/* * stream_inflate - tiny inflate library with output streaming * * Copyright (c) 2003 by Joergen Ibsen / Jibz * All Rights Reserved * http://www.ibsensoftware.com/ * * Copyright (c) 2014 by Paul Sokolovsky * * Copyright (c) 2016 by Pavol Rusnak * * This software is provided 'as-is', without any express * or implied warranty. In no event will the authors be * held liable for any damages arising from the use of * this software. * * Permission is granted to anyone to use this software * for any purpose, including commercial applications, * and to alter it and redistribute it freely, subject to * the following restrictions: * * 1. The origin of this software must not be * misrepresented; you must not claim that you * wrote the original software. If you use this * software in a product, an acknowledgment in * the product documentation would be appreciated * but is not required. * * 2. Altered source versions must be plainly marked * as such, and must not be misrepresented as * being the original software. * * 3. This notice may not be removed or altered from * any source distribution. */ #include // maximum possible window size (in bits) used during compression/deflate #define SINF_WBITS 10 #define SINF_OK 0 #define SINF_ERROR (-3) typedef struct { uint16_t table[16]; /* table of code length counts */ uint16_t trans[288]; /* code -> symbol translation table */ } SINF_TREE; typedef struct { const uint8_t *source; uint32_t tag; uint32_t bitcount; uint8_t cbuf[1 << SINF_WBITS]; int cbufi; SINF_TREE ltree; /* dynamic length/symbol tree */ SINF_TREE dtree; /* dynamic distance tree */ void (* write)(uint8_t byte, uint32_t pos, void *userdata); void *userdata; uint32_t written; } SINF_DATA; /* --------------------------------------------------- * * -- uninitialized global data (static structures) -- * * --------------------------------------------------- */ const uint8_t SINF_LENGTH_BITS[30] = { 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5 }; const uint16_t SINF_LENGTH_BASE[30] = { 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258 }; const uint8_t SINF_DIST_BITS[30] = { 0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13 }; const uint16_t SINF_DIST_BASE[30] = { 1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577 }; /* special ordering of code length codes */ const uint8_t SINF_CLCIDX[] = { 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 }; /* ----------------------- * * -- utility functions -- * * ----------------------- */ static void sinf_write(SINF_DATA *d, uint8_t byte) { d->cbuf[d->cbufi] = byte; d->cbufi = (d->cbufi + 1) % (1 << SINF_WBITS); d->write(byte, d->written, d->userdata); d->written++; } /* build the fixed huffman trees */ static void sinf_build_fixed_trees(SINF_TREE *lt, SINF_TREE *dt) { int i; /* build fixed length tree */ for (i = 0; i < 7; ++i) lt->table[i] = 0; lt->table[7] = 24; lt->table[8] = 152; lt->table[9] = 112; for (i = 0; i < 24; ++i) lt->trans[i] = 256 + i; for (i = 0; i < 144; ++i) lt->trans[24 + i] = i; for (i = 0; i < 8; ++i) lt->trans[24 + 144 + i] = 280 + i; for (i = 0; i < 112; ++i) lt->trans[24 + 144 + 8 + i] = 144 + i; /* build fixed distance tree */ for (i = 0; i < 5; ++i) dt->table[i] = 0; dt->table[5] = 32; for (i = 0; i < 32; ++i) dt->trans[i] = i; } /* given an array of code lengths, build a tree */ static void sinf_build_tree(SINF_TREE *t, const uint8_t *lengths, uint32_t num) { uint16_t offs[16]; uint32_t i, sum; /* clear code length count table */ for (i = 0; i < 16; ++i) t->table[i] = 0; /* scan symbol lengths, and sum code length counts */ for (i = 0; i < num; ++i) t->table[lengths[i]]++; t->table[0] = 0; /* compute offset table for distribution sort */ for (sum = 0, i = 0; i < 16; ++i) { offs[i] = sum; sum += t->table[i]; } /* create code->symbol translation table (symbols sorted by code) */ for (i = 0; i < num; ++i) { if (lengths[i]) t->trans[offs[lengths[i]]++] = i; } } /* ---------------------- * * -- decode functions -- * * ---------------------- */ /* get one bit from source stream */ static int sinf_getbit(SINF_DATA *d) { uint32_t bit; /* check if tag is empty */ if (!d->bitcount--) { /* load next tag */ d->tag = *d->source++; d->bitcount = 7; } /* shift bit out of tag */ bit = d->tag & 0x01; d->tag >>= 1; return bit; } /* read a num bit value from a stream and add base */ static uint32_t sinf_read_bits(SINF_DATA *d, int num, int base) { uint32_t val = 0; /* read num bits */ if (num) { uint32_t limit = 1 << (num); uint32_t mask; for (mask = 1; mask < limit; mask *= 2) if (sinf_getbit(d)) val += mask; } return val + base; } /* given a data stream and a tree, decode a symbol */ static int sinf_decode_symbol(SINF_DATA *d, SINF_TREE *t) { int sum = 0, cur = 0, len = 0; /* get more bits while code value is above sum */ do { cur = 2*cur + sinf_getbit(d); ++len; sum += t->table[len]; cur -= t->table[len]; } while (cur >= 0); return t->trans[sum + cur]; } /* given a data stream, decode dynamic trees from it */ static void sinf_decode_trees(SINF_DATA *d, SINF_TREE *lt, SINF_TREE *dt) { uint8_t lengths[288+32]; uint32_t hlit, hdist, hclen; uint32_t i, num, length; /* get 5 bits HLIT (257-286) */ hlit = sinf_read_bits(d, 5, 257); /* get 5 bits HDIST (1-32) */ hdist = sinf_read_bits(d, 5, 1); /* get 4 bits HCLEN (4-19) */ hclen = sinf_read_bits(d, 4, 4); for (i = 0; i < 19; ++i) lengths[i] = 0; /* read code lengths for code length alphabet */ for (i = 0; i < hclen; ++i) { /* get 3 bits code length (0-7) */ uint32_t clen = sinf_read_bits(d, 3, 0); lengths[SINF_CLCIDX[i]] = clen; } /* build code length tree, temporarily use length tree */ sinf_build_tree(lt, lengths, 19); /* decode code lengths for the dynamic trees */ for (num = 0; num < hlit + hdist; ) { int sym = sinf_decode_symbol(d, lt); switch (sym) { case 16: /* copy previous code length 3-6 times (read 2 bits) */ { uint8_t prev = lengths[num - 1]; for (length = sinf_read_bits(d, 2, 3); length; --length) { lengths[num++] = prev; } } break; case 17: /* repeat code length 0 for 3-10 times (read 3 bits) */ for (length = sinf_read_bits(d, 3, 3); length; --length) { lengths[num++] = 0; } break; case 18: /* repeat code length 0 for 11-138 times (read 7 bits) */ for (length = sinf_read_bits(d, 7, 11); length; --length) { lengths[num++] = 0; } break; default: /* values 0-15 represent the actual code lengths */ lengths[num++] = sym; break; } } /* build dynamic trees */ sinf_build_tree(lt, lengths, hlit); sinf_build_tree(dt, lengths + hlit, hdist); } /* ----------------------------- * * -- block inflate functions -- * * ----------------------------- */ /* given a stream and two trees, inflate a block of data */ static int sinf_inflate_block_data(SINF_DATA *d, SINF_TREE *lt, SINF_TREE *dt) { while (1) { int sym = sinf_decode_symbol(d, lt); /* check for end of block */ if (sym == 256) { return SINF_OK; } if (sym < 256) { sinf_write(d, sym); } else { uint32_t length, offs, i; int dist; sym -= 257; /* possibly get more bits from length code */ length = sinf_read_bits(d, SINF_LENGTH_BITS[sym], SINF_LENGTH_BASE[sym]); dist = sinf_decode_symbol(d, dt); /* possibly get more bits from distance code */ offs = sinf_read_bits(d, SINF_DIST_BITS[dist], SINF_DIST_BASE[dist]); /* copy match */ for (i = 0; i < length; ++i) { sinf_write(d, d->cbuf[(d->cbufi + (1 << SINF_WBITS) - offs) % (1 << SINF_WBITS)]); } } } } /* inflate an uncompressed block of data */ static int sinf_inflate_uncompressed_block(SINF_DATA *d) { uint32_t length, invlength; uint32_t i; /* get length */ length = d->source[1]; length = 256*length + d->source[0]; /* get one's complement of length */ invlength = d->source[3]; invlength = 256*invlength + d->source[2]; /* check length */ if (length != (~invlength & 0x0000ffff)) return SINF_ERROR; d->source += 4; /* copy block */ for (i = length; i; --i) sinf_write(d, *d->source++); /* make sure we start next block on a byte boundary */ d->bitcount = 0; return SINF_OK; } /* inflate a block of data compressed with fixed huffman trees */ static int sinf_inflate_fixed_block(SINF_DATA *d) { /* build fixed huffman trees */ sinf_build_fixed_trees(&d->ltree, &d->dtree); /* decode block using fixed trees */ return sinf_inflate_block_data(d, &d->ltree, &d->dtree); } /* inflate a block of data compressed with dynamic huffman trees */ static int sinf_inflate_dynamic_block(SINF_DATA *d) { /* decode trees from stream */ sinf_decode_trees(d, &d->ltree, &d->dtree); /* decode block using decoded trees */ return sinf_inflate_block_data(d, &d->ltree, &d->dtree); } /* ---------------------- * * -- public functions -- * * ---------------------- */ /* inflate stream from source */ static int sinf_inflate(uint8_t *data, void (*write_callback)(uint8_t byte, uint32_t pos, void *userdata), void *userdata) { SINF_DATA d; int bfinal; /* initialise data */ d.bitcount = 0; d.cbufi = 0; d.source = data; d.write = write_callback; d.userdata = userdata; d.written = 0; do { uint32_t btype; int res; /* read final block flag */ bfinal = sinf_getbit(&d); /* read block type (2 bits) */ btype = sinf_read_bits(&d, 2, 0); /* decompress block */ switch (btype) { case 0: /* decompress uncompressed block */ res = sinf_inflate_uncompressed_block(&d); break; case 1: /* decompress block with fixed huffman trees */ res = sinf_inflate_fixed_block(&d); break; case 2: /* decompress block with dynamic huffman trees */ res = sinf_inflate_dynamic_block(&d); break; default: return SINF_ERROR; } if (res != SINF_OK) return SINF_ERROR; } while (!bfinal); return SINF_OK; }