/** * Copyright (c) 2013-2014 Tomas Dzetkulic * Copyright (c) 2013-2014 Pavol Rusnak * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include "pbkdf2.h" #include "hmac.h" #include "sha2.h" #include "memzero.h" void pbkdf2_hmac_sha256_Init(PBKDF2_HMAC_SHA256_CTX *pctx, const uint8_t *pass, int passlen, const uint8_t *salt, int saltlen, uint32_t blocknr) { SHA256_CTX ctx; #if BYTE_ORDER == LITTLE_ENDIAN REVERSE32(blocknr, blocknr); #endif hmac_sha256_prepare(pass, passlen, pctx->odig, pctx->idig); memset(pctx->g, 0, sizeof(pctx->g)); pctx->g[8] = 0x80000000; pctx->g[15] = (SHA256_BLOCK_LENGTH + SHA256_DIGEST_LENGTH) * 8; memcpy (ctx.state, pctx->idig, sizeof(pctx->idig)); ctx.bitcount = SHA256_BLOCK_LENGTH * 8; sha256_Update(&ctx, salt, saltlen); sha256_Update(&ctx, (uint8_t*)&blocknr, sizeof(blocknr)); sha256_Final(&ctx, (uint8_t*)pctx->g); #if BYTE_ORDER == LITTLE_ENDIAN for (uint32_t k = 0; k < SHA256_DIGEST_LENGTH / sizeof(uint32_t); k++) { REVERSE32(pctx->g[k], pctx->g[k]); } #endif sha256_Transform(pctx->odig, pctx->g, pctx->g); memcpy(pctx->f, pctx->g, SHA256_DIGEST_LENGTH); pctx->first = 1; } void pbkdf2_hmac_sha256_Update(PBKDF2_HMAC_SHA256_CTX *pctx, uint32_t iterations) { for (uint32_t i = pctx->first; i < iterations; i++) { sha256_Transform(pctx->idig, pctx->g, pctx->g); sha256_Transform(pctx->odig, pctx->g, pctx->g); for (uint32_t j = 0; j < SHA256_DIGEST_LENGTH/sizeof(uint32_t); j++) { pctx->f[j] ^= pctx->g[j]; } } pctx->first = 0; } void pbkdf2_hmac_sha256_Final(PBKDF2_HMAC_SHA256_CTX *pctx, uint8_t *key) { #if BYTE_ORDER == LITTLE_ENDIAN for (uint32_t k = 0; k < SHA256_DIGEST_LENGTH/sizeof(uint32_t); k++) { REVERSE32(pctx->f[k], pctx->f[k]); } #endif memcpy(key, pctx->f, SHA256_DIGEST_LENGTH); memzero(pctx, sizeof(PBKDF2_HMAC_SHA256_CTX)); } void pbkdf2_hmac_sha256(const uint8_t *pass, int passlen, const uint8_t *salt, int saltlen, uint32_t iterations, uint8_t *key, int keylen) { uint32_t blocks_count = (keylen + SHA256_DIGEST_LENGTH - 1) / SHA256_DIGEST_LENGTH; int unfinished_key_size = keylen; for (uint32_t blocknr = 1; blocknr <= blocks_count; blocknr++) { PBKDF2_HMAC_SHA256_CTX pctx; pbkdf2_hmac_sha256_Init(&pctx, pass, passlen, salt, saltlen, blocknr); pbkdf2_hmac_sha256_Update(&pctx, iterations); unsigned int key_offset = (blocknr - 1) * SHA256_DIGEST_LENGTH; uint8_t diggest[SHA256_DIGEST_LENGTH]; pbkdf2_hmac_sha256_Final(&pctx, diggest); if (unfinished_key_size > SHA256_DIGEST_LENGTH) { memcpy(key + key_offset, diggest, SHA256_DIGEST_LENGTH); unfinished_key_size -= SHA256_DIGEST_LENGTH; } else { memcpy(key + key_offset, diggest, unfinished_key_size); unfinished_key_size = 0; } } } void pbkdf2_hmac_sha512_Init(PBKDF2_HMAC_SHA512_CTX *pctx, const uint8_t *pass, int passlen, const uint8_t *salt, int saltlen, uint32_t blocknr) { SHA512_CTX ctx; #if BYTE_ORDER == LITTLE_ENDIAN REVERSE32(blocknr, blocknr); #endif hmac_sha512_prepare(pass, passlen, pctx->odig, pctx->idig); memset(pctx->g, 0, sizeof(pctx->g)); pctx->g[8] = 0x8000000000000000; pctx->g[15] = (SHA512_BLOCK_LENGTH + SHA512_DIGEST_LENGTH) * 8; memcpy (ctx.state, pctx->idig, sizeof(pctx->idig)); ctx.bitcount[0] = SHA512_BLOCK_LENGTH * 8; ctx.bitcount[1] = 0; sha512_Update(&ctx, salt, saltlen); sha512_Update(&ctx, (uint8_t*)&blocknr, sizeof(blocknr)); sha512_Final(&ctx, (uint8_t*)pctx->g); #if BYTE_ORDER == LITTLE_ENDIAN for (uint32_t k = 0; k < SHA512_DIGEST_LENGTH / sizeof(uint64_t); k++) { REVERSE64(pctx->g[k], pctx->g[k]); } #endif sha512_Transform(pctx->odig, pctx->g, pctx->g); memcpy(pctx->f, pctx->g, SHA512_DIGEST_LENGTH); pctx->first = 1; } void pbkdf2_hmac_sha512_Update(PBKDF2_HMAC_SHA512_CTX *pctx, uint32_t iterations) { for (uint32_t i = pctx->first; i < iterations; i++) { sha512_Transform(pctx->idig, pctx->g, pctx->g); sha512_Transform(pctx->odig, pctx->g, pctx->g); for (uint32_t j = 0; j < SHA512_DIGEST_LENGTH / sizeof(uint64_t); j++) { pctx->f[j] ^= pctx->g[j]; } } pctx->first = 0; } void pbkdf2_hmac_sha512_Final(PBKDF2_HMAC_SHA512_CTX *pctx, uint8_t *key) { #if BYTE_ORDER == LITTLE_ENDIAN for (uint32_t k = 0; k < SHA512_DIGEST_LENGTH/sizeof(uint64_t); k++) { REVERSE64(pctx->f[k], pctx->f[k]); } #endif memcpy(key, pctx->f, SHA512_DIGEST_LENGTH); memzero(pctx, sizeof(PBKDF2_HMAC_SHA512_CTX)); } void pbkdf2_hmac_sha512(const uint8_t *pass, int passlen, const uint8_t *salt, int saltlen, uint32_t iterations, uint8_t *key, int keylen) { uint32_t blocks_count = (keylen + SHA512_DIGEST_LENGTH - 1) / SHA512_DIGEST_LENGTH; int unfinished_key_size = keylen; for (uint32_t blocknr = 1; blocknr <= blocks_count; blocknr++) { PBKDF2_HMAC_SHA512_CTX pctx; pbkdf2_hmac_sha512_Init(&pctx, pass, passlen, salt, saltlen, blocknr); pbkdf2_hmac_sha512_Update(&pctx, iterations); unsigned int key_offset = (blocknr - 1) * SHA512_DIGEST_LENGTH; uint8_t diggest[SHA512_DIGEST_LENGTH]; pbkdf2_hmac_sha512_Final(&pctx, diggest); if (unfinished_key_size > SHA512_DIGEST_LENGTH) { memcpy(key + key_offset, diggest, SHA512_DIGEST_LENGTH); unfinished_key_size -= SHA512_DIGEST_LENGTH; } else { memcpy(key + key_offset, diggest, unfinished_key_size); unfinished_key_size = 0; } } }