#include #include "bignum.h" #include "hmac.h" #include "ecdsa.h" #include "bip32.h" #include "sha2.h" #include "ripemd160.h" void hdnode_from_xpub(uint32_t depth, uint32_t fingerprint, uint32_t child_num, uint8_t *chain_code, uint8_t *public_key, HDNode *out) { out->depth = depth; out->fingerprint = fingerprint; out->child_num = child_num; memcpy(out->chain_code, chain_code, 32); memset(out->private_key, 0, 32); memcpy(out->public_key, public_key, 33); } void hdnode_from_xprv(uint32_t depth, uint32_t fingerprint, uint32_t child_num, uint8_t *chain_code, uint8_t *private_key, HDNode *out) { out->depth = depth; out->fingerprint = fingerprint; out->child_num = child_num; memcpy(out->chain_code, chain_code, 32); memcpy(out->private_key, private_key, 32); hdnode_fill_public_key(out); } void hdnode_from_seed(uint8_t *seed, int seed_len, HDNode *out) { uint8_t I[32 + 32]; memset(out, 0, sizeof(HDNode)); out->depth = 0; out->fingerprint = 0x00000000; out->child_num = 0; hmac_sha512((uint8_t *)"Bitcoin seed", 12, seed, seed_len, I); memcpy(out->chain_code, I + 32, 32); memcpy(out->private_key, I, 32); hdnode_fill_public_key(out); } int hdnode_private_ckd(HDNode *inout, uint32_t i) { uint8_t data[1 + 32 + 4]; uint8_t I[32 + 32]; uint8_t fingerprint[32]; bignum256 a, b; if (i & 0x80000000) { // private derivation data[0] = 0; memcpy(data + 1, inout->private_key, 32); } else { // public derivation memcpy(data, inout->public_key, 33); } write_be(data + 33, i); sha256_Raw(inout->public_key, 33, fingerprint); ripemd160(fingerprint, 32, fingerprint); inout->fingerprint = (fingerprint[0] << 24) + (fingerprint[1] << 16) + (fingerprint[2] << 8) + fingerprint[3]; bn_read_be(inout->private_key, &a); hmac_sha512(inout->chain_code, 32, data, sizeof(data), I); memcpy(inout->chain_code, I + 32, 32); memcpy(inout->private_key, I, 32); bn_read_be(inout->private_key, &b); bn_addmod(&a, &b, &order256k1); inout->depth++; inout->child_num = i; bn_write_be(&a, inout->private_key); hdnode_fill_public_key(inout); return 1; } int hdnode_public_ckd(HDNode *inout, uint32_t i) { uint8_t data[1 + 32 + 4]; uint8_t I[32 + 32]; uint8_t fingerprint[32]; curve_point a, b; bignum256 c; if (i & 0x80000000) { // private derivation return 0; } else { // public derivation memcpy(data, inout->public_key, 33); } write_be(data + 33, i); sha256_Raw(inout->public_key, 33, fingerprint); ripemd160(fingerprint, 32, fingerprint); inout->fingerprint = (fingerprint[0] << 24) + (fingerprint[1] << 16) + (fingerprint[2] << 8) + fingerprint[3]; memset(inout->private_key, 0, 32); if (!ecdsa_read_pubkey(inout->public_key, &a)) { return 0; } hmac_sha512(inout->chain_code, 32, data, sizeof(data), I); memcpy(inout->chain_code, I + 32, 32); bn_read_be(I, &c); scalar_multiply(&c, &b); // b = c * G point_add(&a, &b); // b = a + b inout->public_key[0] = 0x02 | (b.y.val[0] & 0x01); bn_write_be(&b.x, inout->public_key + 1); inout->depth++; inout->child_num = i; return 1; } void hdnode_fill_public_key(HDNode *node) { ecdsa_get_public_key33(node->private_key, node->public_key); } void hdnode_serialize(const HDNode *node, uint32_t version, char use_public, char *str) { uint8_t node_data[82], a[32]; int i,j; uint32_t rem, tmp; const char code[] = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; write_be(node_data, version); node_data[4] = node->depth; write_be(node_data + 5, node->fingerprint); write_be(node_data + 9, node->child_num); memcpy(node_data + 13, node->chain_code, 32); if (use_public) { memcpy(node_data + 45, node->public_key, 33); } else { node_data[45] = 0; memcpy(node_data + 46, node->private_key, 32); } sha256_Raw(node_data, 78, a); sha256_Raw(a, 32, a); memcpy(node_data + 78, a, 4); // checksum for (j = 110; j >= 0; j--) { rem = node_data[0] % 58; node_data[0] /= 58; for (i = 1; i < 82; i++) { tmp = rem * 24 + node_data[i]; // 2^8 == 4*58 + 24 node_data[i] = rem * 4 + (tmp / 58); rem = tmp % 58; } str[j] = code[rem]; } str[111] = 0; } void hdnode_serialize_public(const HDNode *node, char *str) { hdnode_serialize(node, 0x0488B21E, 1, str); } void hdnode_serialize_private(const HDNode *node, char *str) { hdnode_serialize(node, 0x0488ADE4, 0, str); } // check for validity of curve point in case of public data not performed int hdnode_deserialize(const char *str, HDNode *node) { uint8_t node_data[82], a[32]; const char decode[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1, -1, -1, -1, -1, -1, 9, 10, 11, 12, 13, 14, 15, 16, -1, 17, 18, 19, 20, 21, -1, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, -1, -1, -1, -1, -1, -1, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, -1, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57 }; memset(node, 0, sizeof(HDNode)); memset(node_data, 0, sizeof(node_data)); if (strlen(str) != 111) { // invalid data length return -1; } int i, j, k; for (i = 0; i < 111; i++) { if (str[i] < 0 || str[i] >= (int)sizeof(decode)) { // invalid character return -2; } k = decode[(int)str[i]]; if (k == -1) { // invalid character return -2; } for (j = 81; j >= 0; j--) { k += node_data[j] * 58; node_data[j] = k & 0xFF; k >>= 8; } } sha256_Raw(node_data, 78, a); sha256_Raw(a, 32, a); if (memcmp(node_data + 78, a, 4)) { // wrong checksum return -3; } uint32_t version = read_be(node_data); if (version == 0x0488B21E) { // public node memcpy(node->public_key, node_data + 45, 33); } else if (version == 0x0488ADE4) { // private node if (node_data[45]) { // invalid data return -4; } memcpy(node->private_key, node_data + 46, 32); hdnode_fill_public_key(node); } else { return -5; // invalid version } node->depth = node_data[4]; node->fingerprint = read_be(node_data + 5); node->child_num = read_be(node_data + 9); memcpy(node->chain_code, node_data + 13, 32); return 0; }