitStructure.Init.Channel = DMA_CHANNEL_7; DMA_InitStructure.Init.Direction = DMA_MEMORY_TO_PERIPH; DMA_InitStructure.Init.FIFOMode = DMA_FIFOMODE_DISABLE; DMA_InitStructure.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_1QUARTERFULL; DMA_InitStructure.Init.MemBurst = DMA_MBURST_SINGLE; DMA_InitStructure.Init.MemDataAlignment = DMA_MDATAALIGN_WORD; DMA_InitStructure.Init.MemInc = DMA_MINC_ENABLE; DMA_InitStructure.Init.Mode = DMA_NORMAL; DMA_InitStructure.Init.PeriphBurst = DMA_PBURST_SINGLE; DMA_InitStructure.Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD; DMA_InitStructure.Init.PeriphInc = DMA_PINC_DISABLE; DMA_InitStructure.Init.Priority = DMA_PRIORITY_HIGH; HAL_DMA_Init(&DMA_InitStructure); TIM4->CR2 |= TIM_CR2_MMS_1; // update event as TRGO TIM8->CR2 |= TIM_CR2_CCPC; // preloading CCR register TIM8->CR2 |= TIM_CR2_CCUS; // preload when TRGI TIM8->SMCR |= TIM_SMCR_SMS_2; // reset mode - sync timers TIM8->SMCR |= TIM_SMCR_TS_1; // sync with TIM 4 TIM8->DIER |= TIM_DMA_UPDATE; // allow DMA request from update event TIM8->CCR1 = 0; // NVIC configuration for SDIO interrupts HAL_TIM_Base_Start(&TIM4_Handle); HAL_TIM_Base_Start(&TIM8_Handle); HAL_TIM_PWM_Start(&TIM8_Handle, TIM_CHANNEL_1); // turns off the LED rgb_led_set_color(0x000000); }