/** * Copyright (c) 2020-2022 Christian Reitter * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include // includes for potential target functions // based on test_check.c #include "address.h" #include "aes/aes.h" #include "base32.h" #include "base58.h" #include "bignum.h" #include "bip32.h" #include "bip39.h" #include "blake256.h" #include "blake2b.h" #include "blake2s.h" #include "chacha_drbg.h" #include "curves.h" #include "ecdsa.h" #include "ed25519-donna/ed25519-donna.h" #include "ed25519-donna/ed25519-keccak.h" #include "ed25519-donna/ed25519.h" #include "hasher.h" #include "hmac_drbg.h" #include "memzero.h" #include "monero/monero.h" #include "nem.h" #include "nist256p1.h" #include "pbkdf2.h" #include "rand.h" #include "rc4.h" #include "rfc6979.h" #include "script.h" #include "secp256k1.h" #include "sha2.h" #include "sha3.h" #include "shamir.h" #include "slip39.h" #include "slip39_wordlist.h" #include "zkp_bip340.h" #include "zkp_context.h" #include "zkp_ecdsa.h" /* fuzzer input data handling */ const uint8_t *fuzzer_ptr; size_t fuzzer_length; const uint8_t *fuzzer_input(size_t len) { if (fuzzer_length < len) { fuzzer_length = 0; return NULL; } const uint8_t *result = fuzzer_ptr; fuzzer_length -= len; fuzzer_ptr += len; return result; } /* fuzzer state handling */ void fuzzer_reset_state(void) { // reset the PRNGs to make individual fuzzer runs deterministic srand(0); random_reseed(0); // clear internal caches // note: this is not strictly required for all fuzzer targets #if USE_BIP32_CACHE bip32_cache_clear(); #endif #if USE_BIP39_CACHE bip39_cache_clear(); #endif } void crash(void) { // intentionally exit the program, which is picked up as a crash by the fuzzer // framework exit(1); } /* individual fuzzer harness functions */ int fuzz_bn_format(void) { bignum256 target_bignum; // we need some amount of data, bail if the input is too short if (fuzzer_length < sizeof(target_bignum)) { return 0; } #define FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE 512 char buf[FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE] = {0}; int ret; // mutate the struct contents memcpy(&target_bignum, fuzzer_ptr, sizeof(target_bignum)); fuzzer_input(sizeof(target_bignum)); uint8_t prefixlen = 0; if (fuzzer_length < 1) { return 0; } memcpy(&prefixlen, fuzzer_input(1), 1); char prefix[prefixlen]; memset(&prefix, 0, prefixlen); if (prefixlen > 0 && prefixlen <= 128 && prefixlen <= fuzzer_length) { memcpy(&prefix, fuzzer_input(prefixlen), prefixlen); // force null termination prefix[prefixlen - 1] = 0; } else { return 0; } // TODO idea: : allow prefix == NULL uint8_t suffixlen = 0; if (fuzzer_length < 1) { return 0; } memcpy(&suffixlen, fuzzer_input(1), 1); char suffix[suffixlen]; memset(&suffix, 0, suffixlen); if (suffixlen > 0 && suffixlen <= 128 && suffixlen <= fuzzer_length) { memcpy(&suffix, fuzzer_input(suffixlen), suffixlen); // force null termination suffix[suffixlen - 1] = 0; } else { return 0; } // TODO idea: allow suffix == NULL uint32_t decimals = 0; int32_t exponent = 0; bool trailing = false; if (fuzzer_length >= 9) { memcpy(&decimals, fuzzer_input(4), 4); memcpy(&exponent, fuzzer_input(4), 4); trailing = (fuzzer_input(1)[0] & 1); } else { return 0; } ret = bn_format(&target_bignum, prefix, suffix, decimals, exponent, trailing, buf, FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE); // basic sanity checks for r if (ret > FUZZ_BN_FORMAT_OUTPUT_BUFFER_SIZE) { crash(); } return 0; } // arbitrarily chosen maximum size #define BASE32_DECODE_MAX_INPUT_LEN 512 int fuzz_base32_decode(void) { if (fuzzer_length < 2 || fuzzer_length > BASE32_DECODE_MAX_INPUT_LEN) { return 0; } char in_buffer[BASE32_DECODE_MAX_INPUT_LEN] = {0}; uint8_t out_buffer[BASE32_DECODE_MAX_INPUT_LEN] = {0}; size_t outlen = sizeof(out_buffer); // mutate in_buffer size_t raw_inlen = fuzzer_length; memcpy(&in_buffer, fuzzer_ptr, raw_inlen); fuzzer_input(raw_inlen); // null-terminate input buffer to prevent issues with strlen() in_buffer[BASE32_DECODE_MAX_INPUT_LEN - 1] = 0; size_t inlen = strlen(in_buffer); base32_decode(in_buffer, inlen, out_buffer, outlen, BASE32_ALPHABET_RFC4648); return 0; } // arbitrarily chosen maximum size #define BASE32_ENCODE_MAX_INPUT_LEN 512 int fuzz_base32_encode(void) { if (fuzzer_length > BASE32_ENCODE_MAX_INPUT_LEN) { return 0; } uint8_t in_buffer[BASE32_ENCODE_MAX_INPUT_LEN] = {0}; char out_buffer[BASE32_ENCODE_MAX_INPUT_LEN] = {0}; size_t outlen = sizeof(out_buffer); // mutate in_buffer size_t raw_inlen = fuzzer_length; memcpy(&in_buffer, fuzzer_ptr, raw_inlen); fuzzer_input(raw_inlen); base32_encode(in_buffer, raw_inlen, out_buffer, outlen, BASE32_ALPHABET_RFC4648); return 0; } // internal limit is 128, try some extra bytes #define BASE58_ENCODE_MAX_INPUT_LEN 140 int fuzz_base58_encode_check(void) { if (fuzzer_length > BASE58_ENCODE_MAX_INPUT_LEN) { return 0; } uint8_t in_buffer[BASE58_ENCODE_MAX_INPUT_LEN] = {0}; char out_buffer[BASE58_ENCODE_MAX_INPUT_LEN] = {0}; size_t outlen = sizeof(out_buffer); // mutate in_buffer size_t raw_inlen = fuzzer_length; memcpy(&in_buffer, fuzzer_ptr, raw_inlen); fuzzer_input(raw_inlen); // run multiple hasher variants for the same input base58_encode_check(in_buffer, raw_inlen, HASHER_SHA2D, out_buffer, outlen); base58_encode_check(in_buffer, raw_inlen, HASHER_BLAKED, out_buffer, outlen); base58_encode_check(in_buffer, raw_inlen, HASHER_GROESTLD_TRUNC, out_buffer, outlen); base58_encode_check(in_buffer, raw_inlen, HASHER_SHA3K, out_buffer, outlen); return 0; } // internal limit is 128, try some extra bytes #define BASE58_DECODE_MAX_INPUT_LEN 140 int fuzz_base58_decode_check(void) { if (fuzzer_length > BASE58_DECODE_MAX_INPUT_LEN) { return 0; } // with null terminator uint8_t in_buffer[BASE58_DECODE_MAX_INPUT_LEN + 1] = {0}; uint8_t out_buffer[BASE58_DECODE_MAX_INPUT_LEN] = {0}; // mutate in_buffer size_t raw_inlen = fuzzer_length; memcpy(&in_buffer, fuzzer_ptr, raw_inlen); fuzzer_input(raw_inlen); // run multiple hasher variants for the same input base58_decode_check((const char *)in_buffer, HASHER_SHA2D, out_buffer, MAX_ADDR_RAW_SIZE); base58_decode_check((const char *)in_buffer, HASHER_BLAKED, out_buffer, MAX_ADDR_RAW_SIZE); base58_decode_check((const char *)in_buffer, HASHER_GROESTLD_TRUNC, out_buffer, MAX_ADDR_RAW_SIZE); base58_decode_check((const char *)in_buffer, HASHER_SHA3K, out_buffer, MAX_ADDR_RAW_SIZE); return 0; } // arbitrarily chosen maximum size #define XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN 512 int fuzz_xmr_base58_addr_decode_check(void) { if (fuzzer_length > XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN) { return 0; } char in_buffer[XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN] = {0}; char out_buffer[XMR_BASE58_ADDR_DECODE_MAX_INPUT_LEN] = {0}; size_t outlen = sizeof(out_buffer); uint64_t tag = 0; size_t raw_inlen = fuzzer_length; // mutate in_buffer memcpy(&in_buffer, fuzzer_input(raw_inlen), raw_inlen); xmr_base58_addr_decode_check(in_buffer, raw_inlen, &tag, out_buffer, outlen); return 0; } // arbitrarily chosen maximum size #define XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN 512 int fuzz_xmr_base58_addr_encode_check(void) { uint64_t tag_in; size_t tag_size = sizeof(tag_in); if (fuzzer_length < tag_size || fuzzer_length > XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN) { return 0; } uint8_t in_buffer[XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN] = {0}; char out_buffer[XMR_BASE58_ADDR_ENCODE_MAX_INPUT_LEN] = {0}; size_t outlen = sizeof(out_buffer); // mutate tag_in memcpy(&tag_in, fuzzer_ptr, tag_size); fuzzer_input(tag_size); // mutate in_buffer memcpy(&in_buffer, fuzzer_ptr, fuzzer_length); size_t raw_inlen = fuzzer_length; fuzzer_input(raw_inlen); xmr_base58_addr_encode_check(tag_in, in_buffer, raw_inlen, out_buffer, outlen); return 0; } // arbitrarily chosen maximum size #define XMR_SERIALIZE_VARINT_MAX_INPUT_LEN 128 int fuzz_xmr_serialize_varint(void) { uint64_t varint_in; size_t varint_in_size = sizeof(varint_in); if (fuzzer_length < varint_in_size || fuzzer_length > XMR_SERIALIZE_VARINT_MAX_INPUT_LEN) { return 0; } uint8_t in_buffer[XMR_SERIALIZE_VARINT_MAX_INPUT_LEN] = {0}; uint8_t out_buffer[XMR_SERIALIZE_VARINT_MAX_INPUT_LEN] = {0}; size_t outlen = sizeof(out_buffer); uint64_t varint_out = 0; // mutate varint_in memcpy(&varint_in, fuzzer_ptr, varint_in_size); fuzzer_input(varint_in_size); // mutate in_buffer memcpy(&in_buffer, fuzzer_ptr, fuzzer_length); size_t raw_inlen = fuzzer_length; fuzzer_input(raw_inlen); // call the actual xmr functions xmr_size_varint(varint_in); xmr_write_varint(out_buffer, outlen, varint_in); xmr_read_varint(in_buffer, raw_inlen, &varint_out); return 0; } // arbitrarily chosen maximum size #define NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN 128 int fuzz_nem_validate_address(void) { if (fuzzer_length < (1 + 1) || fuzzer_length > NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN) { return 0; } char in_buffer[NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN] = {0}; uint8_t network = *fuzzer_ptr; fuzzer_input(1); // mutate the buffer with the remaining fuzzer input data memcpy(&in_buffer, fuzzer_ptr, fuzzer_length); size_t raw_inlen = fuzzer_length; fuzzer_input(raw_inlen); // TODO potential bug: is it clearly specified that the address has to be null // terminated? in_buffer[NEM_VALIDATE_ADDRESS_MAX_INPUT_LEN - 1] = 0; nem_validate_address(in_buffer, network); return 0; } int fuzz_nem_get_address(void) { unsigned char ed25519_public_key_fuzz[32] = {0}; uint8_t version = 0; if (fuzzer_length != (sizeof(ed25519_public_key_fuzz) + sizeof(version))) { return 0; } char address[NEM_ADDRESS_SIZE + 1] = {0}; memcpy(ed25519_public_key_fuzz, fuzzer_input(32), 32); memcpy(&version, fuzzer_input(1), 1); nem_get_address(ed25519_public_key_fuzz, version, address); #if defined(__has_feature) #if __has_feature(memory_sanitizer) // TODO idea: check `address` for memory info leakage #endif #endif return 0; } int fuzz_xmr_get_subaddress_secret_key(void) { bignum256modm m = {0}; uint32_t major = 0; uint32_t minor = 0; if (fuzzer_length != (sizeof(bignum256modm) + 2 * sizeof(uint32_t))) { return 0; } bignum256modm output = {0}; memcpy(m, fuzzer_input(sizeof(bignum256modm)), sizeof(bignum256modm)); memcpy(&major, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t)); memcpy(&minor, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t)); xmr_get_subaddress_secret_key(output, major, minor, m); return 0; } int fuzz_xmr_derive_private_key(void) { bignum256modm base = {0}; ge25519 deriv = {0}; uint32_t idx = 0; if (fuzzer_length != (sizeof(bignum256modm) + sizeof(ge25519) + sizeof(uint32_t))) { return 0; } memcpy(base, fuzzer_input(sizeof(bignum256modm)), sizeof(bignum256modm)); memcpy(&deriv, fuzzer_input(sizeof(ge25519)), sizeof(ge25519)); memcpy(&idx, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t)); bignum256modm output = {0}; xmr_derive_private_key(output, &deriv, idx, base); return 0; } int fuzz_xmr_derive_public_key(void) { ge25519 base = {0}; ge25519 deriv = {0}; uint32_t idx = 0; if (fuzzer_length != (2 * sizeof(ge25519) + sizeof(uint32_t))) { return 0; } memcpy(&base, fuzzer_input(sizeof(ge25519)), sizeof(ge25519)); memcpy(&deriv, fuzzer_input(sizeof(ge25519)), sizeof(ge25519)); memcpy(&idx, fuzzer_input(sizeof(uint32_t)), sizeof(uint32_t)); ge25519 output = {0}; xmr_derive_public_key(&output, &deriv, idx, &base); return 0; } #define SHAMIR_MAX_SHARE_COUNT 16 #define SHAMIR_MAX_DATA_LEN (SHAMIR_MAX_SHARE_COUNT * SHAMIR_MAX_LEN) int fuzz_shamir_interpolate(void) { if (fuzzer_length != (2 * sizeof(uint8_t) + SHAMIR_MAX_SHARE_COUNT + SHAMIR_MAX_DATA_LEN + sizeof(size_t))) { return 0; } uint8_t result[SHAMIR_MAX_LEN] = {0}; uint8_t result_index = 0; uint8_t share_indices[SHAMIR_MAX_SHARE_COUNT] = {0}; uint8_t share_values_content[SHAMIR_MAX_SHARE_COUNT][SHAMIR_MAX_LEN] = {0}; const uint8_t *share_values[SHAMIR_MAX_SHARE_COUNT] = {0}; uint8_t share_count = 0; size_t len = 0; for (size_t i = 0; i < SHAMIR_MAX_SHARE_COUNT; i++) { share_values[i] = share_values_content[i]; } memcpy(&result_index, fuzzer_input(sizeof(uint8_t)), sizeof(uint8_t)); memcpy(&share_indices, fuzzer_input(SHAMIR_MAX_SHARE_COUNT), SHAMIR_MAX_SHARE_COUNT); memcpy(&share_values_content, fuzzer_input(SHAMIR_MAX_DATA_LEN), SHAMIR_MAX_DATA_LEN); memcpy(&share_count, fuzzer_input(sizeof(uint8_t)), sizeof(uint8_t)); // note: this is platform specific via byte length of size_t memcpy(&len, fuzzer_input(sizeof(size_t)), sizeof(size_t)); // mirror a check that the real code does if (share_count < 1 || share_count > SHAMIR_MAX_SHARE_COUNT) { return 0; } // (len > SHAMIR_MAX_LEN) is handled in the target function shamir_interpolate(result, result_index, share_indices, share_values, share_count, len); return 0; } int fuzz_ecdsa_sign_digest_functions(void) { // bug result reference: https://github.com/trezor/trezor-firmware/pull/1697 uint8_t curve_decider = 0; uint8_t priv_key[32] = {0}; uint8_t digest[32] = {0}; uint8_t sig1[64] = {0}; uint8_t sig2[64] = {0}; uint8_t pby1, pby2 = 0; if (fuzzer_length < 1 + sizeof(priv_key) + sizeof(digest)) { return 0; } const ecdsa_curve *curve; memcpy(&curve_decider, fuzzer_input(1), 1); memcpy(&priv_key, fuzzer_input(sizeof(priv_key)), sizeof(priv_key)); memcpy(&digest, fuzzer_input(sizeof(digest)), sizeof(digest)); // pick one of the standard curves if ((curve_decider & 0x1) == 1) { curve = &secp256k1; } else { curve = &nist256p1; } int res = 0; // TODO idea: optionally set a function for is_canonical() callback int res1 = ecdsa_sign_digest(curve, priv_key, digest, sig1, &pby1, NULL); // the zkp function variant is only defined for a specific curve if (curve == &secp256k1) { int res2 = zkp_ecdsa_sign_digest(curve, priv_key, digest, sig2, &pby2, NULL); if ((res1 == 0 && res2 != 0) || (res1 != 0 && res2 == 0)) { // one variant succeeded where the other did not crash(); } if (res1 == 0 && res2 == 0) { if ((pby1 != pby2) || memcmp(&sig1, &sig2, sizeof(sig1)) != 0) { // result values are different crash(); } } } // successful signing if (res1 == 0) { uint8_t pub_key[33] = {0}; res = ecdsa_get_public_key33(curve, priv_key, pub_key); if (res != 0) { // pubkey derivation did not succeed crash(); } res = ecdsa_verify_digest(curve, pub_key, sig1, digest); if (res != 0) { // verification did not succeed crash(); } } return 0; } int fuzz_ecdsa_verify_digest_functions(void) { uint8_t curve_decider = 0; uint8_t hash[32] = {0}; uint8_t sig[64] = {0}; uint8_t pub_key[65] = {0}; if (fuzzer_length < 1 + sizeof(hash) + sizeof(sig) + sizeof(pub_key)) { return 0; } memcpy(&curve_decider, fuzzer_input(1), 1); memcpy(&hash, fuzzer_input(sizeof(hash)), sizeof(hash)); memcpy(&sig, fuzzer_input(sizeof(sig)), sizeof(sig)); memcpy(&pub_key, fuzzer_input(sizeof(pub_key)), sizeof(pub_key)); const ecdsa_curve *curve; // pick one of the standard curves if ((curve_decider & 0x1) == 1) { curve = &secp256k1; } else { curve = &nist256p1; } int res1 = ecdsa_verify_digest(curve, (const uint8_t *)&pub_key, (const uint8_t *)&sig, (const uint8_t *)&hash); if (res1 == 0) { // See if the fuzzer ever manages to get find a correct verification // intentionally trigger a crash to make this case observable // TODO this is not an actual problem, remove in the future crash(); } // the zkp_ecdsa* function only accepts the secp256k1 curve if (curve == &secp256k1) { int res2 = zkp_ecdsa_verify_digest(curve, (const uint8_t *)&pub_key, (const uint8_t *)&sig, (const uint8_t *)&hash); // the error code behavior is different between both functions, compare only // verification state if ((res1 == 0 && res2 != 0) || (res1 != 0 && res2 == 0)) { // results differ, this is a problem crash(); } } return 0; } int fuzz_word_index(void) { #define MAX_WORD_LENGTH 12 if (fuzzer_length < MAX_WORD_LENGTH) { return 0; } char word[MAX_WORD_LENGTH + 1] = {0}; memcpy(&word, fuzzer_ptr, MAX_WORD_LENGTH); size_t word_length = strlen(word); uint16_t index = 0; word_index(&index, (const char *)&word, word_length); return 0; } int fuzz_slip39_word_completion_mask(void) { if (fuzzer_length != 2) { return 0; } uint16_t sequence = (fuzzer_ptr[0] << 8) + fuzzer_ptr[1]; fuzzer_input(2); slip39_word_completion_mask(sequence); return 0; } // regular MAX_MNEMONIC_LEN is 240, try some extra bytes #define MAX_MNEMONIC_FUZZ_LENGTH 256 int fuzz_mnemonic_check(void) { if (fuzzer_length < MAX_MNEMONIC_FUZZ_LENGTH) { return 0; } char mnemonic[MAX_MNEMONIC_FUZZ_LENGTH + 1] = {0}; memcpy(&mnemonic, fuzzer_ptr, MAX_MNEMONIC_FUZZ_LENGTH); // as of 11/2021, mnemonic_check() internally calls mnemonic_to_bits() and // checks the result int ret = mnemonic_check(mnemonic); (void)ret; /* if(ret == 1) { // correct result } */ return 0; } int fuzz_mnemonic_from_data(void) { if (fuzzer_length < 16 || fuzzer_length > 32) { return 0; } const char *mnemo_result = mnemonic_from_data(fuzzer_ptr, fuzzer_length); if (mnemo_result != NULL) { int res = mnemonic_check(mnemo_result); if (res == 0) { // TODO the mnemonic_check() function is currently incorrectly rejecting // valid 15 and 21 word seeds // remove this workaround limitation later if (fuzzer_length != 20 && fuzzer_length != 28) { // the generated mnemonic has an invalid format crash(); } } } // scrub the internal buffer to rule out persistent side effects mnemonic_clear(); return 0; } // passphrase normally has a 64 or 256 byte length maximum #define MAX_PASSPHRASE_FUZZ_LENGTH 257 int fuzz_mnemonic_to_seed(void) { if (fuzzer_length < MAX_MNEMONIC_FUZZ_LENGTH + MAX_PASSPHRASE_FUZZ_LENGTH) { return 0; } char mnemonic[MAX_PASSPHRASE_FUZZ_LENGTH + 1] = {0}; char passphrase[MAX_MNEMONIC_FUZZ_LENGTH + 1] = {0}; uint8_t seed[512 / 8] = {0}; memcpy(&mnemonic, fuzzer_input(MAX_MNEMONIC_FUZZ_LENGTH), MAX_MNEMONIC_FUZZ_LENGTH); memcpy(&passphrase, fuzzer_input(MAX_PASSPHRASE_FUZZ_LENGTH), MAX_PASSPHRASE_FUZZ_LENGTH); mnemonic_to_seed(mnemonic, passphrase, seed, NULL); return 0; } int fuzz_ethereum_address_checksum(void) { uint8_t addr[20] = {0}; char address[43] = {0}; uint64_t chain_id = 0; bool rskip60 = false; if (fuzzer_length < sizeof(addr) + sizeof(address) + sizeof(chain_id) + 1) { return 0; } memcpy(addr, fuzzer_input(sizeof(addr)), sizeof(addr)); memcpy(address, fuzzer_input(sizeof(address)), sizeof(address)); memcpy(&chain_id, fuzzer_input(sizeof(chain_id)), sizeof(chain_id)); // usually dependent on chain_id, but determined separately here rskip60 = (*fuzzer_input(1)) & 0x1; ethereum_address_checksum(addr, address, rskip60, chain_id); return 0; } int fuzz_aes(void) { if (fuzzer_length < 1 + 16 + 16 + 32) { return 0; } aes_encrypt_ctx ctxe; aes_decrypt_ctx ctxd; uint8_t ibuf[16] = {0}; uint8_t obuf[16] = {0}; uint8_t iv[16] = {0}; uint8_t cbuf[16] = {0}; const uint8_t *keylength_decider = fuzzer_input(1); // note: the unit test uses the fixed 32 byte key // 603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4 uint8_t keybuf[32] = {0}; memcpy(&keybuf, fuzzer_input(32), 32); #ifdef AES_VAR // try 128, 192, 256 bit key lengths size_t keylength = 32; switch (keylength_decider[0] & 0x3) { case 0: // invalid length keylength = 1; break; case 1: keylength = 16; break; case 2: keylength = 24; break; case 3: keylength = 32; break; } if (aes_encrypt_key((const unsigned char *)&keybuf, keylength, &ctxe) || aes_decrypt_key((const unsigned char *)&keybuf, keylength, &ctxd)) { // initialization problems, stop processing // we expect this to happen with the invalid key length return 0; } #else // use a 256 bit key length (void)keylength_decider; aes_encrypt_key256((const unsigned char *)&keybuf, &ctxe); aes_decrypt_key256((const unsigned char *)&keybuf, &ctxd); #endif memcpy(ibuf, fuzzer_input(16), 16); memcpy(iv, fuzzer_input(16), 16); aes_ecb_encrypt(ibuf, obuf, 16, &ctxe); aes_ecb_decrypt(ibuf, obuf, 16, &ctxd); aes_cbc_encrypt(ibuf, obuf, 16, iv, &ctxe); aes_cbc_decrypt(ibuf, obuf, 16, iv, &ctxd); aes_cfb_encrypt(ibuf, obuf, 16, iv, &ctxe); aes_cfb_decrypt(ibuf, obuf, 16, iv, &ctxe); aes_ofb_encrypt(ibuf, obuf, 16, iv, &ctxe); aes_ofb_decrypt(ibuf, obuf, 16, iv, &ctxe); aes_ctr_encrypt(ibuf, obuf, 16, cbuf, aes_ctr_cbuf_inc, &ctxe); aes_ctr_decrypt(ibuf, obuf, 16, cbuf, aes_ctr_cbuf_inc, &ctxe); return 0; } int fuzz_b58gph_encode_decode(void) { // note: encode and decode functions have an internal limit of 128 #define BASE58_GPH_MAX_INPUT_LEN 130 if (fuzzer_length < 1 + 1 + BASE58_GPH_MAX_INPUT_LEN) { return 0; } // use a flexible output buffer target size uint8_t chosen_outlen = 0; memcpy(&chosen_outlen, fuzzer_input(1), 1); if (chosen_outlen > BASE58_GPH_MAX_INPUT_LEN) { return 0; } // use a flexible input buffer target size uint8_t chosen_inlen = 0; memcpy(&chosen_inlen, fuzzer_input(1), 1); if (chosen_inlen > BASE58_GPH_MAX_INPUT_LEN) { return 0; } // TODO idea: switch to malloc()'ed buffers for better out of bounds access // detection? uint8_t encode_in_buffer[BASE58_GPH_MAX_INPUT_LEN] = {0}; // with null termination char decode_in_buffer[BASE58_GPH_MAX_INPUT_LEN + 1] = {0}; char out_buffer[BASE58_GPH_MAX_INPUT_LEN] = {0}; memcpy(&encode_in_buffer, fuzzer_input(chosen_inlen), chosen_inlen); memcpy(&decode_in_buffer, &encode_in_buffer, chosen_inlen); int ret = 0; ret = base58gph_encode_check(encode_in_buffer, chosen_inlen, out_buffer, chosen_outlen); if (ret != 0) { // successful encode, try decode uint8_t dummy_buffer[BASE58_GPH_MAX_INPUT_LEN] = {0}; ret = base58gph_decode_check(out_buffer, (uint8_t *)&dummy_buffer, chosen_outlen); if (ret == 0) { // mark as exception // TODO POTENTIAL BUG - followup // crash(); } } // do a second operation with the same input, without relationship to the // previously computed output base58gph_decode_check(decode_in_buffer, (uint8_t *)&out_buffer, chosen_outlen); return 0; } int fuzz_chacha_drbg(void) { #define CHACHA_DRBG_ENTROPY_LENGTH 32 #define CHACHA_DRBG_RESEED_LENGTH 32 #define CHACHA_DRBG_NONCE_LENGTH 16 #define CHACHA_DRBG_RESULT_LENGTH 16 if (fuzzer_length < CHACHA_DRBG_ENTROPY_LENGTH + CHACHA_DRBG_RESEED_LENGTH + CHACHA_DRBG_NONCE_LENGTH) { return 0; } uint8_t entropy[CHACHA_DRBG_ENTROPY_LENGTH] = {0}; uint8_t reseed[CHACHA_DRBG_RESEED_LENGTH] = {0}; uint8_t nonce_bytes[CHACHA_DRBG_NONCE_LENGTH] = {0}; uint8_t result[CHACHA_DRBG_RESULT_LENGTH] = {0}; CHACHA_DRBG_CTX ctx; // TODO idea: switch to variable input sizes memcpy(&entropy, fuzzer_input(CHACHA_DRBG_ENTROPY_LENGTH), CHACHA_DRBG_ENTROPY_LENGTH); memcpy(&reseed, fuzzer_input(CHACHA_DRBG_RESEED_LENGTH), CHACHA_DRBG_RESEED_LENGTH); memcpy(&nonce_bytes, fuzzer_input(CHACHA_DRBG_NONCE_LENGTH), CHACHA_DRBG_NONCE_LENGTH); chacha_drbg_init(&ctx, entropy, sizeof(entropy), nonce_bytes, sizeof(nonce_bytes)); chacha_drbg_reseed(&ctx, reseed, sizeof(reseed), NULL, 0); chacha_drbg_generate(&ctx, result, sizeof(result)); return 0; } int fuzz_ed25519_sign_verify(void) { ed25519_secret_key secret_key; ed25519_signature signature; ed25519_public_key public_key; // length chosen arbitrarily uint8_t message[32] = {0}; int ret = 0; if (fuzzer_length < sizeof(secret_key) + sizeof(signature) + sizeof(message)) { return 0; } memcpy(&secret_key, fuzzer_input(sizeof(secret_key)), sizeof(secret_key)); memcpy(&signature, fuzzer_input(sizeof(signature)), sizeof(signature)); memcpy(&message, fuzzer_input(sizeof(message)), sizeof(message)); ed25519_publickey(secret_key, public_key); // sign message, this should always succeed ed25519_sign(message, sizeof(message), secret_key, signature); // verify message, we expect this to work ret = ed25519_sign_open(message, sizeof(message), public_key, signature); if (ret != 0) { // verification did not succeed crash(); } return 0; } int fuzz_zkp_bip340_sign_digest(void) { // int res = 0; uint8_t priv_key[32] = {0}; uint8_t aux_input[32] = {0}; uint8_t digest[32] = {0}; uint8_t pub_key[32] = {0}; uint8_t sig[64] = {0}; if (fuzzer_length < sizeof(priv_key) + sizeof(aux_input) + sizeof(digest) + sizeof(sig)) { return 0; } memcpy(priv_key, fuzzer_input(sizeof(priv_key)), sizeof(priv_key)); memcpy(aux_input, fuzzer_input(sizeof(aux_input)), sizeof(aux_input)); memcpy(digest, fuzzer_input(sizeof(digest)), sizeof(digest)); memcpy(sig, fuzzer_input(sizeof(sig)), sizeof(sig)); zkp_bip340_get_public_key(priv_key, pub_key); zkp_bip340_sign_digest(priv_key, digest, sig, aux_input); // TODO idea: test sign result? return 0; } int fuzz_zkp_bip340_verify_digest(void) { int res = 0; uint8_t pub_key[32] = {0}; uint8_t digest[32] = {0}; uint8_t sig[64] = {0}; if (fuzzer_length < sizeof(digest) + sizeof(pub_key) + sizeof(sig)) { return 0; } memcpy(pub_key, fuzzer_input(sizeof(pub_key)), sizeof(pub_key)); memcpy(digest, fuzzer_input(sizeof(digest)), sizeof(digest)); memcpy(sig, fuzzer_input(sizeof(sig)), sizeof(sig)); res = zkp_bip340_verify_digest(pub_key, sig, digest); // res == 0 is valid, but crash to make successful passes visible if (res == 0) { crash(); } return 0; } int fuzz_zkp_bip340_tweak_keys(void) { int res = 0; uint8_t internal_priv[32] = {0}; uint8_t root_hash[32] = {0}; uint8_t internal_pub[32] = {0}; uint8_t result[32] = {0}; if (fuzzer_length < sizeof(internal_priv) + sizeof(root_hash) + sizeof(internal_pub)) { return 0; } memcpy(internal_priv, fuzzer_input(sizeof(internal_priv)), sizeof(internal_priv)); memcpy(root_hash, fuzzer_input(sizeof(root_hash)), sizeof(root_hash)); memcpy(internal_pub, fuzzer_input(sizeof(internal_pub)), sizeof(internal_pub)); res = zkp_bip340_tweak_private_key(internal_priv, root_hash, result); res = zkp_bip340_tweak_public_key(internal_pub, root_hash, result); (void)res; return 0; } int fuzz_ecdsa_get_public_key_functions(void) { uint8_t privkey[32] = {0}; uint8_t pubkey33_1[33] = {0}; uint8_t pubkey33_2[33] = {0}; uint8_t pubkey65_1[65] = {0}; uint8_t pubkey65_2[65] = {0}; // note: the zkp_ecdsa_* variants require this specific curve const ecdsa_curve *curve = &secp256k1; if (fuzzer_length < sizeof(privkey)) { return 0; } memcpy(privkey, fuzzer_input(sizeof(privkey)), sizeof(privkey)); int res_33_1 = ecdsa_get_public_key33(curve, privkey, pubkey33_1); int res_33_2 = zkp_ecdsa_get_public_key33(curve, privkey, pubkey33_2); int res_65_1 = ecdsa_get_public_key65(curve, privkey, pubkey65_1); int res_65_2 = zkp_ecdsa_get_public_key65(curve, privkey, pubkey65_2); // the function pairs have different return error codes for the same input // so only fail if the one succeeds where the other does not if ((res_33_1 == 0 && res_33_2 != 0) || (res_33_1 != 0 && res_33_2 == 0)) { // function result mismatch crash(); } if ((res_65_1 == 0 && res_65_2 != 0) || (res_65_1 != 0 && res_65_2 == 0)) { // function result mismatch crash(); } if (res_33_1 == 0 && res_33_2 == 0 && memcmp(&pubkey33_1, &pubkey33_2, sizeof(pubkey33_1)) != 0) { // function result data mismatch crash(); } if (res_65_1 == 0 && res_65_2 == 0 && memcmp(&pubkey65_1, &pubkey65_2, sizeof(pubkey65_1)) != 0) { // function result data mismatch crash(); } return 0; } int fuzz_ecdsa_recover_pub_from_sig_functions(void) { uint8_t digest[32] = {0}; uint8_t sig[64] = {0}; const ecdsa_curve *curve = &secp256k1; uint8_t recid = 0; uint8_t pubkey1[65] = {0}; uint8_t pubkey2[65] = {0}; if (fuzzer_length < sizeof(digest) + sizeof(sig) + sizeof(recid)) { return 0; } memcpy(digest, fuzzer_input(sizeof(digest)), sizeof(digest)); memcpy(sig, fuzzer_input(sizeof(sig)), sizeof(sig)); memcpy(&recid, fuzzer_input(sizeof(recid)), sizeof(recid)); // conform to parameter requirements recid = recid & 0x03; int res1 = zkp_ecdsa_recover_pub_from_sig(curve, pubkey1, sig, digest, recid); int res2 = ecdsa_recover_pub_from_sig(curve, pubkey2, sig, digest, recid); uint8_t zero_pubkey[65] = {0}; zero_pubkey[0] = 0x04; if ((res1 == 0 && res2 != 0) || (res1 != 0 && res2 == 0)) { // result mismatch // bug result reference: https://github.com/trezor/trezor-firmware/pull/2050 crash(); } if (res1 == 0 && res2 == 0 && memcmp(&pubkey1, &pubkey2, sizeof(pubkey1)) != 0) { // pubkey result mismatch crash(); } return 0; } int fuzz_ecdsa_sig_from_der(void) { // bug result reference: https://github.com/trezor/trezor-firmware/pull/2058 uint8_t der[72] = {0}; uint8_t out[72] = {0}; if (fuzzer_length < sizeof(der)) { return 0; } memcpy(der, fuzzer_input(sizeof(der)), sizeof(der)); // null-terminate der[sizeof(der) - 1] = 0; size_t der_len = strlen((const char *)der); // TODO idea: use different fuzzer-controlled der_len such as 1 to 73 int ret = ecdsa_sig_from_der(der, der_len, out); (void)ret; // TODO idea: check if back conversion works return 0; } int fuzz_ecdsa_sig_to_der(void) { uint8_t sig[64] = {0}; uint8_t der[72] = {0}; if (fuzzer_length < sizeof(sig)) { return 0; } memcpy(sig, fuzzer_input(sizeof(sig)), sizeof(sig)); int ret = ecdsa_sig_to_der((const uint8_t *)&sig, der); (void)ret; // TODO idea: check if back conversion works return 0; } void zkp_initialize_context_or_crash(void) { // The current context usage has persistent side effects // TODO switch to frequent re-initialization where necessary if (!zkp_context_is_initialized()) { if (zkp_context_init() != 0) { crash(); } } } #define META_HEADER_SIZE 3 // main fuzzer entry int LLVMFuzzerTestOneInput(const uint8_t *data, size_t size) { // reject input that is too short if (size < META_HEADER_SIZE) { return 0; } fuzzer_reset_state(); // this controls up to 256 different test cases uint8_t target_decision = data[0]; // data[1] is reserved for explicit sub decisions // uint8_t target_sub_decision = data[1]; // data[2] is reserved for future use // assign the fuzzer payload data for the target functions fuzzer_ptr = data + META_HEADER_SIZE; fuzzer_length = size - META_HEADER_SIZE; // if active: reject all other inputs that are not the selected target // this is helpful for directing the fuzzing focus on a specific case #ifdef FUZZER_EXCLUSIVE_TARGET if (target_decision != FUZZER_EXCLUSIVE_TARGET) { return 0; } #endif // TODO reorder and regroup target functions switch (target_decision) { case 0: fuzz_bn_format(); break; case 1: fuzz_base32_decode(); break; case 2: fuzz_base32_encode(); break; case 3: fuzz_base58_encode_check(); break; case 4: fuzz_base58_decode_check(); break; case 5: fuzz_xmr_base58_addr_decode_check(); break; case 6: fuzz_xmr_base58_addr_encode_check(); break; case 7: fuzz_xmr_serialize_varint(); break; case 8: fuzz_nem_validate_address(); break; case 9: fuzz_nem_get_address(); break; case 10: fuzz_xmr_get_subaddress_secret_key(); break; case 11: fuzz_xmr_derive_private_key(); break; case 12: fuzz_xmr_derive_public_key(); break; case 13: fuzz_shamir_interpolate(); break; case 14: #ifdef FUZZ_ALLOW_SLOW zkp_initialize_context_or_crash(); // slow through expensive bignum operations fuzz_ecdsa_verify_digest_functions(); #endif break; case 15: fuzz_word_index(); break; case 16: fuzz_slip39_word_completion_mask(); break; case 17: fuzz_mnemonic_check(); break; case 18: #ifdef FUZZ_ALLOW_SLOW fuzz_aes(); #endif break; case 19: fuzz_b58gph_encode_decode(); break; case 22: fuzz_chacha_drbg(); break; case 23: #ifdef FUZZ_ALLOW_SLOW zkp_initialize_context_or_crash(); // slow through expensive bignum operations fuzz_ecdsa_sign_digest_functions(); #endif break; case 24: fuzz_ed25519_sign_verify(); break; case 25: fuzz_mnemonic_from_data(); break; case 26: fuzz_mnemonic_to_seed(); break; case 30: fuzz_ethereum_address_checksum(); break; case 41: zkp_initialize_context_or_crash(); fuzz_zkp_bip340_sign_digest(); break; case 42: zkp_initialize_context_or_crash(); fuzz_zkp_bip340_verify_digest(); break; case 43: zkp_initialize_context_or_crash(); fuzz_zkp_bip340_tweak_keys(); break; case 50: zkp_initialize_context_or_crash(); fuzz_ecdsa_get_public_key_functions(); break; case 51: zkp_initialize_context_or_crash(); fuzz_ecdsa_recover_pub_from_sig_functions(); break; case 52: fuzz_ecdsa_sig_from_der(); break; case 53: fuzz_ecdsa_sig_to_der(); break; default: // do nothing break; } return 0; }