/* * Copyright (c) Pavol Rusnak, SatoshiLabs * * Licensed under TREZOR License * see LICENSE file for details */ #include STM32_HAL_H #define LED_PWM_TIM_PERIOD (10000) extern uint32_t timer_get_source_freq(uint32_t tim_id); #define DISPLAY_ILI9341V 0 #define DISPLAY_ST7789V 1 #define CMD(X) (*((__IO uint8_t *)((uint32_t)(0x60000000))) = (X)) #define DATA(X) (*((__IO uint8_t *)((uint32_t)(0x60000000 | 0x10000))) = (X)) void DATAS(const void *bytes, int len); static TIM_HandleTypeDef TIM1_Handle; void display_sram_init(void) { __GPIOE_CLK_ENABLE(); __TIM1_CLK_ENABLE(); __FSMC_CLK_ENABLE(); /* // LCD_RST/PA3 GPIO_InitStructure.Pin = GPIO_PIN_3; GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_PULLUP; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); HAL_GPIO_WritePin(GPIOA, GPIO_PIN_3, GPIO_PIN_SET); */ GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_HIGH; GPIO_InitStructure.Alternate = GPIO_AF1_TIM1; // LCD_PWM/PB13 GPIO_InitStructure.Pin = GPIO_PIN_13; HAL_GPIO_Init(GPIOB, &GPIO_InitStructure); GPIO_InitStructure.Alternate = GPIO_AF12_FSMC; // LCD_CS/PD7 LCD_RS/PD11 LCD_RD/PD4 LCD_WR/PD5 GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_11 | GPIO_PIN_4 | GPIO_PIN_5; HAL_GPIO_Init(GPIOD, &GPIO_InitStructure); // LCD_D0/PD14 LCD_D1/PD15 LCD_D2/PD0 LCD_D3/PD1 GPIO_InitStructure.Pin = GPIO_PIN_14 | GPIO_PIN_15 | GPIO_PIN_0 | GPIO_PIN_1; HAL_GPIO_Init(GPIOD, &GPIO_InitStructure); // LCD_D4/PE7 LCD_D5/PE8 LCD_D6/PE9 LCD_D7/PE10 GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10; HAL_GPIO_Init(GPIOE, &GPIO_InitStructure); // enable PWM timer TIM1_Handle.Instance = TIM1; TIM1_Handle.Init.Period = LED_PWM_TIM_PERIOD - 1; TIM1_Handle.Init.Prescaler = timer_get_source_freq(1) / 1000000 - 1; // TIM runs at 1MHz TIM1_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; TIM1_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; TIM1_Handle.Init.RepetitionCounter = 0; HAL_TIM_PWM_Init(&TIM1_Handle); TIM_OC_InitTypeDef TIM_OC_InitStructure; TIM_OC_InitStructure.Pulse = 0; TIM_OC_InitStructure.OCMode = TIM_OCMODE_PWM2; TIM_OC_InitStructure.OCPolarity = TIM_OCPOLARITY_HIGH; TIM_OC_InitStructure.OCFastMode = TIM_OCFAST_DISABLE; TIM_OC_InitStructure.OCNPolarity = TIM_OCNPOLARITY_HIGH; TIM_OC_InitStructure.OCIdleState = TIM_OCIDLESTATE_SET; TIM_OC_InitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET; HAL_TIM_PWM_ConfigChannel(&TIM1_Handle, &TIM_OC_InitStructure, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&TIM1_Handle, TIM_CHANNEL_1); HAL_TIMEx_PWMN_Start(&TIM1_Handle, TIM_CHANNEL_1); // timing values from: // http://ele-tech.com/html/it-is-developed-that-embedded-stm32-fsmc-interface-drives-tft-lcd-to-be-designed.html FSMC_NORSRAM_InitTypeDef FSMC_NORSRAMInitStructure; FSMC_NORSRAM_TimingTypeDef FSMC_NORSRAMTimingStructure; FSMC_NORSRAMTimingStructure.AddressSetupTime = 2; FSMC_NORSRAMTimingStructure.AddressHoldTime = 0; FSMC_NORSRAMTimingStructure.DataSetupTime = 5; FSMC_NORSRAMTimingStructure.BusTurnAroundDuration = 0; FSMC_NORSRAMTimingStructure.CLKDivision = 0; FSMC_NORSRAMTimingStructure.DataLatency = 0; FSMC_NORSRAMTimingStructure.AccessMode = FSMC_ACCESS_MODE_B; FSMC_NORSRAMInitStructure.NSBank = FSMC_NORSRAM_BANK1; FSMC_NORSRAMInitStructure.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE; FSMC_NORSRAMInitStructure.MemoryType = FSMC_MEMORY_TYPE_NOR; FSMC_NORSRAMInitStructure.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_8; FSMC_NORSRAMInitStructure.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE; FSMC_NORSRAMInitStructure.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW; FSMC_NORSRAMInitStructure.WrapMode = FSMC_WRAP_MODE_DISABLE; FSMC_NORSRAMInitStructure.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS; FSMC_NORSRAMInitStructure.WriteOperation = FSMC_WRITE_OPERATION_ENABLE; FSMC_NORSRAMInitStructure.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE; FSMC_NORSRAMInitStructure.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE; FSMC_NORSRAMInitStructure.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE; FSMC_NORSRAMInitStructure.WriteBurst = FSMC_WRITE_BURST_DISABLE; FSMC_NORSRAMInitStructure.PageSize = FSMC_PAGE_SIZE_NONE; FSMC_NORSRAM_Init(FSMC_NORSRAM_DEVICE, &FSMC_NORSRAMInitStructure); FSMC_NORSRAM_Timing_Init(FSMC_NORSRAM_DEVICE, &FSMC_NORSRAMTimingStructure, FSMC_NORSRAMInitStructure.NSBank); // FSMC_NORSRAM_Extended_Timing_Init(FSMC_NORSRAM_EXTENDED_DEVICE, &FSMC_NORSRAMTimingStructure, FSMC_NORSRAMInitStructure.NSBank, FSMC_NORSRAMInitStructure.ExtendedMode); __FSMC_NORSRAM_ENABLE(FSMC_NORSRAM_DEVICE, FSMC_NORSRAMInitStructure.NSBank); } static void __attribute__((unused)) display_sleep(void) { #if DISPLAY_ILI9341V || DISPLAY_ST7789V CMD(0x28); // display off HAL_Delay(20); CMD(0x10); // enter sleep #endif } static void display_unsleep(void) { #if DISPLAY_ILI9341V || DISPLAY_ST7789V CMD(0x11); // exit sleep HAL_Delay(20); CMD(0x29); // display #endif } static uint8_t WINDOW_OFFSET_X = 0, WINDOW_OFFSET_Y = 0; int display_orientation(int degrees) { // memory access control switch (degrees) { case 0: CMD(0x36); #if DISPLAY_ILI9341V DATA(0x08 | (1<<6) | (1<<7)); WINDOW_OFFSET_X = 0; WINDOW_OFFSET_Y = 80; #endif #if DISPLAY_ST7789V DATA(0x00 | (1<<5)); WINDOW_OFFSET_X = 0; WINDOW_OFFSET_Y = 80; #endif ORIENTATION = 0; break; case 90: CMD(0x36); #if DISPLAY_ILI9341V DATA(0x08 | (1<<5) | (1<<6)); WINDOW_OFFSET_X = 0; WINDOW_OFFSET_Y = 0; #endif #if DISPLAY_ST7789V DATA(0x00 | (1<<6)); WINDOW_OFFSET_X = 80; WINDOW_OFFSET_Y = 0; #endif ORIENTATION = 90; break; case 180: CMD(0x36); #if DISPLAY_ILI9341V DATA(0x08); WINDOW_OFFSET_X = 0; WINDOW_OFFSET_Y = 0; #endif #if DISPLAY_ST7789V DATA(0x00 | (1<<5) | (1<<6) | (1<<7)); WINDOW_OFFSET_X = 0; WINDOW_OFFSET_Y = 0; #endif ORIENTATION = 180; break; case 270: CMD(0x36); #if DISPLAY_ILI9341V DATA(0x08 | (1<<5) | (1<<7)); WINDOW_OFFSET_X = 80; WINDOW_OFFSET_Y = 0; #endif #if DISPLAY_ST7789V DATA(0x00 | (1<<7)); WINDOW_OFFSET_X = 0; WINDOW_OFFSET_Y = 0; #endif ORIENTATION = 270; break; } return ORIENTATION; } void display_init(void) { display_sram_init(); #if DISPLAY_ILI9341V || DISPLAY_ST7789V CMD(0x01); // software reset HAL_Delay(20); CMD(0x28); // display off CMD(0xCF); DATAS("\x00\xC1\x30", 3); CMD(0xED); DATAS("\x64\x03\x12\x81", 4); CMD(0xE8); DATAS("\x85\x10\x7A", 3); CMD(0xCB); DATAS("\x39\x2C\x00\x34\x02", 5); CMD(0xF7); DATA(0x20); CMD(0xEA); DATAS("\x00\x00", 2); CMD(0xC0); DATA(0x23); // power control VRH[5:0] CMD(0xC1); DATA(0x12); // power control SAP[2:0] BT[3:0] CMD(0xC5); DATAS("\x60\x44", 2); // vcm control 1 CMD(0xC7); DATA(0x8A); // vcm control 2 CMD(0x3A); DATA(0x55); // memory access control (16-bit 565) CMD(0xB1); DATAS("\x00\x18", 2); // framerate #endif #if DISPLAY_ILI9341V CMD(0xB6); DATAS("\x0A\xA2", 2); // display function control CMD(0xF6); DATAS("\x01\x30\x00", 3); // interface control CMD(0xF2); DATA(0x00); // 3 gamma func disable #endif #if DISPLAY_ILI9341V || DISPLAY_ST7789V CMD(0x26); DATA(0x01); // gamma func enable CMD(0xE0); DATAS("\x0F\x2F\x2C\x0B\x0F\x09\x56\xD9\x4A\x0B\x14\x05\x0C\x06\x00", 15); // gamma curve 1 CMD(0xE1); DATAS("\x00\x10\x13\x04\x10\x06\x25\x26\x3B\x04\x0B\x0A\x33\x39\x0F", 15); // gamma curve 2 #endif #if DISPLAY_ILI9341V CMD(0x21); // invert colors #endif #if DISPLAY_ST7789V CMD(0x20); // don't invert colors #endif display_orientation(0); display_backlight(0); // clear buffer display_bar(0, 0, DISPLAY_RESX, DISPLAY_RESY, 0x0000); display_unsleep(); } void display_set_window(uint16_t x, uint16_t y, uint16_t w, uint16_t h) { x += WINDOW_OFFSET_X; y += WINDOW_OFFSET_Y; uint16_t x1 = x + w - 1; uint16_t y1 = y + h - 1; #if DISPLAY_ILI9341V || DISPLAY_ST7789V CMD(0x2A); DATA(x >> 8); DATA(x & 0xFF); DATA(x1 >> 8); DATA(x1 & 0xFF); // column addr set CMD(0x2B); DATA(y >> 8); DATA(y & 0xFF); DATA(y1 >> 8); DATA(y1 & 0xFF); // row addr set CMD(0x2C); #endif } void display_update(void) { } int display_backlight(int val) { if (val >= 0 && val <= 255) { BACKLIGHT = val; __HAL_TIM_SetCompare(&TIM1_Handle, TIM_CHANNEL_1, LED_PWM_TIM_PERIOD * BACKLIGHT / 255); } return BACKLIGHT; }