#!/usr/bin/python import ctypes as c import random import ecdsa import hashlib import subprocess import binascii import pytest import os def bytes2num(s): res = 0 for i, b in enumerate(reversed(bytearray(s))): res += b << (i * 8) return res curves = { 'nist256p1': ecdsa.curves.NIST256p, 'secp256k1': ecdsa.curves.SECP256k1 } random_iters = int(os.environ.get('ITERS', 1)) scons_file = ''' srcs = 'ecdsa bignum secp256k1 nist256p1 sha2 rand hmac ripemd160 base58' srcs = [(s + '.c') for s in srcs.split()] flags = ('-O3 -g -W -Wall -Wextra -Wimplicit-function-declaration ' '-Wredundant-decls -Wstrict-prototypes -Wundef -Wshadow ' '-Wpointer-arith -Wformat -Wreturn-type -Wsign-compare -Wmultichar ' '-Wformat-nonliteral -Winit-self -Wuninitialized -Wformat-security ' '-Werror -Wno-sequence-point ') SharedLibrary('ecdsa', srcs, CCFLAGS=flags) ''' open('SConstruct', 'w').write(scons_file) subprocess.check_call('scons -s', shell=True) lib = c.cdll.LoadLibrary('./libecdsa.so') lib.get_curve_by_name.restype = c.c_void_p BIGNUM = c.c_uint32 * 9 class Random(random.Random): def randbytes(self, n): buf = (c.c_uint8 * n)() for i in range(n): buf[i] = self.randrange(0, 256) return buf def randpoint(self, curve): k = self.randrange(0, curve.order) return k * curve.generator def int2bn(x, bn_type=BIGNUM): b = bn_type() b._int = x for i in range(len(b)): b[i] = x % (1 << 30) x = x >> 30 return b def bn2int(b): x = 0 for i in range(len(b)): x += (b[i] << (30 * i)) return x @pytest.fixture(params=range(random_iters)) def r(request): seed = request.param return Random(seed + int(os.environ.get('SEED', 0))) @pytest.fixture(params=list(sorted(curves))) def curve(request): name = request.param curve_ptr = lib.get_curve_by_name(name) assert curve_ptr, 'curve {} not found'.format(name) curve_obj = curves[name] curve_obj.ptr = c.c_void_p(curve_ptr) curve_obj.p = curve_obj.curve.p() # shorthand return curve_obj def test_inverse(curve, r): x = r.randrange(1, curve.p) y = int2bn(x) lib.bn_inverse(y, int2bn(curve.p)) y = bn2int(y) y_ = ecdsa.numbertheory.inverse_mod(x, curve.p) assert y == y_ def test_is_less(curve, r): x = r.randrange(0, curve.p) y = r.randrange(0, curve.p) x_ = int2bn(x) y_ = int2bn(y) res = lib.bn_is_less(x_, y_) assert res == (x < y) res = lib.bn_is_less(y_, x_) assert res == (y < x) def test_is_equal(curve, r): x = r.randrange(0, curve.p) y = r.randrange(0, curve.p) x_ = int2bn(x) y_ = int2bn(y) assert lib.bn_is_equal(x_, y_) == (x == y) assert lib.bn_is_equal(x_, x_) == 1 assert lib.bn_is_equal(y_, y_) == 1 def test_is_zero(curve, r): x = r.randrange(0, curve.p); assert lib.bn_is_zero(int2bn(x)) == (not x) def test_simple_comparisons(): assert lib.bn_is_zero(int2bn(0)) == 1 assert lib.bn_is_zero(int2bn(1)) == 0 assert lib.bn_is_less(int2bn(0), int2bn(0)) == 0 assert lib.bn_is_less(int2bn(1), int2bn(0)) == 0 assert lib.bn_is_less(int2bn(0), int2bn(1)) == 1 assert lib.bn_is_equal(int2bn(0), int2bn(0)) == 1 assert lib.bn_is_equal(int2bn(1), int2bn(0)) == 0 assert lib.bn_is_equal(int2bn(0), int2bn(1)) == 0 def test_mult_half(curve, r): x = r.randrange(0, 2*curve.p) y = int2bn(x) lib.bn_mult_half(y, int2bn(curve.p)) y = bn2int(y) if y > curve.p: y -= curve.p half = ecdsa.numbertheory.inverse_mod(2, curve.p) assert y == (x * half) % curve.p def test_subtractmod(curve, r): x = r.randrange(0, 2 ** 256) y = r.randrange(0, 2 ** 256) z = int2bn(0) lib.bn_subtractmod(int2bn(x), int2bn(y), z, int2bn(curve.p)) z = bn2int(z) z_ = x + 2*curve.p - y assert z == z_ def test_subtract2(r): x = r.randrange(0, 2 ** 256) y = r.randrange(0, 2 ** 256) x, y = max(x, y), min(x, y) z = int2bn(0) lib.bn_subtract(int2bn(x), int2bn(y), z) z = bn2int(z) z_ = x - y assert z == z_ def test_addmod(curve, r): x = r.randrange(0, 2 ** 256) y = r.randrange(0, 2 ** 256) z_ = (x + y) % curve.p z = int2bn(x) lib.bn_addmod(z, int2bn(y), int2bn(curve.p)) z = bn2int(z) assert z == z_ def test_multiply(curve, r): k = r.randrange(0, 2 * curve.p) x = r.randrange(0, 2 * curve.p) z = (k * x) % curve.p k = int2bn(k) z_ = int2bn(x) p_ = int2bn(curve.p) lib.bn_multiply(k, z_, p_) z_ = bn2int(z_) assert z_ < 2*curve.p if z_ >= curve.p: z_ = z_ - curve.p assert z_ == z def test_multiply1(curve, r): k = r.randrange(0, 2 * curve.p) x = r.randrange(0, 2 * curve.p) kx = k * x res = int2bn(0, bn_type=(c.c_uint32 * 18)) lib.bn_multiply_long(int2bn(k), int2bn(x), res) res = bn2int(res) assert res == kx def test_multiply2(curve, r): x = int2bn(0) s = r.randrange(0, 2 ** 526) res = int2bn(s, bn_type=(c.c_uint32 * 18)) prime = int2bn(curve.p) lib.bn_multiply_reduce(x, res, prime) x = bn2int(x) x_ = s % curve.p assert x == x_ def test_fast_mod(curve, r): x = r.randrange(0, 128*curve.p) y = int2bn(x) lib.bn_fast_mod(y, int2bn(curve.p)) y = bn2int(y) assert y < 2*curve.p if y >= curve.p: y -= curve.p assert x % curve.p == y def test_mod(curve, r): x = r.randrange(0, 2*curve.p) y = int2bn(x) lib.bn_mod(y, int2bn(curve.p)) assert bn2int(y) == x % curve.p POINT = BIGNUM * 2 to_POINT = lambda p: POINT(int2bn(p.x()), int2bn(p.y())) from_POINT = lambda p: (bn2int(p[0]), bn2int(p[1])) JACOBIAN = BIGNUM * 3 to_JACOBIAN = lambda jp: JACOBIAN(int2bn(jp[0]), int2bn(jp[1]), int2bn(jp[2])) from_JACOBIAN = lambda p: (bn2int(p[0]), bn2int(p[1]), bn2int(p[2])) def test_point_multiply(curve, r): p = r.randpoint(curve) k = r.randrange(0, 2 ** 256) kp = k * p res = POINT(int2bn(0), int2bn(0)) lib.point_multiply(curve.ptr, int2bn(k), to_POINT(p), res) res = from_POINT(res) assert res == (kp.x(), kp.y()) def test_point_add(curve, r): p1 = r.randpoint(curve) p2 = r.randpoint(curve) #print '-' * 80 q = p1 + p2 q1 = to_POINT(p1) q2 = to_POINT(p2) lib.point_add(curve.ptr, q1, q2) q_ = from_POINT(q2) assert q_ == (q.x(), q.y()) def test_point_double(curve, r): p = r.randpoint(curve) q = p.double() q_ = to_POINT(p) lib.point_double(curve.ptr, q_) q_ = from_POINT(q_) assert q_ == (q.x(), q.y()) def test_point_to_jacobian(curve, r): p = r.randpoint(curve) jp = JACOBIAN() lib.curve_to_jacobian(to_POINT(p), jp, int2bn(curve.p)) jx, jy, jz = from_JACOBIAN(jp) assert jx == (p.x() * jz ** 2) % curve.p assert jy == (p.y() * jz ** 3) % curve.p q = POINT() lib.jacobian_to_curve(jp, q, int2bn(curve.p)) q = from_POINT(q) assert q == (p.x(), p.y()) def test_cond_negate(curve, r): x = r.randrange(0, curve.p) a = int2bn(x) lib.conditional_negate(0, a, int2bn(curve.p)) assert bn2int(a) == x lib.conditional_negate(-1, a, int2bn(curve.p)) assert bn2int(a) == curve.p - x def test_jacobian_add(curve, r): p1 = r.randpoint(curve) p2 = r.randpoint(curve) prime = int2bn(curve.p) q = POINT() jp2 = JACOBIAN() lib.curve_to_jacobian(to_POINT(p2), jp2, prime) lib.point_jacobian_add(to_POINT(p1), jp2, prime) lib.jacobian_to_curve(jp2, q, prime) q = from_POINT(q) p_ = p1 + p2 assert (p_.x(), p_.y()) == q def test_jacobian_double(curve, r): p = r.randpoint(curve) p2 = p.double() prime = int2bn(curve.p) q = POINT() jp = JACOBIAN() lib.curve_to_jacobian(to_POINT(p), jp, prime) lib.point_jacobian_double(jp, curve.ptr) lib.jacobian_to_curve(jp, q, prime) q = from_POINT(q) assert (p2.x(), p2.y()) == q def sigdecode(sig, _): return map(bytes2num, [sig[:32], sig[32:]]) def test_sign(curve, r): priv = r.randbytes(32) digest = r.randbytes(32) sig = r.randbytes(64) lib.ecdsa_sign_digest(curve.ptr, priv, digest, sig, c.c_void_p(0)) exp = bytes2num(priv) sk = ecdsa.SigningKey.from_secret_exponent(exp, curve, hashfunc=hashlib.sha256) vk = sk.get_verifying_key() sig_ref = sk.sign_digest_deterministic(digest, hashfunc=hashlib.sha256) assert binascii.hexlify(sig) == binascii.hexlify(sig_ref) assert vk.verify_digest(sig, digest, sigdecode)