/** * Copyright (c) 2000-2001 Aaron D. Gifford * Copyright (c) 2013-2014 Pavol Rusnak * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the copyright holder nor the names of contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTOR(S) ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTOR(S) BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <string.h> #include <stdint.h> #include "sha2.h" #include "memzero.h" /* * ASSERT NOTE: * Some sanity checking code is included using assert(). On my FreeBSD * system, this additional code can be removed by compiling with NDEBUG * defined. Check your own systems manpage on assert() to see how to * compile WITHOUT the sanity checking code on your system. * * UNROLLED TRANSFORM LOOP NOTE: * You can define SHA2_UNROLL_TRANSFORM to use the unrolled transform * loop version for the hash transform rounds (defined using macros * later in this file). Either define on the command line, for example: * * cc -DSHA2_UNROLL_TRANSFORM -o sha2 sha2.c sha2prog.c * * or define below: * * #define SHA2_UNROLL_TRANSFORM * */ /*** SHA-256/384/512 Machine Architecture Definitions *****************/ /* * BYTE_ORDER NOTE: * * Please make sure that your system defines BYTE_ORDER. If your * architecture is little-endian, make sure it also defines * LITTLE_ENDIAN and that the two (BYTE_ORDER and LITTLE_ENDIAN) are * equivilent. * * If your system does not define the above, then you can do so by * hand like this: * * #define LITTLE_ENDIAN 1234 * #define BIG_ENDIAN 4321 * * And for little-endian machines, add: * * #define BYTE_ORDER LITTLE_ENDIAN * * Or for big-endian machines: * * #define BYTE_ORDER BIG_ENDIAN * * The FreeBSD machine this was written on defines BYTE_ORDER * appropriately by including <sys/types.h> (which in turn includes * <machine/endian.h> where the appropriate definitions are actually * made). */ #if !defined(BYTE_ORDER) || (BYTE_ORDER != LITTLE_ENDIAN && BYTE_ORDER != BIG_ENDIAN) #error Define BYTE_ORDER to be equal to either LITTLE_ENDIAN or BIG_ENDIAN #endif typedef uint8_t sha2_byte; /* Exactly 1 byte */ typedef uint32_t sha2_word32; /* Exactly 4 bytes */ typedef uint64_t sha2_word64; /* Exactly 8 bytes */ /*** SHA-256/384/512 Various Length Definitions ***********************/ /* NOTE: Most of these are in sha2.h */ #define SHA1_SHORT_BLOCK_LENGTH (SHA1_BLOCK_LENGTH - 8) #define SHA256_SHORT_BLOCK_LENGTH (SHA256_BLOCK_LENGTH - 8) #define SHA512_SHORT_BLOCK_LENGTH (SHA512_BLOCK_LENGTH - 16) /* * Macro for incrementally adding the unsigned 64-bit integer n to the * unsigned 128-bit integer (represented using a two-element array of * 64-bit words): */ #define ADDINC128(w,n) { \ (w)[0] += (sha2_word64)(n); \ if ((w)[0] < (n)) { \ (w)[1]++; \ } \ } #define MEMCPY_BCOPY(d,s,l) memcpy((d), (s), (l)) /*** THE SIX LOGICAL FUNCTIONS ****************************************/ /* * Bit shifting and rotation (used by the six SHA-XYZ logical functions: * * NOTE: In the original SHA-256/384/512 document, the shift-right * function was named R and the rotate-right function was called S. * (See: http://csrc.nist.gov/cryptval/shs/sha256-384-512.pdf on the * web.) * * The newer NIST FIPS 180-2 document uses a much clearer naming * scheme, SHR for shift-right, ROTR for rotate-right, and ROTL for * rotate-left. (See: * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf * on the web.) * * WARNING: These macros must be used cautiously, since they reference * supplied parameters sometimes more than once, and thus could have * unexpected side-effects if used without taking this into account. */ /* Shift-right (used in SHA-256, SHA-384, and SHA-512): */ #define SHR(b,x) ((x) >> (b)) /* 32-bit Rotate-right (used in SHA-256): */ #define ROTR32(b,x) (((x) >> (b)) | ((x) << (32 - (b)))) /* 64-bit Rotate-right (used in SHA-384 and SHA-512): */ #define ROTR64(b,x) (((x) >> (b)) | ((x) << (64 - (b)))) /* 32-bit Rotate-left (used in SHA-1): */ #define ROTL32(b,x) (((x) << (b)) | ((x) >> (32 - (b)))) /* Two of six logical functions used in SHA-1, SHA-256, SHA-384, and SHA-512: */ #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) /* Function used in SHA-1: */ #define Parity(x,y,z) ((x) ^ (y) ^ (z)) /* Four of six logical functions used in SHA-256: */ #define Sigma0_256(x) (ROTR32(2, (x)) ^ ROTR32(13, (x)) ^ ROTR32(22, (x))) #define Sigma1_256(x) (ROTR32(6, (x)) ^ ROTR32(11, (x)) ^ ROTR32(25, (x))) #define sigma0_256(x) (ROTR32(7, (x)) ^ ROTR32(18, (x)) ^ SHR(3 , (x))) #define sigma1_256(x) (ROTR32(17, (x)) ^ ROTR32(19, (x)) ^ SHR(10, (x))) /* Four of six logical functions used in SHA-384 and SHA-512: */ #define Sigma0_512(x) (ROTR64(28, (x)) ^ ROTR64(34, (x)) ^ ROTR64(39, (x))) #define Sigma1_512(x) (ROTR64(14, (x)) ^ ROTR64(18, (x)) ^ ROTR64(41, (x))) #define sigma0_512(x) (ROTR64( 1, (x)) ^ ROTR64( 8, (x)) ^ SHR( 7, (x))) #define sigma1_512(x) (ROTR64(19, (x)) ^ ROTR64(61, (x)) ^ SHR( 6, (x))) /*** INTERNAL FUNCTION PROTOTYPES *************************************/ /* NOTE: These should not be accessed directly from outside this * library -- they are intended for private internal visibility/use * only. */ static void sha512_Last(SHA512_CTX*); /*** SHA-XYZ INITIAL HASH VALUES AND CONSTANTS ************************/ /* Hash constant words K for SHA-1: */ #define K1_0_TO_19 0x5a827999UL #define K1_20_TO_39 0x6ed9eba1UL #define K1_40_TO_59 0x8f1bbcdcUL #define K1_60_TO_79 0xca62c1d6UL /* Initial hash value H for SHA-1: */ const sha2_word32 sha1_initial_hash_value[SHA1_DIGEST_LENGTH / sizeof(sha2_word32)] = { 0x67452301UL, 0xefcdab89UL, 0x98badcfeUL, 0x10325476UL, 0xc3d2e1f0UL }; /* Hash constant words K for SHA-256: */ static const sha2_word32 K256[64] = { 0x428a2f98UL, 0x71374491UL, 0xb5c0fbcfUL, 0xe9b5dba5UL, 0x3956c25bUL, 0x59f111f1UL, 0x923f82a4UL, 0xab1c5ed5UL, 0xd807aa98UL, 0x12835b01UL, 0x243185beUL, 0x550c7dc3UL, 0x72be5d74UL, 0x80deb1feUL, 0x9bdc06a7UL, 0xc19bf174UL, 0xe49b69c1UL, 0xefbe4786UL, 0x0fc19dc6UL, 0x240ca1ccUL, 0x2de92c6fUL, 0x4a7484aaUL, 0x5cb0a9dcUL, 0x76f988daUL, 0x983e5152UL, 0xa831c66dUL, 0xb00327c8UL, 0xbf597fc7UL, 0xc6e00bf3UL, 0xd5a79147UL, 0x06ca6351UL, 0x14292967UL, 0x27b70a85UL, 0x2e1b2138UL, 0x4d2c6dfcUL, 0x53380d13UL, 0x650a7354UL, 0x766a0abbUL, 0x81c2c92eUL, 0x92722c85UL, 0xa2bfe8a1UL, 0xa81a664bUL, 0xc24b8b70UL, 0xc76c51a3UL, 0xd192e819UL, 0xd6990624UL, 0xf40e3585UL, 0x106aa070UL, 0x19a4c116UL, 0x1e376c08UL, 0x2748774cUL, 0x34b0bcb5UL, 0x391c0cb3UL, 0x4ed8aa4aUL, 0x5b9cca4fUL, 0x682e6ff3UL, 0x748f82eeUL, 0x78a5636fUL, 0x84c87814UL, 0x8cc70208UL, 0x90befffaUL, 0xa4506cebUL, 0xbef9a3f7UL, 0xc67178f2UL }; /* Initial hash value H for SHA-256: */ const sha2_word32 sha256_initial_hash_value[8] = { 0x6a09e667UL, 0xbb67ae85UL, 0x3c6ef372UL, 0xa54ff53aUL, 0x510e527fUL, 0x9b05688cUL, 0x1f83d9abUL, 0x5be0cd19UL }; /* Hash constant words K for SHA-384 and SHA-512: */ static const sha2_word64 K512[80] = { 0x428a2f98d728ae22ULL, 0x7137449123ef65cdULL, 0xb5c0fbcfec4d3b2fULL, 0xe9b5dba58189dbbcULL, 0x3956c25bf348b538ULL, 0x59f111f1b605d019ULL, 0x923f82a4af194f9bULL, 0xab1c5ed5da6d8118ULL, 0xd807aa98a3030242ULL, 0x12835b0145706fbeULL, 0x243185be4ee4b28cULL, 0x550c7dc3d5ffb4e2ULL, 0x72be5d74f27b896fULL, 0x80deb1fe3b1696b1ULL, 0x9bdc06a725c71235ULL, 0xc19bf174cf692694ULL, 0xe49b69c19ef14ad2ULL, 0xefbe4786384f25e3ULL, 0x0fc19dc68b8cd5b5ULL, 0x240ca1cc77ac9c65ULL, 0x2de92c6f592b0275ULL, 0x4a7484aa6ea6e483ULL, 0x5cb0a9dcbd41fbd4ULL, 0x76f988da831153b5ULL, 0x983e5152ee66dfabULL, 0xa831c66d2db43210ULL, 0xb00327c898fb213fULL, 0xbf597fc7beef0ee4ULL, 0xc6e00bf33da88fc2ULL, 0xd5a79147930aa725ULL, 0x06ca6351e003826fULL, 0x142929670a0e6e70ULL, 0x27b70a8546d22ffcULL, 0x2e1b21385c26c926ULL, 0x4d2c6dfc5ac42aedULL, 0x53380d139d95b3dfULL, 0x650a73548baf63deULL, 0x766a0abb3c77b2a8ULL, 0x81c2c92e47edaee6ULL, 0x92722c851482353bULL, 0xa2bfe8a14cf10364ULL, 0xa81a664bbc423001ULL, 0xc24b8b70d0f89791ULL, 0xc76c51a30654be30ULL, 0xd192e819d6ef5218ULL, 0xd69906245565a910ULL, 0xf40e35855771202aULL, 0x106aa07032bbd1b8ULL, 0x19a4c116b8d2d0c8ULL, 0x1e376c085141ab53ULL, 0x2748774cdf8eeb99ULL, 0x34b0bcb5e19b48a8ULL, 0x391c0cb3c5c95a63ULL, 0x4ed8aa4ae3418acbULL, 0x5b9cca4f7763e373ULL, 0x682e6ff3d6b2b8a3ULL, 0x748f82ee5defb2fcULL, 0x78a5636f43172f60ULL, 0x84c87814a1f0ab72ULL, 0x8cc702081a6439ecULL, 0x90befffa23631e28ULL, 0xa4506cebde82bde9ULL, 0xbef9a3f7b2c67915ULL, 0xc67178f2e372532bULL, 0xca273eceea26619cULL, 0xd186b8c721c0c207ULL, 0xeada7dd6cde0eb1eULL, 0xf57d4f7fee6ed178ULL, 0x06f067aa72176fbaULL, 0x0a637dc5a2c898a6ULL, 0x113f9804bef90daeULL, 0x1b710b35131c471bULL, 0x28db77f523047d84ULL, 0x32caab7b40c72493ULL, 0x3c9ebe0a15c9bebcULL, 0x431d67c49c100d4cULL, 0x4cc5d4becb3e42b6ULL, 0x597f299cfc657e2aULL, 0x5fcb6fab3ad6faecULL, 0x6c44198c4a475817ULL }; /* Initial hash value H for SHA-512 */ const sha2_word64 sha512_initial_hash_value[8] = { 0x6a09e667f3bcc908ULL, 0xbb67ae8584caa73bULL, 0x3c6ef372fe94f82bULL, 0xa54ff53a5f1d36f1ULL, 0x510e527fade682d1ULL, 0x9b05688c2b3e6c1fULL, 0x1f83d9abfb41bd6bULL, 0x5be0cd19137e2179ULL }; /* * Constant used by SHA256/384/512_End() functions for converting the * digest to a readable hexadecimal character string: */ static const char *sha2_hex_digits = "0123456789abcdef"; /*** SHA-1: ***********************************************************/ void sha1_Init(SHA1_CTX* context) { MEMCPY_BCOPY(context->state, sha1_initial_hash_value, SHA1_DIGEST_LENGTH); memzero(context->buffer, SHA1_BLOCK_LENGTH); context->bitcount = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-1 round macros: */ #define ROUND1_0_TO_15(a,b,c,d,e) \ (e) = ROTL32(5, (a)) + Ch((b), (c), (d)) + (e) + \ K1_0_TO_19 + ( W1[j] = *data++ ); \ (b) = ROTL32(30, (b)); \ j++; #define ROUND1_16_TO_19(a,b,c,d,e) \ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ (e) = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ (b) = ROTL32(30, b); \ j++; #define ROUND1_20_TO_39(a,b,c,d,e) \ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ (b) = ROTL32(30, b); \ j++; #define ROUND1_40_TO_59(a,b,c,d,e) \ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ (e) = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ (b) = ROTL32(30, b); \ j++; #define ROUND1_60_TO_79(a,b,c,d,e) \ T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; \ (e) = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + ( W1[j&0x0f] = ROTL32(1, T1) ); \ (b) = ROTL32(30, b); \ j++; void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) { sha2_word32 a, b, c, d, e; sha2_word32 T1; sha2_word32 W1[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state_in[0]; b = state_in[1]; c = state_in[2]; d = state_in[3]; e = state_in[4]; j = 0; /* Rounds 0 to 15 unrolled: */ ROUND1_0_TO_15(a,b,c,d,e); ROUND1_0_TO_15(e,a,b,c,d); ROUND1_0_TO_15(d,e,a,b,c); ROUND1_0_TO_15(c,d,e,a,b); ROUND1_0_TO_15(b,c,d,e,a); ROUND1_0_TO_15(a,b,c,d,e); ROUND1_0_TO_15(e,a,b,c,d); ROUND1_0_TO_15(d,e,a,b,c); ROUND1_0_TO_15(c,d,e,a,b); ROUND1_0_TO_15(b,c,d,e,a); ROUND1_0_TO_15(a,b,c,d,e); ROUND1_0_TO_15(e,a,b,c,d); ROUND1_0_TO_15(d,e,a,b,c); ROUND1_0_TO_15(c,d,e,a,b); ROUND1_0_TO_15(b,c,d,e,a); ROUND1_0_TO_15(a,b,c,d,e); /* Rounds 16 to 19 unrolled: */ ROUND1_16_TO_19(e,a,b,c,d); ROUND1_16_TO_19(d,e,a,b,c); ROUND1_16_TO_19(c,d,e,a,b); ROUND1_16_TO_19(b,c,d,e,a); /* Rounds 20 to 39 unrolled: */ ROUND1_20_TO_39(a,b,c,d,e); ROUND1_20_TO_39(e,a,b,c,d); ROUND1_20_TO_39(d,e,a,b,c); ROUND1_20_TO_39(c,d,e,a,b); ROUND1_20_TO_39(b,c,d,e,a); ROUND1_20_TO_39(a,b,c,d,e); ROUND1_20_TO_39(e,a,b,c,d); ROUND1_20_TO_39(d,e,a,b,c); ROUND1_20_TO_39(c,d,e,a,b); ROUND1_20_TO_39(b,c,d,e,a); ROUND1_20_TO_39(a,b,c,d,e); ROUND1_20_TO_39(e,a,b,c,d); ROUND1_20_TO_39(d,e,a,b,c); ROUND1_20_TO_39(c,d,e,a,b); ROUND1_20_TO_39(b,c,d,e,a); ROUND1_20_TO_39(a,b,c,d,e); ROUND1_20_TO_39(e,a,b,c,d); ROUND1_20_TO_39(d,e,a,b,c); ROUND1_20_TO_39(c,d,e,a,b); ROUND1_20_TO_39(b,c,d,e,a); /* Rounds 40 to 59 unrolled: */ ROUND1_40_TO_59(a,b,c,d,e); ROUND1_40_TO_59(e,a,b,c,d); ROUND1_40_TO_59(d,e,a,b,c); ROUND1_40_TO_59(c,d,e,a,b); ROUND1_40_TO_59(b,c,d,e,a); ROUND1_40_TO_59(a,b,c,d,e); ROUND1_40_TO_59(e,a,b,c,d); ROUND1_40_TO_59(d,e,a,b,c); ROUND1_40_TO_59(c,d,e,a,b); ROUND1_40_TO_59(b,c,d,e,a); ROUND1_40_TO_59(a,b,c,d,e); ROUND1_40_TO_59(e,a,b,c,d); ROUND1_40_TO_59(d,e,a,b,c); ROUND1_40_TO_59(c,d,e,a,b); ROUND1_40_TO_59(b,c,d,e,a); ROUND1_40_TO_59(a,b,c,d,e); ROUND1_40_TO_59(e,a,b,c,d); ROUND1_40_TO_59(d,e,a,b,c); ROUND1_40_TO_59(c,d,e,a,b); ROUND1_40_TO_59(b,c,d,e,a); /* Rounds 60 to 79 unrolled: */ ROUND1_60_TO_79(a,b,c,d,e); ROUND1_60_TO_79(e,a,b,c,d); ROUND1_60_TO_79(d,e,a,b,c); ROUND1_60_TO_79(c,d,e,a,b); ROUND1_60_TO_79(b,c,d,e,a); ROUND1_60_TO_79(a,b,c,d,e); ROUND1_60_TO_79(e,a,b,c,d); ROUND1_60_TO_79(d,e,a,b,c); ROUND1_60_TO_79(c,d,e,a,b); ROUND1_60_TO_79(b,c,d,e,a); ROUND1_60_TO_79(a,b,c,d,e); ROUND1_60_TO_79(e,a,b,c,d); ROUND1_60_TO_79(d,e,a,b,c); ROUND1_60_TO_79(c,d,e,a,b); ROUND1_60_TO_79(b,c,d,e,a); ROUND1_60_TO_79(a,b,c,d,e); ROUND1_60_TO_79(e,a,b,c,d); ROUND1_60_TO_79(d,e,a,b,c); ROUND1_60_TO_79(c,d,e,a,b); ROUND1_60_TO_79(b,c,d,e,a); /* Compute the current intermediate hash value */ state_out[0] = state_in[0] + a; state_out[1] = state_in[1] + b; state_out[2] = state_in[2] + c; state_out[3] = state_in[3] + d; state_out[4] = state_in[4] + e; /* Clean up */ a = b = c = d = e = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void sha1_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) { sha2_word32 a, b, c, d, e; sha2_word32 T1; sha2_word32 W1[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state_in[0]; b = state_in[1]; c = state_in[2]; d = state_in[3]; e = state_in[4]; j = 0; do { T1 = ROTL32(5, a) + Ch(b, c, d) + e + K1_0_TO_19 + (W1[j] = *data++); e = d; d = c; c = ROTL32(30, b); b = a; a = T1; j++; } while (j < 16); do { T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; T1 = ROTL32(5, a) + Ch(b,c,d) + e + K1_0_TO_19 + (W1[j&0x0f] = ROTL32(1, T1)); e = d; d = c; c = ROTL32(30, b); b = a; a = T1; j++; } while (j < 20); do { T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_20_TO_39 + (W1[j&0x0f] = ROTL32(1, T1)); e = d; d = c; c = ROTL32(30, b); b = a; a = T1; j++; } while (j < 40); do { T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; T1 = ROTL32(5, a) + Maj(b,c,d) + e + K1_40_TO_59 + (W1[j&0x0f] = ROTL32(1, T1)); e = d; d = c; c = ROTL32(30, b); b = a; a = T1; j++; } while (j < 60); do { T1 = W1[(j+13)&0x0f] ^ W1[(j+8)&0x0f] ^ W1[(j+2)&0x0f] ^ W1[j&0x0f]; T1 = ROTL32(5, a) + Parity(b,c,d) + e + K1_60_TO_79 + (W1[j&0x0f] = ROTL32(1, T1)); e = d; d = c; c = ROTL32(30, b); b = a; a = T1; j++; } while (j < 80); /* Compute the current intermediate hash value */ state_out[0] = state_in[0] + a; state_out[1] = state_in[1] + b; state_out[2] = state_in[2] + c; state_out[3] = state_in[3] + d; state_out[4] = state_in[4] + e; /* Clean up */ a = b = c = d = e = T1 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void sha1_Update(SHA1_CTX* context, const sha2_byte *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return; } usedspace = (context->bitcount >> 3) % SHA1_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA1_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace); context->bitcount += freespace << 3; len -= freespace; data += freespace; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE32(context->buffer[j],context->buffer[j]); } #endif sha1_Transform(context->state, context->buffer, context->state); } else { /* The buffer is not yet full */ MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA1_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ MEMCPY_BCOPY(context->buffer, data, SHA1_BLOCK_LENGTH); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE32(context->buffer[j],context->buffer[j]); } #endif sha1_Transform(context->state, context->buffer, context->state); context->bitcount += SHA1_BLOCK_LENGTH << 3; len -= SHA1_BLOCK_LENGTH; data += SHA1_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; } void sha1_Final(SHA1_CTX* context, sha2_byte digest[]) { unsigned int usedspace; /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (sha2_byte*)0) { usedspace = (context->bitcount >> 3) % SHA1_BLOCK_LENGTH; /* Begin padding with a 1 bit: */ ((uint8_t*)context->buffer)[usedspace++] = 0x80; if (usedspace > SHA1_SHORT_BLOCK_LENGTH) { memzero(((uint8_t*)context->buffer) + usedspace, SHA1_BLOCK_LENGTH - usedspace); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE32(context->buffer[j],context->buffer[j]); } #endif /* Do second-to-last transform: */ sha1_Transform(context->state, context->buffer, context->state); /* And prepare the last transform: */ usedspace = 0; } /* Set-up for the last transform: */ memzero(((uint8_t*)context->buffer) + usedspace, SHA1_SHORT_BLOCK_LENGTH - usedspace); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 14; j++) { REVERSE32(context->buffer[j],context->buffer[j]); } #endif /* Set the bit count: */ context->buffer[14] = context->bitcount >> 32; context->buffer[15] = context->bitcount & 0xffffffff; /* Final transform: */ sha1_Transform(context->state, context->buffer, context->state); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ for (int j = 0; j < 5; j++) { REVERSE32(context->state[j],context->state[j]); } #endif MEMCPY_BCOPY(digest, context->state, SHA1_DIGEST_LENGTH); } /* Clean up state data: */ memzero(context, sizeof(SHA1_CTX)); usedspace = 0; } char *sha1_End(SHA1_CTX* context, char buffer[]) { sha2_byte digest[SHA1_DIGEST_LENGTH], *d = digest; int i; if (buffer != (char*)0) { sha1_Final(context, digest); for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char)0; } else { memzero(context, sizeof(SHA1_CTX)); } memzero(digest, SHA1_DIGEST_LENGTH); return buffer; } void sha1_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA1_DIGEST_LENGTH]) { SHA1_CTX context; sha1_Init(&context); sha1_Update(&context, data, len); sha1_Final(&context, digest); } char* sha1_Data(const sha2_byte* data, size_t len, char digest[SHA1_DIGEST_STRING_LENGTH]) { SHA1_CTX context; sha1_Init(&context); sha1_Update(&context, data, len); return sha1_End(&context, digest); } /*** SHA-256: *********************************************************/ void sha256_Init(SHA256_CTX* context) { if (context == (SHA256_CTX*)0) { return; } MEMCPY_BCOPY(context->state, sha256_initial_hash_value, SHA256_DIGEST_LENGTH); memzero(context->buffer, SHA256_BLOCK_LENGTH); context->bitcount = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-256 round macros: */ #define ROUND256_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + \ K256[j] + (W256[j] = *data++); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ #define ROUND256(a,b,c,d,e,f,g,h) \ s0 = W256[(j+1)&0x0f]; \ s0 = sigma0_256(s0); \ s1 = W256[(j+14)&0x0f]; \ s1 = sigma1_256(s1); \ T1 = (h) + Sigma1_256(e) + Ch((e), (f), (g)) + K256[j] + \ (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_256(a) + Maj((a), (b), (c)); \ j++ void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) { sha2_word32 a, b, c, d, e, f, g, h, s0, s1; sha2_word32 T1; sha2_word32 W256[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state_in[0]; b = state_in[1]; c = state_in[2]; d = state_in[3]; e = state_in[4]; f = state_in[5]; g = state_in[6]; h = state_in[7]; j = 0; do { /* Rounds 0 to 15 (unrolled): */ ROUND256_0_TO_15(a,b,c,d,e,f,g,h); ROUND256_0_TO_15(h,a,b,c,d,e,f,g); ROUND256_0_TO_15(g,h,a,b,c,d,e,f); ROUND256_0_TO_15(f,g,h,a,b,c,d,e); ROUND256_0_TO_15(e,f,g,h,a,b,c,d); ROUND256_0_TO_15(d,e,f,g,h,a,b,c); ROUND256_0_TO_15(c,d,e,f,g,h,a,b); ROUND256_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds to 64: */ do { ROUND256(a,b,c,d,e,f,g,h); ROUND256(h,a,b,c,d,e,f,g); ROUND256(g,h,a,b,c,d,e,f); ROUND256(f,g,h,a,b,c,d,e); ROUND256(e,f,g,h,a,b,c,d); ROUND256(d,e,f,g,h,a,b,c); ROUND256(c,d,e,f,g,h,a,b); ROUND256(b,c,d,e,f,g,h,a); } while (j < 64); /* Compute the current intermediate hash value */ state_out[0] = state_in[0] + a; state_out[1] = state_in[1] + b; state_out[2] = state_in[2] + c; state_out[3] = state_in[3] + d; state_out[4] = state_in[4] + e; state_out[5] = state_in[5] + f; state_out[6] = state_in[6] + g; state_out[7] = state_in[7] + h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void sha256_Transform(const sha2_word32* state_in, const sha2_word32* data, sha2_word32* state_out) { sha2_word32 a, b, c, d, e, f, g, h, s0, s1; sha2_word32 T1, T2, W256[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state_in[0]; b = state_in[1]; c = state_in[2]; d = state_in[3]; e = state_in[4]; f = state_in[5]; g = state_in[6]; h = state_in[7]; j = 0; do { /* Apply the SHA-256 compression function to update a..h with copy */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j] = *data++); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W256[(j+1)&0x0f]; s0 = sigma0_256(s0); s1 = W256[(j+14)&0x0f]; s1 = sigma1_256(s1); /* Apply the SHA-256 compression function to update a..h */ T1 = h + Sigma1_256(e) + Ch(e, f, g) + K256[j] + (W256[j&0x0f] += s1 + W256[(j+9)&0x0f] + s0); T2 = Sigma0_256(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 64); /* Compute the current intermediate hash value */ state_out[0] = state_in[0] + a; state_out[1] = state_in[1] + b; state_out[2] = state_in[2] + c; state_out[3] = state_in[3] + d; state_out[4] = state_in[4] + e; state_out[5] = state_in[5] + f; state_out[6] = state_in[6] + g; state_out[7] = state_in[7] + h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void sha256_Update(SHA256_CTX* context, const sha2_byte *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return; } usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA256_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace); context->bitcount += freespace << 3; len -= freespace; data += freespace; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE32(context->buffer[j],context->buffer[j]); } #endif sha256_Transform(context->state, context->buffer, context->state); } else { /* The buffer is not yet full */ MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len); context->bitcount += len << 3; /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA256_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ MEMCPY_BCOPY(context->buffer, data, SHA256_BLOCK_LENGTH); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE32(context->buffer[j],context->buffer[j]); } #endif sha256_Transform(context->state, context->buffer, context->state); context->bitcount += SHA256_BLOCK_LENGTH << 3; len -= SHA256_BLOCK_LENGTH; data += SHA256_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY(context->buffer, data, len); context->bitcount += len << 3; } /* Clean up: */ usedspace = freespace = 0; } void sha256_Final(SHA256_CTX* context, sha2_byte digest[]) { unsigned int usedspace; /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (sha2_byte*)0) { usedspace = (context->bitcount >> 3) % SHA256_BLOCK_LENGTH; /* Begin padding with a 1 bit: */ ((uint8_t*)context->buffer)[usedspace++] = 0x80; if (usedspace > SHA256_SHORT_BLOCK_LENGTH) { memzero(((uint8_t*)context->buffer) + usedspace, SHA256_BLOCK_LENGTH - usedspace); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE32(context->buffer[j],context->buffer[j]); } #endif /* Do second-to-last transform: */ sha256_Transform(context->state, context->buffer, context->state); /* And prepare the last transform: */ usedspace = 0; } /* Set-up for the last transform: */ memzero(((uint8_t*)context->buffer) + usedspace, SHA256_SHORT_BLOCK_LENGTH - usedspace); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 14; j++) { REVERSE32(context->buffer[j],context->buffer[j]); } #endif /* Set the bit count: */ context->buffer[14] = context->bitcount >> 32; context->buffer[15] = context->bitcount & 0xffffffff; /* Final transform: */ sha256_Transform(context->state, context->buffer, context->state); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ for (int j = 0; j < 8; j++) { REVERSE32(context->state[j],context->state[j]); } #endif MEMCPY_BCOPY(digest, context->state, SHA256_DIGEST_LENGTH); } /* Clean up state data: */ memzero(context, sizeof(SHA256_CTX)); usedspace = 0; } char *sha256_End(SHA256_CTX* context, char buffer[]) { sha2_byte digest[SHA256_DIGEST_LENGTH], *d = digest; int i; if (buffer != (char*)0) { sha256_Final(context, digest); for (i = 0; i < SHA256_DIGEST_LENGTH; i++) { *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char)0; } else { memzero(context, sizeof(SHA256_CTX)); } memzero(digest, SHA256_DIGEST_LENGTH); return buffer; } void sha256_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA256_DIGEST_LENGTH]) { SHA256_CTX context; sha256_Init(&context); sha256_Update(&context, data, len); sha256_Final(&context, digest); } char* sha256_Data(const sha2_byte* data, size_t len, char digest[SHA256_DIGEST_STRING_LENGTH]) { SHA256_CTX context; sha256_Init(&context); sha256_Update(&context, data, len); return sha256_End(&context, digest); } /*** SHA-512: *********************************************************/ void sha512_Init(SHA512_CTX* context) { if (context == (SHA512_CTX*)0) { return; } MEMCPY_BCOPY(context->state, sha512_initial_hash_value, SHA512_DIGEST_LENGTH); memzero(context->buffer, SHA512_BLOCK_LENGTH); context->bitcount[0] = context->bitcount[1] = 0; } #ifdef SHA2_UNROLL_TRANSFORM /* Unrolled SHA-512 round macros: */ #define ROUND512_0_TO_15(a,b,c,d,e,f,g,h) \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + \ K512[j] + (W512[j] = *data++); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ j++ #define ROUND512(a,b,c,d,e,f,g,h) \ s0 = W512[(j+1)&0x0f]; \ s0 = sigma0_512(s0); \ s1 = W512[(j+14)&0x0f]; \ s1 = sigma1_512(s1); \ T1 = (h) + Sigma1_512(e) + Ch((e), (f), (g)) + K512[j] + \ (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); \ (d) += T1; \ (h) = T1 + Sigma0_512(a) + Maj((a), (b), (c)); \ j++ void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) { sha2_word64 a, b, c, d, e, f, g, h, s0, s1; sha2_word64 T1, W512[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state_in[0]; b = state_in[1]; c = state_in[2]; d = state_in[3]; e = state_in[4]; f = state_in[5]; g = state_in[6]; h = state_in[7]; j = 0; do { ROUND512_0_TO_15(a,b,c,d,e,f,g,h); ROUND512_0_TO_15(h,a,b,c,d,e,f,g); ROUND512_0_TO_15(g,h,a,b,c,d,e,f); ROUND512_0_TO_15(f,g,h,a,b,c,d,e); ROUND512_0_TO_15(e,f,g,h,a,b,c,d); ROUND512_0_TO_15(d,e,f,g,h,a,b,c); ROUND512_0_TO_15(c,d,e,f,g,h,a,b); ROUND512_0_TO_15(b,c,d,e,f,g,h,a); } while (j < 16); /* Now for the remaining rounds up to 79: */ do { ROUND512(a,b,c,d,e,f,g,h); ROUND512(h,a,b,c,d,e,f,g); ROUND512(g,h,a,b,c,d,e,f); ROUND512(f,g,h,a,b,c,d,e); ROUND512(e,f,g,h,a,b,c,d); ROUND512(d,e,f,g,h,a,b,c); ROUND512(c,d,e,f,g,h,a,b); ROUND512(b,c,d,e,f,g,h,a); } while (j < 80); /* Compute the current intermediate hash value */ state_out[0] = state_in[0] + a; state_out[1] = state_in[1] + b; state_out[2] = state_in[2] + c; state_out[3] = state_in[3] + d; state_out[4] = state_in[4] + e; state_out[5] = state_in[5] + f; state_out[6] = state_in[6] + g; state_out[7] = state_in[7] + h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = 0; } #else /* SHA2_UNROLL_TRANSFORM */ void sha512_Transform(const sha2_word64* state_in, const sha2_word64* data, sha2_word64* state_out) { sha2_word64 a, b, c, d, e, f, g, h, s0, s1; sha2_word64 T1, T2, W512[16]; int j; /* Initialize registers with the prev. intermediate value */ a = state_in[0]; b = state_in[1]; c = state_in[2]; d = state_in[3]; e = state_in[4]; f = state_in[5]; g = state_in[6]; h = state_in[7]; j = 0; do { /* Apply the SHA-512 compression function to update a..h with copy */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j] = *data++); T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 16); do { /* Part of the message block expansion: */ s0 = W512[(j+1)&0x0f]; s0 = sigma0_512(s0); s1 = W512[(j+14)&0x0f]; s1 = sigma1_512(s1); /* Apply the SHA-512 compression function to update a..h */ T1 = h + Sigma1_512(e) + Ch(e, f, g) + K512[j] + (W512[j&0x0f] += s1 + W512[(j+9)&0x0f] + s0); T2 = Sigma0_512(a) + Maj(a, b, c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; j++; } while (j < 80); /* Compute the current intermediate hash value */ state_out[0] = state_in[0] + a; state_out[1] = state_in[1] + b; state_out[2] = state_in[2] + c; state_out[3] = state_in[3] + d; state_out[4] = state_in[4] + e; state_out[5] = state_in[5] + f; state_out[6] = state_in[6] + g; state_out[7] = state_in[7] + h; /* Clean up */ a = b = c = d = e = f = g = h = T1 = T2 = 0; } #endif /* SHA2_UNROLL_TRANSFORM */ void sha512_Update(SHA512_CTX* context, const sha2_byte *data, size_t len) { unsigned int freespace, usedspace; if (len == 0) { /* Calling with no data is valid - we do nothing */ return; } usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; if (usedspace > 0) { /* Calculate how much free space is available in the buffer */ freespace = SHA512_BLOCK_LENGTH - usedspace; if (len >= freespace) { /* Fill the buffer completely and process it */ MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, freespace); ADDINC128(context->bitcount, freespace << 3); len -= freespace; data += freespace; #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE64(context->buffer[j],context->buffer[j]); } #endif sha512_Transform(context->state, context->buffer, context->state); } else { /* The buffer is not yet full */ MEMCPY_BCOPY(((uint8_t*)context->buffer) + usedspace, data, len); ADDINC128(context->bitcount, len << 3); /* Clean up: */ usedspace = freespace = 0; return; } } while (len >= SHA512_BLOCK_LENGTH) { /* Process as many complete blocks as we can */ MEMCPY_BCOPY(context->buffer, data, SHA512_BLOCK_LENGTH); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE64(context->buffer[j],context->buffer[j]); } #endif sha512_Transform(context->state, context->buffer, context->state); ADDINC128(context->bitcount, SHA512_BLOCK_LENGTH << 3); len -= SHA512_BLOCK_LENGTH; data += SHA512_BLOCK_LENGTH; } if (len > 0) { /* There's left-overs, so save 'em */ MEMCPY_BCOPY(context->buffer, data, len); ADDINC128(context->bitcount, len << 3); } /* Clean up: */ usedspace = freespace = 0; } static void sha512_Last(SHA512_CTX* context) { unsigned int usedspace; usedspace = (context->bitcount[0] >> 3) % SHA512_BLOCK_LENGTH; /* Begin padding with a 1 bit: */ ((uint8_t*)context->buffer)[usedspace++] = 0x80; if (usedspace > SHA512_SHORT_BLOCK_LENGTH) { memzero(((uint8_t*)context->buffer) + usedspace, SHA512_BLOCK_LENGTH - usedspace); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 16; j++) { REVERSE64(context->buffer[j],context->buffer[j]); } #endif /* Do second-to-last transform: */ sha512_Transform(context->state, context->buffer, context->state); /* And prepare the last transform: */ usedspace = 0; } /* Set-up for the last transform: */ memzero(((uint8_t*)context->buffer) + usedspace, SHA512_SHORT_BLOCK_LENGTH - usedspace); #if BYTE_ORDER == LITTLE_ENDIAN /* Convert TO host byte order */ for (int j = 0; j < 14; j++) { REVERSE64(context->buffer[j],context->buffer[j]); } #endif /* Store the length of input data (in bits): */ context->buffer[14] = context->bitcount[1]; context->buffer[15] = context->bitcount[0]; /* Final transform: */ sha512_Transform(context->state, context->buffer, context->state); } void sha512_Final(SHA512_CTX* context, sha2_byte digest[]) { /* If no digest buffer is passed, we don't bother doing this: */ if (digest != (sha2_byte*)0) { sha512_Last(context); /* Save the hash data for output: */ #if BYTE_ORDER == LITTLE_ENDIAN /* Convert FROM host byte order */ for (int j = 0; j < 8; j++) { REVERSE64(context->state[j],context->state[j]); } #endif MEMCPY_BCOPY(digest, context->state, SHA512_DIGEST_LENGTH); } /* Zero out state data */ memzero(context, sizeof(SHA512_CTX)); } char *sha512_End(SHA512_CTX* context, char buffer[]) { sha2_byte digest[SHA512_DIGEST_LENGTH], *d = digest; int i; if (buffer != (char*)0) { sha512_Final(context, digest); for (i = 0; i < SHA512_DIGEST_LENGTH; i++) { *buffer++ = sha2_hex_digits[(*d & 0xf0) >> 4]; *buffer++ = sha2_hex_digits[*d & 0x0f]; d++; } *buffer = (char)0; } else { memzero(context, sizeof(SHA512_CTX)); } memzero(digest, SHA512_DIGEST_LENGTH); return buffer; } void sha512_Raw(const sha2_byte* data, size_t len, uint8_t digest[SHA512_DIGEST_LENGTH]) { SHA512_CTX context; sha512_Init(&context); sha512_Update(&context, data, len); sha512_Final(&context, digest); } char* sha512_Data(const sha2_byte* data, size_t len, char digest[SHA512_DIGEST_STRING_LENGTH]) { SHA512_CTX context; sha512_Init(&context); sha512_Update(&context, data, len); return sha512_End(&context, digest); }