/** * Copyright (c) 2013 Tomas Dzetkulic * Copyright (c) 2013 Pavol Rusnak * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include "bignum.h" #include "rand.h" #include "sha2.h" #include "ripemd160.h" #include "hmac.h" #include "ecdsa.h" // cp2 = cp1 + cp2 void point_add(const curve_point *cp1, curve_point *cp2) { int i; uint32_t temp; bignum256 lambda, inv, xr, yr; bn_substract(&(cp2->x), &(cp1->x), &inv); bn_inverse(&inv, &prime256k1); bn_substract(&(cp2->y), &(cp1->y), &lambda); bn_multiply(&inv, &lambda, &prime256k1); memcpy(&xr, &lambda, sizeof(bignum256)); bn_multiply(&xr, &xr, &prime256k1); temp = 0; for (i = 0; i < 9; i++) { temp += xr.val[i] + 3u * prime256k1.val[i] - cp1->x.val[i] - cp2->x.val[i]; xr.val[i] = temp & 0x3FFFFFFF; temp >>= 30; } bn_fast_mod(&xr, &prime256k1); bn_substract(&(cp1->x), &xr, &yr); // no need to fast_mod here // bn_fast_mod(&yr); bn_multiply(&lambda, &yr, &prime256k1); bn_substract(&yr, &(cp1->y), &yr); bn_fast_mod(&yr, &prime256k1); memcpy(&(cp2->x), &xr, sizeof(bignum256)); memcpy(&(cp2->y), &yr, sizeof(bignum256)); } // cp = cp + cp void point_double(curve_point *cp) { int i; uint32_t temp; bignum256 lambda, inverse_y, xr, yr; memcpy(&inverse_y, &(cp->y), sizeof(bignum256)); bn_inverse(&inverse_y, &prime256k1); memcpy(&lambda, &three_over_two256k1, sizeof(bignum256)); bn_multiply(&inverse_y, &lambda, &prime256k1); bn_multiply(&(cp->x), &lambda, &prime256k1); bn_multiply(&(cp->x), &lambda, &prime256k1); memcpy(&xr, &lambda, sizeof(bignum256)); bn_multiply(&xr, &xr, &prime256k1); temp = 0; for (i = 0; i < 9; i++) { temp += xr.val[i] + 3u * prime256k1.val[i] - 2u * cp->x.val[i]; xr.val[i] = temp & 0x3FFFFFFF; temp >>= 30; } bn_fast_mod(&xr, &prime256k1); bn_substract(&(cp->x), &xr, &yr); // no need to fast_mod here // bn_fast_mod(&yr); bn_multiply(&lambda, &yr, &prime256k1); bn_substract(&yr, &(cp->y), &yr); bn_fast_mod(&yr, &prime256k1); memcpy(&(cp->x), &xr, sizeof(bignum256)); memcpy(&(cp->y), &yr, sizeof(bignum256)); } // res = k * G void scalar_multiply(bignum256 *k, curve_point *res) { int i, j; // result is zero int is_zero = 1; #if USE_PRECOMPUTED_CP int exp = 0; #else curve_point curr; // initial res memcpy(&curr, &G256k1, sizeof(curve_point)); #endif for (i = 0; i < 9; i++) { for (j = 0; j < 30; j++) { if (i == 8 && (k->val[i] >> j) == 0) break; if (k->val[i] & (1u << j)) { if (is_zero) { #if USE_PRECOMPUTED_CP memcpy(res, secp256k1_cp + exp, sizeof(curve_point)); #else memcpy(res, &curr, sizeof(curve_point)); #endif is_zero = 0; } else { #if USE_PRECOMPUTED_CP point_add(secp256k1_cp + exp, res); #else point_add(&curr, res); #endif } } #if USE_PRECOMPUTED_CP exp++; #else point_double(&curr); #endif } } bn_mod(&(res->x), &prime256k1); bn_mod(&(res->y), &prime256k1); } // generate random K for signing int generate_k_random(bignum256 *k) { int i, j; for (j = 0; j < 10000; j++) { for (i = 0; i < 8; i++) { k->val[i] = random32() & 0x3FFFFFFF; } k->val[8] = random32() & 0xFFFF; // if k is too big or too small, we don't like it if ( !bn_is_zero(k) && bn_is_less(k, &order256k1) ) { return 0; // good number - no error } } // we generated 10000 numbers, none of them is good -> fail return 1; } // generate K in a deterministic way, according to RFC6979 // http://tools.ietf.org/html/rfc6979 int generate_k_rfc6979(bignum256 *secret, const uint8_t *priv_key, const uint8_t *hash) { int i; uint8_t v[32], k[32], bx[2*32], buf[32 + 1 + sizeof(bx)], t[32]; bignum256 z1; memcpy(bx, priv_key, 32); bn_read_be(hash, &z1); bn_mod(&z1, &order256k1); bn_write_be(&z1, bx + 32); memset(v, 1, sizeof(v)); memset(k, 0, sizeof(k)); memcpy(buf, v, sizeof(v)); buf[sizeof(v)] = 0x00; memcpy(buf + sizeof(v) + 1, bx, 64); hmac_sha256(k, sizeof(k), buf, sizeof(buf), k); hmac_sha256(k, sizeof(k), v, sizeof(v), v); memcpy(buf, v, sizeof(v)); buf[sizeof(v)] = 0x01; memcpy(buf + sizeof(v) + 1, bx, 64); hmac_sha256(k, sizeof(k), buf, sizeof(buf), k); hmac_sha256(k, sizeof(k), v, sizeof(k), v); for (i = 0; i < 10000; i++) { hmac_sha256(k, sizeof(k), v, sizeof(v), t); bn_read_be(t, secret); if ( !bn_is_zero(secret) && bn_is_less(secret, &order256k1) ) { return 0; // good number -> no error } memcpy(buf, v, sizeof(v)); buf[sizeof(v)] = 0x00; hmac_sha256(k, sizeof(k), buf, sizeof(v) + 1, k); hmac_sha256(k, sizeof(k), v, sizeof(v), v); } // we generated 10000 numbers, none of them is good -> fail return 1; } // uses secp256k1 curve // priv_key is a 32 byte big endian stored number // msg is a data to be signed // msg_len is the message length // sig is 64 bytes long array for the signature int ecdsa_sign(const uint8_t *priv_key, const uint8_t *msg, uint32_t msg_len, uint8_t *sig) { uint32_t i; uint8_t hash[32]; curve_point R; bignum256 k, z; bignum256 *da = &R.y; // compute hash function of message SHA256_Raw(msg, msg_len, hash); // if double hash is required uncomment the following line: // SHA256_Raw(hash, 32, hash); bn_read_be(hash, &z); #if USE_RFC6979 // generate K deterministically if (generate_k_rfc6979(&k, priv_key, hash) != 0) { return 1; } #else // generate random number k if (generate_k_random(&k) != 0) { return 1; } #endif // compute k*G scalar_multiply(&k, &R); // r = (rx mod n) bn_mod(&R.x, &order256k1); // if r is zero, we fail for (i = 0; i < 9; i++) { if (R.x.val[i] != 0) break; } if (i == 9) { return 2; } bn_inverse(&k, &order256k1); bn_read_be(priv_key, da); bn_multiply(&R.x, da, &order256k1); for (i = 0; i < 8; i++) { da->val[i] += z.val[i]; da->val[i + 1] += (da->val[i] >> 30); da->val[i] &= 0x3FFFFFFF; } da->val[8] += z.val[8]; bn_multiply(da, &k, &order256k1); bn_mod(&k, &order256k1); for (i = 0; i < 9; i++) { if (k.val[i] != 0) break; } // if k is zero, we fail if (i == 9) { return 3; } // if S > order/2 => S = -S if (bn_is_less(&order256k1_half, &k)) { bn_substract_noprime(&order256k1, &k, &k); } // we are done, R.x and k is the result signature bn_write_be(&R.x, sig); bn_write_be(&k, sig + 32); return 0; } void ecdsa_get_public_key33(const uint8_t *priv_key, uint8_t *pub_key) { curve_point R; bignum256 k; bn_read_be(priv_key, &k); // compute k*G scalar_multiply(&k, &R); pub_key[0] = 0x02 | (R.y.val[0] & 0x01); bn_write_be(&R.x, pub_key + 1); } void ecdsa_get_public_key65(const uint8_t *priv_key, uint8_t *pub_key) { curve_point R; bignum256 k; bn_read_be(priv_key, &k); // compute k*G scalar_multiply(&k, &R); pub_key[0] = 0x04; bn_write_be(&R.x, pub_key + 1); bn_write_be(&R.y, pub_key + 33); } void ecdsa_get_address(const uint8_t *pub_key, uint8_t version, char *addr) { const char code[] = "123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"; char *p = addr, s; uint8_t a[32], b[21]; uint32_t r; bignum256 c; int i, l; if (pub_key[0] == 0x04) { SHA256_Raw(pub_key, 65, a); } else { SHA256_Raw(pub_key, 33, a); } b[0] = version; ripemd160(a, 32, b + 1); SHA256_Raw(b, 21, a); SHA256_Raw(a, 32, a); memcpy(a + 28, a, 4); // checksum memset(a, 0, 7); // zeroes memcpy(a + 7, b, 21); // ripemd160(sha256(version + pubkey) bn_read_be(a, &c); while (!bn_is_zero(&c)) { bn_divmod58(&c, &r); *p = code[r]; p++; } i = 7; while (a[i] == 0) { *p = code[0]; p++; i++; } *p = 0; l = strlen(addr); for (i = 0; i < l / 2; i++) { s = addr[i]; addr[i] = addr[l - 1 - i]; addr[l - 1 - i] = s; } } int ecdsa_read_pubkey(const uint8_t *pub_key, curve_point *pub) { if (pub_key[0] == 0x04) { bn_read_be(pub_key + 1, &(pub->x)); bn_read_be(pub_key + 33, &(pub->y)); return 1; } if (pub_key[0] == 0x02 || pub_key[0] == 0x03) { // compute missing y coords // y^2 = x^3 + 0*x + 7 bn_read_be(pub_key + 1, &(pub->x)); bn_read_be(pub_key + 1, &(pub->y)); // y is x bn_multiply(&(pub->x), &(pub->y), &prime256k1); // y is x^2 bn_multiply(&(pub->x), &(pub->y), &prime256k1); // y is x^3 bn_addmodi(&(pub->y), 7, &prime256k1); // y is x^3 + 7 bn_sqrt(&(pub->y), &prime256k1); // y = sqrt(y) if ((pub_key[0] & 0x01) != (pub->y.val[0] & 1)) { bn_substract(&prime256k1, &(pub->y), &(pub->y)); // y = -y bn_mod(&(pub->y), &prime256k1); } return 1; } // error return 0; } // uses secp256k1 curve // pub_key - 65 bytes uncompressed key // signature - 64 bytes signature // msg is a data that was signed // msg_len is the message length // returns 0 if verification succeeded // it is assumed that public key is valid otherwise calling this does not make much sense int ecdsa_verify(const uint8_t *pub_key, const uint8_t *sig, const uint8_t *msg, uint32_t msg_len) { int i, j; uint8_t hash[32]; curve_point pub, res; bignum256 r, s, z; // compute hash function of message SHA256_Raw(msg, msg_len, hash); // if double hash is required uncomment the following line: // SHA256_Raw(hash, 32, hash); if (!ecdsa_read_pubkey(pub_key, &pub)) { return 1; } bn_read_be(sig, &r); bn_read_be(sig + 32, &s); bn_read_be(hash, &z); if (bn_is_zero(&r) || bn_is_zero(&s) || (!bn_is_less(&r, &order256k1)) || (!bn_is_less(&s, &order256k1))) return 2; bn_inverse(&s, &order256k1); // s^-1 bn_multiply(&s, &z, &order256k1); // z*s^-1 bn_mod(&z, &order256k1); bn_multiply(&r, &s, &order256k1); // r*s^-1 bn_mod(&s, &order256k1); if (bn_is_zero(&z)) { // our message hashes to zero // I don't expect this to happen any time soon return 3; } else { scalar_multiply(&z, &res); } // both pub and res can be infinity, can have y = 0 OR can be equal -> false negative for (i = 0; i < 9; i++) { for (j = 0; j < 30; j++) { if (i == 8 && (s.val[i] >> j) == 0) break; if (s.val[i] & (1u << j)) { bn_mod(&(pub.y), &prime256k1); bn_mod(&(res.y), &prime256k1); if (bn_is_equal(&(pub.y), &(res.y))) { // this is not a failure, but a very inprobable case // that we don't handle because of its inprobability return 4; } point_add(&pub, &res); } point_double(&pub); } } bn_mod(&(res.x), &prime256k1); bn_mod(&(res.x), &order256k1); // signature does not match for (i = 0; i < 9; i++) { if (res.x.val[i] != r.val[i]) { return 5; } } // all OK return 0; }