#include #include #include #include #include "messages.pb.h" #include "common.h" #include "display.h" #include "flash.h" #include "image.h" #include "secbool.h" #include "usb.h" #include "version.h" #include "messages.h" #include "style.h" #define MSG_HEADER1_LEN 9 #define MSG_HEADER2_LEN 1 secbool msg_parse_header(const uint8_t *buf, uint16_t *msg_id, uint32_t *msg_size) { if (buf[0] != '?' || buf[1] != '#' || buf[2] != '#') { return secfalse; } *msg_id = (buf[3] << 8) + buf[4]; *msg_size = (buf[5] << 24) + (buf[6] << 16) + (buf[7] << 8) + buf[8]; return sectrue; } typedef struct { uint8_t iface_num; uint8_t packet_index; uint8_t packet_pos; uint8_t buf[USB_PACKET_SIZE]; } usb_write_state; /* we don't use secbool/sectrue/secfalse here as it is a nanopb api */ static bool _usb_write(pb_ostream_t *stream, const pb_byte_t *buf, size_t count) { usb_write_state *state = (usb_write_state *)(stream->state); size_t written = 0; // while we have data left while (written < count) { size_t remaining = count - written; // if all remaining data fit into our packet if (state->packet_pos + remaining <= USB_PACKET_SIZE) { // append data from buf to state->buf memcpy(state->buf + state->packet_pos, buf + written, remaining); // advance position state->packet_pos += remaining; // and return return true; } else { // append data that fits memcpy(state->buf + state->packet_pos, buf + written, USB_PACKET_SIZE - state->packet_pos); written += USB_PACKET_SIZE - state->packet_pos; // send packet usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 100); // prepare new packet state->packet_index++; memset(state->buf, 0, USB_PACKET_SIZE); state->buf[0] = '?'; state->packet_pos = MSG_HEADER2_LEN; } } return true; } static void _usb_write_flush(usb_write_state *state) { // if packet is not filled up completely if (state->packet_pos < USB_PACKET_SIZE) { // pad it with zeroes memset(state->buf + state->packet_pos, 0, USB_PACKET_SIZE - state->packet_pos); } // send packet usb_hid_write_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 100); } static secbool _send_msg(uint8_t iface_num, uint16_t msg_id, const pb_field_t fields[], const void *msg) { // determine message size by serializing it into a dummy stream pb_ostream_t sizestream = { .callback = NULL, .state = NULL, .max_size = SIZE_MAX, .bytes_written = 0, .errmsg = NULL}; if (false == pb_encode(&sizestream, fields, msg)) { return secfalse; } const uint32_t msg_size = sizestream.bytes_written; usb_write_state state = { .iface_num = iface_num, .packet_index = 0, .packet_pos = MSG_HEADER1_LEN, .buf = { '?', '#', '#', (msg_id >> 8) & 0xFF, msg_id & 0xFF, (msg_size >> 24) & 0xFF, (msg_size >> 16) & 0xFF, (msg_size >> 8) & 0xFF, msg_size & 0xFF, }, }; pb_ostream_t stream = { .callback = &_usb_write, .state = &state, .max_size = SIZE_MAX, .bytes_written = 0, .errmsg = NULL }; if (false == pb_encode(&stream, fields, msg)) { return secfalse; } _usb_write_flush(&state); return sectrue; } #define MSG_SEND_INIT(TYPE) TYPE msg_send = TYPE##_init_default #define MSG_SEND_ASSIGN_VALUE(FIELD, VALUE) { msg_send.has_##FIELD = true; msg_send.FIELD = VALUE; } #define MSG_SEND_ASSIGN_STRING(FIELD, VALUE) { msg_send.has_##FIELD = true; memset(msg_send.FIELD, 0, sizeof(msg_send.FIELD)); strncpy(msg_send.FIELD, VALUE, sizeof(msg_send.FIELD) - 1); } #define MSG_SEND(TYPE) _send_msg(iface_num, MessageType_MessageType_##TYPE, TYPE##_fields, &msg_send) typedef struct { uint8_t iface_num; uint8_t packet_index; uint8_t packet_pos; uint8_t *buf; } usb_read_state; /* we don't use secbool/sectrue/secfalse here as it is a nanopb api */ static bool _usb_read(pb_istream_t *stream, uint8_t *buf, size_t count) { usb_read_state *state = (usb_read_state *)(stream->state); size_t read = 0; // while we have data left while (read < count) { size_t remaining = count - read; // if all remaining data fit into our packet if (state->packet_pos + remaining <= USB_PACKET_SIZE) { // append data from buf to state->buf memcpy(buf + read, state->buf + state->packet_pos, remaining); // advance position state->packet_pos += remaining; // and return return true; } else { // append data that fits memcpy(buf + read, state->buf + state->packet_pos, USB_PACKET_SIZE - state->packet_pos); read += USB_PACKET_SIZE - state->packet_pos; // read next packet usb_hid_read_blocking(state->iface_num, state->buf, USB_PACKET_SIZE, 100); // prepare next packet state->packet_index++; state->packet_pos = MSG_HEADER2_LEN; } } return true; } static void _usb_read_flush(usb_read_state *state) { (void)state; } static secbool _recv_msg(uint8_t iface_num, uint32_t msg_size, uint8_t *buf, const pb_field_t fields[], void *msg) { usb_read_state state = { .iface_num = iface_num, .packet_index = 0, .packet_pos = MSG_HEADER1_LEN, .buf = buf }; pb_istream_t stream = { .callback = &_usb_read, .state = &state, .bytes_left = msg_size, .errmsg = NULL }; if (false == pb_decode_noinit(&stream, fields, msg)) { return secfalse; } _usb_read_flush(&state); return sectrue; } #define MSG_RECV_INIT(TYPE) TYPE msg_recv = TYPE##_init_default #define MSG_RECV_CALLBACK(FIELD, CALLBACK) { msg_recv.FIELD.funcs.decode = &CALLBACK; } #define MSG_RECV(TYPE) _recv_msg(iface_num, msg_size, buf, TYPE##_fields, &msg_recv) void process_msg_Initialize(uint8_t iface_num, uint32_t msg_size, uint8_t *buf, secbool firmware_present) { MSG_RECV_INIT(Initialize); MSG_RECV(Initialize); MSG_SEND_INIT(Features); MSG_SEND_ASSIGN_STRING(vendor, "trezor.io"); MSG_SEND_ASSIGN_VALUE(major_version, VERSION_MAJOR); MSG_SEND_ASSIGN_VALUE(minor_version, VERSION_MINOR); MSG_SEND_ASSIGN_VALUE(patch_version, VERSION_PATCH); MSG_SEND_ASSIGN_VALUE(bootloader_mode, true); MSG_SEND_ASSIGN_VALUE(firmware_present, firmware_present); // TODO: pass info about installed firmware (vendor, version, etc.) MSG_SEND(Features); } void process_msg_Ping(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { MSG_RECV_INIT(Ping); MSG_RECV(Ping); MSG_SEND_INIT(Success); MSG_SEND_ASSIGN_STRING(message, msg_recv.message); MSG_SEND(Success); } static uint32_t firmware_remaining, firmware_block, chunk_requested; static void progress_erase(int pos, int len) { display_loader(250 * pos / len, 0, COLOR_BL_BLUE, COLOR_BLACK, 0, 0, 0); } void process_msg_FirmwareErase(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { firmware_remaining = 0; firmware_block = 0; chunk_requested = 0; MSG_RECV_INIT(FirmwareErase); MSG_RECV(FirmwareErase); firmware_remaining = msg_recv.has_length ? msg_recv.length : 0; if (firmware_remaining > 0 && firmware_remaining % 4 == 0) { // erase flash uint8_t sectors[] = { FLASH_SECTOR_FIRMWARE_START, 7, 8, 9, 10, FLASH_SECTOR_FIRMWARE_END, FLASH_SECTOR_FIRMWARE_EXTRA_START, 18, 19, 20, 21, 22, FLASH_SECTOR_FIRMWARE_EXTRA_END, }; if (sectrue != flash_erase_sectors(sectors, 6 + 7, progress_erase)) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError); MSG_SEND_ASSIGN_STRING(message, "Could not erase flash"); MSG_SEND(Failure); return; } // request new firmware chunk_requested = (firmware_remaining > IMAGE_CHUNK_SIZE) ? IMAGE_CHUNK_SIZE : firmware_remaining; MSG_SEND_INIT(FirmwareRequest); MSG_SEND_ASSIGN_VALUE(offset, 0); MSG_SEND_ASSIGN_VALUE(length, chunk_requested); MSG_SEND(FirmwareRequest); } else { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError); MSG_SEND_ASSIGN_STRING(message, "Wrong firmware size"); MSG_SEND(Failure); } } static uint32_t chunk_size = 0; // SRAM is unused, so we can use it for chunk buffer uint8_t * const chunk_buffer = (uint8_t * const)0x20000000; /* we don't use secbool/sectrue/secfalse here as it is a nanopb api */ static bool _read_payload(pb_istream_t *stream, const pb_field_t *field, void **arg) { #define BUFSIZE 32768 if (stream->bytes_left > IMAGE_CHUNK_SIZE) { chunk_size = 0; return false; } // clear chunk buffer memset(chunk_buffer, 0xFF, IMAGE_CHUNK_SIZE); uint32_t chunk_written = 0; chunk_size = stream->bytes_left; while (stream->bytes_left) { // update loader display_loader(250 + 750 * (firmware_block * IMAGE_CHUNK_SIZE + chunk_written) / (firmware_block * IMAGE_CHUNK_SIZE + firmware_remaining), 0, COLOR_BL_BLUE, COLOR_BLACK, 0, 0, 0); // read data if (!pb_read(stream, (pb_byte_t *)(chunk_buffer + chunk_written), (stream->bytes_left > BUFSIZE) ? BUFSIZE : stream->bytes_left)) { chunk_size = 0; return false; } chunk_written += BUFSIZE; } return true; } static image_header hdr; secbool load_vendor_header_keys(const uint8_t * const data, vendor_header * const vhdr); secbool compare_to_current_vendor_header(const vendor_header * const new_vhdr) { vendor_header current_vhdr; if (sectrue != load_vendor_header_keys((const uint8_t *)FIRMWARE_START, ¤t_vhdr)) { return secfalse; } // check whether current and new vendor header have the same key set if (new_vhdr->vsig_m != current_vhdr.vsig_m) { return secfalse; } if (new_vhdr->vsig_n != current_vhdr.vsig_n) { return secfalse; } for (int i = 0; i < MAX_VENDOR_PUBLIC_KEYS; i++) { if (new_vhdr->vpub[i] != 0 && current_vhdr.vpub[i] != 0) { if (0 != memcmp(new_vhdr->vpub[i], current_vhdr.vpub[i], 32)) { return secfalse; } } if (new_vhdr->vpub[i] == 0 && current_vhdr.vpub[i] != 0) { return secfalse; } if (new_vhdr->vpub[i] != 0 && current_vhdr.vpub[i] == 0) { return secfalse; } } return sectrue; } int process_msg_FirmwareUpload(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { MSG_RECV_INIT(FirmwareUpload); MSG_RECV_CALLBACK(payload, _read_payload); secbool r = MSG_RECV(FirmwareUpload); if (sectrue != r || chunk_size != chunk_requested) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_DataError); MSG_SEND_ASSIGN_STRING(message, "Invalid chunk size"); MSG_SEND(Failure); return -1; } uint32_t firstskip = 0; if (firmware_block == 0) { vendor_header vhdr; if (sectrue != load_vendor_header_keys(chunk_buffer, &vhdr)) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError); MSG_SEND_ASSIGN_STRING(message, "Invalid vendor header"); MSG_SEND(Failure); return -2; } if (sectrue != load_image_header(chunk_buffer + vhdr.hdrlen, FIRMWARE_IMAGE_MAGIC, FIRMWARE_IMAGE_MAXSIZE, vhdr.vsig_m, vhdr.vsig_n, vhdr.vpub, &hdr)) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError); MSG_SEND_ASSIGN_STRING(message, "Invalid firmware header"); MSG_SEND(Failure); return -3; } if (sectrue != compare_to_current_vendor_header(&vhdr)) { uint8_t sectors_storage[] = { FLASH_SECTOR_STORAGE_1, FLASH_SECTOR_STORAGE_2, }; ensure(flash_erase_sectors(sectors_storage, 2, NULL), NULL); uint8_t sectors_pin[] = { FLASH_SECTOR_PIN_AREA, }; ensure(flash_erase_sectors(sectors_pin, 2, NULL), NULL); } firstskip = IMAGE_HEADER_SIZE + vhdr.hdrlen; } if (sectrue != check_single_hash(hdr.hashes + firmware_block * 32, chunk_buffer + firstskip, chunk_size - firstskip)) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError); MSG_SEND_ASSIGN_STRING(message, "Invalid chunk hash"); MSG_SEND(Failure); return -4; } if (sectrue != flash_unlock()) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError); MSG_SEND_ASSIGN_STRING(message, "Could not unlock flash"); MSG_SEND(Failure); return -5; } // TODO: fix writing to non-continous area const uint32_t * const src = (const uint32_t * const)chunk_buffer; for (int i = 0; i < chunk_size / sizeof(uint32_t); i++) { if (sectrue != flash_write_word(FIRMWARE_START + firmware_block * IMAGE_CHUNK_SIZE + i * sizeof(uint32_t), src[i])) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError); MSG_SEND_ASSIGN_STRING(message, "Could not write data"); MSG_SEND(Failure); flash_lock(); return -6; } } flash_lock(); firmware_remaining -= chunk_requested; firmware_block++; if (firmware_remaining > 0) { chunk_requested = (firmware_remaining > IMAGE_CHUNK_SIZE) ? IMAGE_CHUNK_SIZE : firmware_remaining; MSG_SEND_INIT(FirmwareRequest); MSG_SEND_ASSIGN_VALUE(offset, firmware_block * IMAGE_CHUNK_SIZE); MSG_SEND_ASSIGN_VALUE(length, chunk_requested); MSG_SEND(FirmwareRequest); } else { MSG_SEND_INIT(Success); MSG_SEND(Success); } return (int)firmware_remaining; } static void progress_wipe(int pos, int len) { display_loader(1000 * pos / len, 0, COLOR_BL_BLUE, COLOR_BLACK, 0, 0, 0); } int process_msg_WipeDevice(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { uint8_t sectors[] = { FLASH_SECTOR_STORAGE_1, FLASH_SECTOR_STORAGE_2, FLASH_SECTOR_FIRMWARE_START, 7, 8, 9, 10, FLASH_SECTOR_FIRMWARE_END, FLASH_SECTOR_UNUSED_START, 13, 14, FLASH_SECTOR_UNUSED_END, FLASH_SECTOR_FIRMWARE_EXTRA_START, 18, 19, 20, 21, 22, FLASH_SECTOR_FIRMWARE_EXTRA_END, FLASH_SECTOR_PIN_AREA, }; if (sectrue != flash_erase_sectors(sectors, 2 + 6 + 4 + 7 + 1, progress_wipe)) { MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_ProcessError); MSG_SEND_ASSIGN_STRING(message, "Could not erase flash"); MSG_SEND(Failure); return -1; } else { MSG_SEND_INIT(Success); MSG_SEND(Success); return 0; } } void process_msg_unknown(uint8_t iface_num, uint32_t msg_size, uint8_t *buf) { // consume remaining message int remaining_chunks = (msg_size - (USB_PACKET_SIZE - MSG_HEADER1_LEN)) / (USB_PACKET_SIZE - MSG_HEADER2_LEN); for (int i = 0; i < remaining_chunks; i++) { int r = usb_hid_read_blocking(USB_IFACE_NUM, buf, USB_PACKET_SIZE, 100); if (r != USB_PACKET_SIZE) { break; } } MSG_SEND_INIT(Failure); MSG_SEND_ASSIGN_VALUE(code, FailureType_Failure_UnexpectedMessage); MSG_SEND_ASSIGN_STRING(message, "Unexpected message"); MSG_SEND(Failure); }