/* * This file is part of the Trezor project, https://trezor.io/ * * Copyright (C) 2018 Pavol Rusnak <stick@satoshilabs.com> * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see <http://www.gnu.org/licenses/>. */ void fsm_msgCipherKeyValue(const CipherKeyValue *msg) { CHECK_INITIALIZED CHECK_PARAM(msg->value.size % 16 == 0, _("Value length must be a multiple of 16")); CHECK_PIN const HDNode *node = fsm_getDerivedNode(SECP256K1_NAME, msg->address_n, msg->address_n_count, NULL); if (!node) return; bool encrypt = msg->has_encrypt && msg->encrypt; bool ask_on_encrypt = msg->has_ask_on_encrypt && msg->ask_on_encrypt; bool ask_on_decrypt = msg->has_ask_on_decrypt && msg->ask_on_decrypt; if ((encrypt && ask_on_encrypt) || (!encrypt && ask_on_decrypt)) { layoutCipherKeyValue(encrypt, msg->key); if (!protectButton(ButtonRequestType_ButtonRequest_Other, false)) { fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL); layoutHome(); return; } } uint8_t data[256 + 4]; strlcpy((char *)data, msg->key, sizeof(data)); strlcat((char *)data, ask_on_encrypt ? "E1" : "E0", sizeof(data)); strlcat((char *)data, ask_on_decrypt ? "D1" : "D0", sizeof(data)); hmac_sha512(node->private_key, 32, data, strlen((char *)data), data); if (msg->iv.size == 16) { // override iv if provided memcpy(data + 32, msg->iv.bytes, 16); } RESP_INIT(CipheredKeyValue); if (encrypt) { aes_encrypt_ctx ctx; aes_encrypt_key256(data, &ctx); aes_cbc_encrypt(msg->value.bytes, resp->value.bytes, msg->value.size, data + 32, &ctx); } else { aes_decrypt_ctx ctx; aes_decrypt_key256(data, &ctx); aes_cbc_decrypt(msg->value.bytes, resp->value.bytes, msg->value.size, data + 32, &ctx); } resp->value.size = msg->value.size; msg_write(MessageType_MessageType_CipheredKeyValue, resp); layoutHome(); } void fsm_msgSignIdentity(const SignIdentity *msg) { RESP_INIT(SignedIdentity); CHECK_INITIALIZED layoutSignIdentity(&(msg->identity), msg->has_challenge_visual ? msg->challenge_visual : 0); if (!protectButton(ButtonRequestType_ButtonRequest_ProtectCall, false)) { fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL); layoutHome(); return; } CHECK_PIN uint8_t hash[32]; if (cryptoIdentityFingerprint(&(msg->identity), hash) == 0) { fsm_sendFailure(FailureType_Failure_DataError, _("Invalid identity")); layoutHome(); return; } uint32_t address_n[5]; address_n[0] = 0x80000000 | 13; address_n[1] = 0x80000000 | hash[0] | (hash[1] << 8) | (hash[2] << 16) | ((uint32_t)hash[3] << 24); address_n[2] = 0x80000000 | hash[4] | (hash[5] << 8) | (hash[6] << 16) | ((uint32_t)hash[7] << 24); address_n[3] = 0x80000000 | hash[8] | (hash[9] << 8) | (hash[10] << 16) | ((uint32_t)hash[11] << 24); address_n[4] = 0x80000000 | hash[12] | (hash[13] << 8) | (hash[14] << 16) | ((uint32_t)hash[15] << 24); const char *curve = SECP256K1_NAME; if (msg->has_ecdsa_curve_name) { curve = msg->ecdsa_curve_name; } HDNode *node = fsm_getDerivedNode(curve, address_n, 5, NULL); if (!node) return; bool sign_ssh = msg->identity.has_proto && (strcmp(msg->identity.proto, "ssh") == 0); bool sign_gpg = msg->identity.has_proto && (strcmp(msg->identity.proto, "gpg") == 0); bool sign_signify = msg->identity.has_proto && (strcmp(msg->identity.proto, "signify") == 0); int result = 0; layoutProgressSwipe(_("Signing"), 0); if (sign_ssh) { // SSH does not sign visual challenge result = sshMessageSign(node, msg->challenge_hidden.bytes, msg->challenge_hidden.size, resp->signature.bytes); } else if (sign_gpg) { // GPG should sign a message digest result = gpgMessageSign(node, msg->challenge_hidden.bytes, msg->challenge_hidden.size, resp->signature.bytes); } else if (sign_signify) { // Signify should sign a message digest result = signifyMessageSign(node, msg->challenge_hidden.bytes, msg->challenge_hidden.size, resp->signature.bytes); } else { uint8_t digest[64]; sha256_Raw(msg->challenge_hidden.bytes, msg->challenge_hidden.size, digest); sha256_Raw((const uint8_t *)msg->challenge_visual, strlen(msg->challenge_visual), digest + 32); result = cryptoMessageSign(&(coins[0]), node, InputScriptType_SPENDADDRESS, false, digest, 64, resp->signature.bytes); } if (result == 0) { if (hdnode_fill_public_key(node) != 0) { fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to derive public key")); layoutHome(); return; } if (strcmp(curve, SECP256K1_NAME) != 0) { resp->has_address = false; } else { resp->has_address = true; // hardcoded Bitcoin address type if (hdnode_get_address(node, 0x00, resp->address, sizeof(resp->address)) != 0) { fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to get address")); layoutHome(); return; } } resp->public_key.size = 33; memcpy(resp->public_key.bytes, node->public_key, 33); if (node->public_key[0] == 1) { /* ed25519 public key */ resp->public_key.bytes[0] = 0; } resp->signature.size = 65; msg_write(MessageType_MessageType_SignedIdentity, resp); } else { fsm_sendFailure(FailureType_Failure_ProcessError, _("Error signing identity")); } layoutHome(); } void fsm_msgGetECDHSessionKey(const GetECDHSessionKey *msg) { RESP_INIT(ECDHSessionKey); CHECK_INITIALIZED layoutDecryptIdentity(&msg->identity); if (!protectButton(ButtonRequestType_ButtonRequest_ProtectCall, false)) { fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL); layoutHome(); return; } CHECK_PIN uint8_t hash[32]; if (cryptoIdentityFingerprint(&(msg->identity), hash) == 0) { fsm_sendFailure(FailureType_Failure_DataError, _("Invalid identity")); layoutHome(); return; } uint32_t address_n[5]; address_n[0] = 0x80000000 | 17; address_n[1] = 0x80000000 | hash[0] | (hash[1] << 8) | (hash[2] << 16) | ((uint32_t)hash[3] << 24); address_n[2] = 0x80000000 | hash[4] | (hash[5] << 8) | (hash[6] << 16) | ((uint32_t)hash[7] << 24); address_n[3] = 0x80000000 | hash[8] | (hash[9] << 8) | (hash[10] << 16) | ((uint32_t)hash[11] << 24); address_n[4] = 0x80000000 | hash[12] | (hash[13] << 8) | (hash[14] << 16) | ((uint32_t)hash[15] << 24); const char *curve = SECP256K1_NAME; if (msg->has_ecdsa_curve_name) { curve = msg->ecdsa_curve_name; } HDNode *node = fsm_getDerivedNode(curve, address_n, 5, NULL); if (!node) return; int result_size = 0; if (hdnode_get_shared_key(node, msg->peer_public_key.bytes, resp->session_key.bytes, &result_size) == 0) { resp->session_key.size = result_size; if (hdnode_fill_public_key(node) != 0) { fsm_sendFailure(FailureType_Failure_ProcessError, _("Failed to derive public key")); layoutHome(); return; } memcpy(resp->public_key.bytes, node->public_key, 33); resp->public_key.size = 33; resp->has_public_key = true; msg_write(MessageType_MessageType_ECDHSessionKey, resp); } else { fsm_sendFailure(FailureType_Failure_ProcessError, _("Error getting ECDH session key")); } layoutHome(); } void fsm_msgCosiCommit(const CosiCommit *msg) { RESP_INIT(CosiCommitment); CHECK_INITIALIZED CHECK_PARAM(msg->has_data, _("No data provided")); layoutCosiCommitSign(msg->address_n, msg->address_n_count, msg->data.bytes, msg->data.size, false); if (!protectButton(ButtonRequestType_ButtonRequest_ProtectCall, false)) { fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL); layoutHome(); return; } CHECK_PIN const HDNode *node = fsm_getDerivedNode(ED25519_NAME, msg->address_n, msg->address_n_count, NULL); if (!node) return; uint8_t nonce[32]; sha256_Raw(msg->data.bytes, msg->data.size, nonce); rfc6979_state rng; init_rfc6979(node->private_key, nonce, &rng); generate_rfc6979(nonce, &rng); resp->has_commitment = true; resp->has_pubkey = true; resp->commitment.size = 32; resp->pubkey.size = 32; ed25519_publickey(nonce, resp->commitment.bytes); ed25519_publickey(node->private_key, resp->pubkey.bytes); msg_write(MessageType_MessageType_CosiCommitment, resp); layoutHome(); } void fsm_msgCosiSign(const CosiSign *msg) { RESP_INIT(CosiSignature); CHECK_INITIALIZED CHECK_PARAM(msg->has_data, _("No data provided")); CHECK_PARAM(msg->has_global_commitment && msg->global_commitment.size == 32, _("Invalid global commitment")); CHECK_PARAM(msg->has_global_pubkey && msg->global_pubkey.size == 32, _("Invalid global pubkey")); layoutCosiCommitSign(msg->address_n, msg->address_n_count, msg->data.bytes, msg->data.size, true); if (!protectButton(ButtonRequestType_ButtonRequest_ProtectCall, false)) { fsm_sendFailure(FailureType_Failure_ActionCancelled, NULL); layoutHome(); return; } CHECK_PIN const HDNode *node = fsm_getDerivedNode(ED25519_NAME, msg->address_n, msg->address_n_count, NULL); if (!node) return; uint8_t nonce[32]; sha256_Raw(msg->data.bytes, msg->data.size, nonce); rfc6979_state rng; init_rfc6979(node->private_key, nonce, &rng); generate_rfc6979(nonce, &rng); resp->signature.size = 32; ed25519_cosi_sign(msg->data.bytes, msg->data.size, node->private_key, nonce, msg->global_commitment.bytes, msg->global_pubkey.bytes, resp->signature.bytes); msg_write(MessageType_MessageType_CosiSignature, resp); layoutHome(); }