/** * Copyright (c) 2013-2016 Tomas Dzetkulic * Copyright (c) 2013-2016 Pavol Rusnak * Copyright (c) 2015-2016 Jochen Hoenicke * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "address.h" #include "aes/aes.h" #include "base58.h" #include "bignum.h" #include "bip32.h" #include "curves.h" #include "ecdsa.h" #include "ed25519-donna/ed25519-sha3.h" #include "ed25519-donna/ed25519.h" #include "hmac.h" #include "nist256p1.h" #include "secp256k1.h" #include "sha2.h" #include "sha3.h" #if USE_KECCAK #include "ed25519-donna/ed25519-keccak.h" #endif #if USE_NEM #include "nem.h" #endif #if USE_CARDANO #include "pbkdf2.h" #endif #include "memzero.h" #define CARDANO_MAX_NODE_DEPTH 1048576 const curve_info ed25519_info = { .bip32_name = "ed25519 seed", .params = NULL, .hasher_base58 = HASHER_SHA2D, .hasher_sign = HASHER_SHA2D, .hasher_pubkey = HASHER_SHA2_RIPEMD, .hasher_script = HASHER_SHA2, }; const curve_info ed25519_cardano_info = { .bip32_name = "ed25519 cardano seed", .params = NULL, .hasher_base58 = HASHER_SHA2D, .hasher_sign = HASHER_SHA2D, .hasher_pubkey = HASHER_SHA2_RIPEMD, .hasher_script = HASHER_SHA2, }; const curve_info ed25519_sha3_info = { .bip32_name = "ed25519-sha3 seed", .params = NULL, .hasher_base58 = HASHER_SHA2D, .hasher_sign = HASHER_SHA2D, .hasher_pubkey = HASHER_SHA2_RIPEMD, .hasher_script = HASHER_SHA2, }; #if USE_KECCAK const curve_info ed25519_keccak_info = { .bip32_name = "ed25519-keccak seed", .params = NULL, .hasher_base58 = HASHER_SHA2D, .hasher_sign = HASHER_SHA2D, .hasher_pubkey = HASHER_SHA2_RIPEMD, .hasher_script = HASHER_SHA2, }; #endif const curve_info curve25519_info = { .bip32_name = "curve25519 seed", .params = NULL, .hasher_base58 = HASHER_SHA2D, .hasher_sign = HASHER_SHA2D, .hasher_pubkey = HASHER_SHA2_RIPEMD, .hasher_script = HASHER_SHA2, }; int hdnode_from_xpub(uint32_t depth, uint32_t child_num, const uint8_t *chain_code, const uint8_t *public_key, const char *curve, HDNode *out) { const curve_info *info = get_curve_by_name(curve); if (info == 0) { return 0; } if (public_key[0] != 0x02 && public_key[0] != 0x03) { // invalid pubkey return 0; } out->curve = info; out->depth = depth; out->child_num = child_num; memcpy(out->chain_code, chain_code, 32); memzero(out->private_key, 32); memzero(out->private_key_extension, 32); memcpy(out->public_key, public_key, 33); return 1; } int hdnode_from_xprv(uint32_t depth, uint32_t child_num, const uint8_t *chain_code, const uint8_t *private_key, const char *curve, HDNode *out) { bool failed = false; const curve_info *info = get_curve_by_name(curve); if (info == 0) { failed = true; } else if (info->params) { bignum256 a; bn_read_be(private_key, &a); if (bn_is_zero(&a)) { // == 0 failed = true; } else { if (!bn_is_less(&a, &info->params->order)) { // >= order failed = true; } } memzero(&a, sizeof(a)); } if (failed) { return 0; } out->curve = info; out->depth = depth; out->child_num = child_num; memcpy(out->chain_code, chain_code, 32); memcpy(out->private_key, private_key, 32); memzero(out->public_key, sizeof(out->public_key)); memzero(out->private_key_extension, sizeof(out->private_key_extension)); return 1; } int hdnode_from_seed(const uint8_t *seed, int seed_len, const char *curve, HDNode *out) { static CONFIDENTIAL uint8_t I[32 + 32]; memzero(out, sizeof(HDNode)); out->depth = 0; out->child_num = 0; out->curve = get_curve_by_name(curve); if (out->curve == 0) { return 0; } static CONFIDENTIAL HMAC_SHA512_CTX ctx; hmac_sha512_Init(&ctx, (const uint8_t *)out->curve->bip32_name, strlen(out->curve->bip32_name)); hmac_sha512_Update(&ctx, seed, seed_len); hmac_sha512_Final(&ctx, I); if (out->curve->params) { bignum256 a; while (true) { bn_read_be(I, &a); if (!bn_is_zero(&a) // != 0 && bn_is_less(&a, &out->curve->params->order)) { // < order break; } hmac_sha512_Init(&ctx, (const uint8_t *)out->curve->bip32_name, strlen(out->curve->bip32_name)); hmac_sha512_Update(&ctx, I, sizeof(I)); hmac_sha512_Final(&ctx, I); } memzero(&a, sizeof(a)); } memcpy(out->private_key, I, 32); memcpy(out->chain_code, I + 32, 32); memzero(out->public_key, sizeof(out->public_key)); memzero(I, sizeof(I)); return 1; } uint32_t hdnode_fingerprint(HDNode *node) { uint8_t digest[32]; uint32_t fingerprint; hdnode_fill_public_key(node); hasher_Raw(node->curve->hasher_pubkey, node->public_key, 33, digest); fingerprint = ((uint32_t)digest[0] << 24) + (digest[1] << 16) + (digest[2] << 8) + digest[3]; memzero(digest, sizeof(digest)); return fingerprint; } int hdnode_private_ckd(HDNode *inout, uint32_t i) { static CONFIDENTIAL uint8_t data[1 + 32 + 4]; static CONFIDENTIAL uint8_t I[32 + 32]; static CONFIDENTIAL bignum256 a, b; if (i & 0x80000000) { // private derivation data[0] = 0; memcpy(data + 1, inout->private_key, 32); } else { // public derivation if (!inout->curve->params) { return 0; } hdnode_fill_public_key(inout); memcpy(data, inout->public_key, 33); } write_be(data + 33, i); bn_read_be(inout->private_key, &a); static CONFIDENTIAL HMAC_SHA512_CTX ctx; hmac_sha512_Init(&ctx, inout->chain_code, 32); hmac_sha512_Update(&ctx, data, sizeof(data)); hmac_sha512_Final(&ctx, I); if (inout->curve->params) { while (true) { bool failed = false; bn_read_be(I, &b); if (!bn_is_less(&b, &inout->curve->params->order)) { // >= order failed = true; } else { bn_add(&b, &a); bn_mod(&b, &inout->curve->params->order); if (bn_is_zero(&b)) { failed = true; } } if (!failed) { bn_write_be(&b, inout->private_key); break; } data[0] = 1; memcpy(data + 1, I + 32, 32); hmac_sha512_Init(&ctx, inout->chain_code, 32); hmac_sha512_Update(&ctx, data, sizeof(data)); hmac_sha512_Final(&ctx, I); } } else { memcpy(inout->private_key, I, 32); } memcpy(inout->chain_code, I + 32, 32); inout->depth++; inout->child_num = i; memzero(inout->public_key, sizeof(inout->public_key)); // making sure to wipe our memory memzero(&a, sizeof(a)); memzero(&b, sizeof(b)); memzero(I, sizeof(I)); memzero(data, sizeof(data)); return 1; } #if USE_CARDANO static void scalar_multiply8(const uint8_t *src, int bytes, uint8_t *dst) { uint8_t prev_acc = 0; for (int i = 0; i < bytes; i++) { dst[i] = (src[i] << 3) + (prev_acc & 0x7); prev_acc = src[i] >> 5; } dst[bytes] = src[bytes - 1] >> 5; } static void scalar_add_256bits(const uint8_t *src1, const uint8_t *src2, uint8_t *dst) { uint16_t r = 0; for (int i = 0; i < 32; i++) { r = r + (uint16_t)src1[i] + (uint16_t)src2[i]; dst[i] = r & 0xff; r >>= 8; } } int hdnode_private_ckd_cardano(HDNode *inout, uint32_t index) { if (inout->depth >= CARDANO_MAX_NODE_DEPTH) { return 0; } // checks for hardened/non-hardened derivation, keysize 32 means we are // dealing with public key and thus non-h, keysize 64 is for private key int keysize = 32; if (index & 0x80000000) { keysize = 64; } static CONFIDENTIAL uint8_t data[1 + 64 + 4]; static CONFIDENTIAL uint8_t z[32 + 32]; static CONFIDENTIAL uint8_t priv_key[64]; static CONFIDENTIAL uint8_t res_key[64]; write_le(data + keysize + 1, index); memcpy(priv_key, inout->private_key, 32); memcpy(priv_key + 32, inout->private_key_extension, 32); if (keysize == 64) { // private derivation data[0] = 0; memcpy(data + 1, inout->private_key, 32); memcpy(data + 1 + 32, inout->private_key_extension, 32); } else { // public derivation hdnode_fill_public_key(inout); data[0] = 2; memcpy(data + 1, inout->public_key + 1, 32); } static CONFIDENTIAL HMAC_SHA512_CTX ctx; hmac_sha512_Init(&ctx, inout->chain_code, 32); hmac_sha512_Update(&ctx, data, 1 + keysize + 4); hmac_sha512_Final(&ctx, z); static CONFIDENTIAL uint8_t zl8[32]; memzero(zl8, 32); /* get 8 * Zl */ scalar_multiply8(z, 28, zl8); /* Kl = 8*Zl + parent(K)l */ scalar_add_256bits(zl8, priv_key, res_key); /* Kr = Zr + parent(K)r */ scalar_add_256bits(z + 32, priv_key + 32, res_key + 32); memcpy(inout->private_key, res_key, 32); memcpy(inout->private_key_extension, res_key + 32, 32); if (keysize == 64) { data[0] = 1; } else { data[0] = 3; } hmac_sha512_Init(&ctx, inout->chain_code, 32); hmac_sha512_Update(&ctx, data, 1 + keysize + 4); hmac_sha512_Final(&ctx, z); memcpy(inout->chain_code, z + 32, 32); inout->depth++; inout->child_num = index; memzero(inout->public_key, sizeof(inout->public_key)); // making sure to wipe our memory memzero(z, sizeof(z)); memzero(data, sizeof(data)); memzero(priv_key, sizeof(priv_key)); memzero(res_key, sizeof(res_key)); return 1; } static int hdnode_from_secret_cardano(const uint8_t *k, const uint8_t *chain_code, HDNode *out) { memzero(out, sizeof(HDNode)); out->depth = 0; out->child_num = 0; out->curve = &ed25519_cardano_info; memcpy(out->private_key, k, 32); memcpy(out->private_key_extension, k + 32, 32); memcpy(out->chain_code, chain_code, 32); out->private_key[0] &= 0xf8; out->private_key[31] &= 0x1f; out->private_key[31] |= 0x40; out->public_key[0] = 0; hdnode_fill_public_key(out); return 1; } // Derives the root Cardano HDNode from a master secret, aka seed, as defined in // SLIP-0023. int hdnode_from_seed_cardano(const uint8_t *seed, int seed_len, HDNode *out) { static CONFIDENTIAL uint8_t I[SHA512_DIGEST_LENGTH]; static CONFIDENTIAL uint8_t k[SHA512_DIGEST_LENGTH]; static CONFIDENTIAL HMAC_SHA512_CTX ctx; hmac_sha512_Init(&ctx, (const uint8_t *)ED25519_CARDANO_NAME, strlen(ED25519_CARDANO_NAME)); hmac_sha512_Update(&ctx, seed, seed_len); hmac_sha512_Final(&ctx, I); sha512_Raw(I, 32, k); int ret = hdnode_from_secret_cardano(k, I + 32, out); memzero(I, sizeof(I)); memzero(k, sizeof(k)); memzero(&ctx, sizeof(ctx)); return ret; } // Derives the root Cardano HDNode from a passphrase and the entropy encoded in // a BIP-0039 mnemonic using the Icarus derivation scheme, aka V2 derivation // scheme. int hdnode_from_entropy_cardano_icarus(const uint8_t *pass, int pass_len, const uint8_t *entropy, int entropy_len, HDNode *out) { static CONFIDENTIAL uint8_t secret[96]; pbkdf2_hmac_sha512(pass, pass_len, entropy, entropy_len, 4096, secret, 96); int ret = hdnode_from_secret_cardano(secret, secret + 64, out); memzero(secret, sizeof(secret)); return ret; } #endif int hdnode_public_ckd_cp(const ecdsa_curve *curve, const curve_point *parent, const uint8_t *parent_chain_code, uint32_t i, curve_point *child, uint8_t *child_chain_code) { uint8_t data[1 + 32 + 4]; uint8_t I[32 + 32]; bignum256 c; if (i & 0x80000000) { // private derivation return 0; } data[0] = 0x02 | (parent->y.val[0] & 0x01); bn_write_be(&parent->x, data + 1); write_be(data + 33, i); while (true) { hmac_sha512(parent_chain_code, 32, data, sizeof(data), I); bn_read_be(I, &c); if (bn_is_less(&c, &curve->order)) { // < order scalar_multiply(curve, &c, child); // b = c * G point_add(curve, parent, child); // b = a + b if (!point_is_infinity(child)) { if (child_chain_code) { memcpy(child_chain_code, I + 32, 32); } // Wipe all stack data. memzero(data, sizeof(data)); memzero(I, sizeof(I)); memzero(&c, sizeof(c)); return 1; } } data[0] = 1; memcpy(data + 1, I + 32, 32); } } int hdnode_public_ckd(HDNode *inout, uint32_t i) { curve_point parent, child; if (!ecdsa_read_pubkey(inout->curve->params, inout->public_key, &parent)) { return 0; } if (!hdnode_public_ckd_cp(inout->curve->params, &parent, inout->chain_code, i, &child, inout->chain_code)) { return 0; } memzero(inout->private_key, 32); inout->depth++; inout->child_num = i; inout->public_key[0] = 0x02 | (child.y.val[0] & 0x01); bn_write_be(&child.x, inout->public_key + 1); // Wipe all stack data. memzero(&parent, sizeof(parent)); memzero(&child, sizeof(child)); return 1; } void hdnode_public_ckd_address_optimized(const curve_point *pub, const uint8_t *chain_code, uint32_t i, uint32_t version, HasherType hasher_pubkey, HasherType hasher_base58, char *addr, int addrsize, int addrformat) { uint8_t child_pubkey[33]; curve_point b; hdnode_public_ckd_cp(&secp256k1, pub, chain_code, i, &b, NULL); child_pubkey[0] = 0x02 | (b.y.val[0] & 0x01); bn_write_be(&b.x, child_pubkey + 1); switch (addrformat) { case 1: // Segwit-in-P2SH ecdsa_get_address_segwit_p2sh(child_pubkey, version, hasher_pubkey, hasher_base58, addr, addrsize); break; default: // normal address ecdsa_get_address(child_pubkey, version, hasher_pubkey, hasher_base58, addr, addrsize); break; } } #if USE_BIP32_CACHE static bool private_ckd_cache_root_set = false; static CONFIDENTIAL HDNode private_ckd_cache_root; static int private_ckd_cache_index = 0; static CONFIDENTIAL struct { bool set; size_t depth; uint32_t i[BIP32_CACHE_MAXDEPTH]; HDNode node; } private_ckd_cache[BIP32_CACHE_SIZE]; int hdnode_private_ckd_cached(HDNode *inout, const uint32_t *i, size_t i_count, uint32_t *fingerprint) { if (i_count == 0) { // no way how to compute parent fingerprint return 1; } if (i_count == 1) { if (fingerprint) { *fingerprint = hdnode_fingerprint(inout); } if (hdnode_private_ckd(inout, i[0]) == 0) return 0; return 1; } bool found = false; // if root is not set or not the same if (!private_ckd_cache_root_set || memcmp(&private_ckd_cache_root, inout, sizeof(HDNode)) != 0) { // clear the cache private_ckd_cache_index = 0; memzero(private_ckd_cache, sizeof(private_ckd_cache)); // setup new root memcpy(&private_ckd_cache_root, inout, sizeof(HDNode)); private_ckd_cache_root_set = true; } else { // try to find parent int j; for (j = 0; j < BIP32_CACHE_SIZE; j++) { if (private_ckd_cache[j].set && private_ckd_cache[j].depth == i_count - 1 && memcmp(private_ckd_cache[j].i, i, (i_count - 1) * sizeof(uint32_t)) == 0 && private_ckd_cache[j].node.curve == inout->curve) { memcpy(inout, &(private_ckd_cache[j].node), sizeof(HDNode)); found = true; break; } } } // else derive parent if (!found) { size_t k; for (k = 0; k < i_count - 1; k++) { if (hdnode_private_ckd(inout, i[k]) == 0) return 0; } // and save it memzero(&(private_ckd_cache[private_ckd_cache_index]), sizeof(private_ckd_cache[private_ckd_cache_index])); private_ckd_cache[private_ckd_cache_index].set = true; private_ckd_cache[private_ckd_cache_index].depth = i_count - 1; memcpy(private_ckd_cache[private_ckd_cache_index].i, i, (i_count - 1) * sizeof(uint32_t)); memcpy(&(private_ckd_cache[private_ckd_cache_index].node), inout, sizeof(HDNode)); private_ckd_cache_index = (private_ckd_cache_index + 1) % BIP32_CACHE_SIZE; } if (fingerprint) { *fingerprint = hdnode_fingerprint(inout); } if (hdnode_private_ckd(inout, i[i_count - 1]) == 0) return 0; return 1; } #endif void hdnode_get_address_raw(HDNode *node, uint32_t version, uint8_t *addr_raw) { hdnode_fill_public_key(node); ecdsa_get_address_raw(node->public_key, version, node->curve->hasher_pubkey, addr_raw); } void hdnode_get_address(HDNode *node, uint32_t version, char *addr, int addrsize) { hdnode_fill_public_key(node); ecdsa_get_address(node->public_key, version, node->curve->hasher_pubkey, node->curve->hasher_base58, addr, addrsize); } void hdnode_fill_public_key(HDNode *node) { if (node->public_key[0] != 0) return; #if USE_BIP32_25519_CURVES if (node->curve->params) { ecdsa_get_public_key33(node->curve->params, node->private_key, node->public_key); } else { node->public_key[0] = 1; if (node->curve == &ed25519_info) { ed25519_publickey(node->private_key, node->public_key + 1); } else if (node->curve == &ed25519_sha3_info) { ed25519_publickey_sha3(node->private_key, node->public_key + 1); #if USE_KECCAK } else if (node->curve == &ed25519_keccak_info) { ed25519_publickey_keccak(node->private_key, node->public_key + 1); #endif } else if (node->curve == &curve25519_info) { curve25519_scalarmult_basepoint(node->public_key + 1, node->private_key); #if USE_CARDANO } else if (node->curve == &ed25519_cardano_info) { ed25519_publickey_ext(node->private_key, node->private_key_extension, node->public_key + 1); #endif } } #else ecdsa_get_public_key33(node->curve->params, node->private_key, node->public_key); #endif } #if USE_ETHEREUM int hdnode_get_ethereum_pubkeyhash(const HDNode *node, uint8_t *pubkeyhash) { uint8_t buf[65]; SHA3_CTX ctx; /* get uncompressed public key */ ecdsa_get_public_key65(node->curve->params, node->private_key, buf); /* compute sha3 of x and y coordinate without 04 prefix */ sha3_256_Init(&ctx); sha3_Update(&ctx, buf + 1, 64); keccak_Final(&ctx, buf); /* result are the least significant 160 bits */ memcpy(pubkeyhash, buf + 12, 20); return 1; } #endif #if USE_NEM int hdnode_get_nem_address(HDNode *node, uint8_t version, char *address) { if (node->curve != &ed25519_keccak_info) { return 0; } hdnode_fill_public_key(node); return nem_get_address(&node->public_key[1], version, address); } int hdnode_get_nem_shared_key(const HDNode *node, const ed25519_public_key peer_public_key, const uint8_t *salt, ed25519_public_key mul, uint8_t *shared_key) { if (node->curve != &ed25519_keccak_info) { return 0; } // sizeof(ed25519_public_key) == SHA3_256_DIGEST_LENGTH if (mul == NULL) mul = shared_key; if (ed25519_scalarmult_keccak(mul, node->private_key, peer_public_key)) { return 0; } for (size_t i = 0; i < 32; i++) { shared_key[i] = mul[i] ^ salt[i]; } keccak_256(shared_key, 32, shared_key); return 1; } int hdnode_nem_encrypt(const HDNode *node, const ed25519_public_key public_key, const uint8_t *iv_immut, const uint8_t *salt, const uint8_t *payload, size_t size, uint8_t *buffer) { uint8_t last_block[AES_BLOCK_SIZE]; uint8_t remainder = size % AES_BLOCK_SIZE; // Round down to last whole block size -= remainder; // Copy old last block memcpy(last_block, &payload[size], remainder); // Pad new last block with number of missing bytes memset(&last_block[remainder], AES_BLOCK_SIZE - remainder, AES_BLOCK_SIZE - remainder); // the IV gets mutated, so we make a copy not to touch the original uint8_t iv[AES_BLOCK_SIZE]; memcpy(iv, iv_immut, AES_BLOCK_SIZE); uint8_t shared_key[SHA3_256_DIGEST_LENGTH]; if (!hdnode_get_nem_shared_key(node, public_key, salt, NULL, shared_key)) { return 0; } aes_encrypt_ctx ctx; int ret = aes_encrypt_key256(shared_key, &ctx); memzero(shared_key, sizeof(shared_key)); if (ret != EXIT_SUCCESS) { return 0; } if (aes_cbc_encrypt(payload, buffer, size, iv, &ctx) != EXIT_SUCCESS) { return 0; } if (aes_cbc_encrypt(last_block, &buffer[size], sizeof(last_block), iv, &ctx) != EXIT_SUCCESS) { return 0; } return 1; } int hdnode_nem_decrypt(const HDNode *node, const ed25519_public_key public_key, uint8_t *iv, const uint8_t *salt, const uint8_t *payload, size_t size, uint8_t *buffer) { uint8_t shared_key[SHA3_256_DIGEST_LENGTH]; if (!hdnode_get_nem_shared_key(node, public_key, salt, NULL, shared_key)) { return 0; } aes_decrypt_ctx ctx; int ret = aes_decrypt_key256(shared_key, &ctx); memzero(shared_key, sizeof(shared_key)); if (ret != EXIT_SUCCESS) { return 0; } if (aes_cbc_decrypt(payload, buffer, size, iv, &ctx) != EXIT_SUCCESS) { return 0; } return 1; } #endif // msg is a data to be signed // msg_len is the message length int hdnode_sign(HDNode *node, const uint8_t *msg, uint32_t msg_len, HasherType hasher_sign, uint8_t *sig, uint8_t *pby, int (*is_canonical)(uint8_t by, uint8_t sig[64])) { if (node->curve->params) { return ecdsa_sign(node->curve->params, hasher_sign, node->private_key, msg, msg_len, sig, pby, is_canonical); } else if (node->curve == &curve25519_info) { return 1; // signatures are not supported } else { hdnode_fill_public_key(node); if (node->curve == &ed25519_info) { ed25519_sign(msg, msg_len, node->private_key, node->public_key + 1, sig); } else if (node->curve == &ed25519_sha3_info) { ed25519_sign_sha3(msg, msg_len, node->private_key, node->public_key + 1, sig); #if USE_KECCAK } else if (node->curve == &ed25519_keccak_info) { ed25519_sign_keccak(msg, msg_len, node->private_key, node->public_key + 1, sig); #endif } return 0; } } int hdnode_sign_digest(HDNode *node, const uint8_t *digest, uint8_t *sig, uint8_t *pby, int (*is_canonical)(uint8_t by, uint8_t sig[64])) { if (node->curve->params) { return ecdsa_sign_digest(node->curve->params, node->private_key, digest, sig, pby, is_canonical); } else if (node->curve == &curve25519_info) { return 1; // signatures are not supported } else { return hdnode_sign(node, digest, 32, 0, sig, pby, is_canonical); } } int hdnode_get_shared_key(const HDNode *node, const uint8_t *peer_public_key, uint8_t *session_key, int *result_size) { // Use elliptic curve Diffie-Helman to compute shared session key if (node->curve->params) { if (ecdh_multiply(node->curve->params, node->private_key, peer_public_key, session_key) != 0) { return 1; } *result_size = 65; return 0; } else if (node->curve == &curve25519_info) { session_key[0] = 0x04; if (peer_public_key[0] != 0x40) { return 1; // Curve25519 public key should start with 0x40 byte. } curve25519_scalarmult(session_key + 1, node->private_key, peer_public_key + 1); *result_size = 33; return 0; } else { *result_size = 0; return 1; // ECDH is not supported } } static int hdnode_serialize(const HDNode *node, uint32_t fingerprint, uint32_t version, char use_public, char *str, int strsize) { uint8_t node_data[78]; write_be(node_data, version); node_data[4] = node->depth; write_be(node_data + 5, fingerprint); write_be(node_data + 9, node->child_num); memcpy(node_data + 13, node->chain_code, 32); if (use_public) { memcpy(node_data + 45, node->public_key, 33); } else { node_data[45] = 0; memcpy(node_data + 46, node->private_key, 32); } int ret = base58_encode_check(node_data, sizeof(node_data), node->curve->hasher_base58, str, strsize); memzero(node_data, sizeof(node_data)); return ret; } int hdnode_serialize_public(const HDNode *node, uint32_t fingerprint, uint32_t version, char *str, int strsize) { return hdnode_serialize(node, fingerprint, version, 1, str, strsize); } int hdnode_serialize_private(const HDNode *node, uint32_t fingerprint, uint32_t version, char *str, int strsize) { return hdnode_serialize(node, fingerprint, version, 0, str, strsize); } // check for validity of curve point in case of public data not performed int hdnode_deserialize(const char *str, uint32_t version_public, uint32_t version_private, const char *curve, HDNode *node, uint32_t *fingerprint) { uint8_t node_data[78]; memzero(node, sizeof(HDNode)); node->curve = get_curve_by_name(curve); if (base58_decode_check(str, node->curve->hasher_base58, node_data, sizeof(node_data)) != sizeof(node_data)) { return -1; } uint32_t version = read_be(node_data); if (version == version_public) { memzero(node->private_key, sizeof(node->private_key)); memcpy(node->public_key, node_data + 45, 33); } else if (version == version_private) { // private node if (node_data[45]) { // invalid data return -2; } memcpy(node->private_key, node_data + 46, 32); memzero(node->public_key, sizeof(node->public_key)); } else { return -3; // invalid version } node->depth = node_data[4]; if (fingerprint) { *fingerprint = read_be(node_data + 5); } node->child_num = read_be(node_data + 9); memcpy(node->chain_code, node_data + 13, 32); return 0; } const curve_info *get_curve_by_name(const char *curve_name) { if (curve_name == 0) { return 0; } if (strcmp(curve_name, SECP256K1_NAME) == 0) { return &secp256k1_info; } if (strcmp(curve_name, SECP256K1_DECRED_NAME) == 0) { return &secp256k1_decred_info; } if (strcmp(curve_name, SECP256K1_GROESTL_NAME) == 0) { return &secp256k1_groestl_info; } if (strcmp(curve_name, SECP256K1_SMART_NAME) == 0) { return &secp256k1_smart_info; } if (strcmp(curve_name, NIST256P1_NAME) == 0) { return &nist256p1_info; } if (strcmp(curve_name, ED25519_NAME) == 0) { return &ed25519_info; } if (strcmp(curve_name, ED25519_CARDANO_NAME) == 0) { return &ed25519_cardano_info; } if (strcmp(curve_name, ED25519_SHA3_NAME) == 0) { return &ed25519_sha3_info; } #if USE_KECCAK if (strcmp(curve_name, ED25519_KECCAK_NAME) == 0) { return &ed25519_keccak_info; } #endif if (strcmp(curve_name, CURVE25519_NAME) == 0) { return &curve25519_info; } return 0; }