/** * Copyright (c) 2013-2016 Tomas Dzetkulic * Copyright (c) 2013-2016 Pavol Rusnak * Copyright (c) 2015-2016 Jochen Hoenicke * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "bignum.h" #include "hmac.h" #include "ecdsa.h" #include "bip32.h" #include "sha2.h" #include "ripemd160.h" #include "base58.h" #include "macros.h" #include "curves.h" #include "secp256k1.h" #include "nist256p1.h" #include "ed25519.h" #include "curve25519-donna.h" #if USE_ETHEREUM #include "sha3.h" #endif const curve_info ed25519_info = { /* bip32_name */ "ed25519 seed", 0 }; const curve_info curve25519_info = { /* bip32_name */ "curve25519 seed", 0 }; int hdnode_from_xpub(uint32_t depth, uint32_t child_num, const uint8_t *chain_code, const uint8_t *public_key, const char* curve, HDNode *out) { const curve_info *info = get_curve_by_name(curve); if (info == 0) { return 0; } if (public_key[0] != 0x02 && public_key[0] != 0x03) { // invalid pubkey return 0; } out->curve = info; out->depth = depth; out->child_num = child_num; memcpy(out->chain_code, chain_code, 32); MEMSET_BZERO(out->private_key, 32); memcpy(out->public_key, public_key, 33); return 1; } int hdnode_from_xprv(uint32_t depth, uint32_t child_num, const uint8_t *chain_code, const uint8_t *private_key, const char* curve, HDNode *out) { bool failed = false; const curve_info *info = get_curve_by_name(curve); if (info == 0) { failed = true; } else { bignum256 a; bn_read_be(private_key, &a); if (bn_is_zero(&a)) { // == 0 failed = true; } else { if (!bn_is_less(&a, &info->params->order)) { // >= order failed = true; } } MEMSET_BZERO(&a, sizeof(a)); } if (failed) { return 0; } out->curve = info; out->depth = depth; out->child_num = child_num; memcpy(out->chain_code, chain_code, 32); memcpy(out->private_key, private_key, 32); MEMSET_BZERO(out->public_key, sizeof(out->public_key)); return 1; } int hdnode_from_seed(const uint8_t *seed, int seed_len, const char* curve, HDNode *out) { uint8_t I[32 + 32]; memset(out, 0, sizeof(HDNode)); out->depth = 0; out->child_num = 0; out->curve = get_curve_by_name(curve); if (out->curve == 0) { return 0; } hmac_sha512((const uint8_t*) out->curve->bip32_name, strlen(out->curve->bip32_name), seed, seed_len, I); if (out->curve->params) { bignum256 a; while (true) { bn_read_be(I, &a); if (!bn_is_zero(&a) // != 0 && bn_is_less(&a, &out->curve->params->order)) { // < order break; } hmac_sha512((const uint8_t*) out->curve->bip32_name, strlen(out->curve->bip32_name), I, sizeof(I), I); } MEMSET_BZERO(&a, sizeof(a)); } memcpy(out->private_key, I, 32); memcpy(out->chain_code, I + 32, 32); MEMSET_BZERO(out->public_key, sizeof(out->public_key)); MEMSET_BZERO(I, sizeof(I)); return 1; } uint32_t hdnode_fingerprint(HDNode *node) { uint8_t digest[32]; uint32_t fingerprint; hdnode_fill_public_key(node); sha256_Raw(node->public_key, 33, digest); ripemd160(digest, 32, digest); fingerprint = (digest[0] << 24) + (digest[1] << 16) + (digest[2] << 8) + digest[3]; MEMSET_BZERO(digest, sizeof(digest)); return fingerprint; } int hdnode_private_ckd(HDNode *inout, uint32_t i) { uint8_t data[1 + 32 + 4]; uint8_t I[32 + 32]; bignum256 a, b; if (i & 0x80000000) { // private derivation data[0] = 0; memcpy(data + 1, inout->private_key, 32); } else { // public derivation if (!inout->curve->params) { return 0; } hdnode_fill_public_key(inout); memcpy(data, inout->public_key, 33); } write_be(data + 33, i); bn_read_be(inout->private_key, &a); hmac_sha512(inout->chain_code, 32, data, sizeof(data), I); if (inout->curve->params) { while (true) { bool failed = false; bn_read_be(I, &b); if (!bn_is_less(&b, &inout->curve->params->order)) { // >= order failed = true; } else { bn_addmod(&b, &a, &inout->curve->params->order); bn_mod(&b, &inout->curve->params->order); if (bn_is_zero(&b)) { failed = true; } } if (!failed) { bn_write_be(&b, inout->private_key); break; } data[0] = 1; memcpy(data + 1, I + 32, 32); hmac_sha512(inout->chain_code, 32, data, sizeof(data), I); } } else { memcpy(inout->private_key, I, 32); } memcpy(inout->chain_code, I + 32, 32); inout->depth++; inout->child_num = i; MEMSET_BZERO(inout->public_key, sizeof(inout->public_key)); // making sure to wipe our memory MEMSET_BZERO(&a, sizeof(a)); MEMSET_BZERO(&b, sizeof(b)); MEMSET_BZERO(I, sizeof(I)); MEMSET_BZERO(data, sizeof(data)); return 1; } int hdnode_public_ckd(HDNode *inout, uint32_t i) { uint8_t data[1 + 32 + 4]; uint8_t I[32 + 32]; curve_point a, b; bignum256 c; if (i & 0x80000000) { // private derivation return 0; } else { // public derivation if (!inout->curve->params) { return 0; } memcpy(data, inout->public_key, 33); } write_be(data + 33, i); memset(inout->private_key, 0, 32); if (!ecdsa_read_pubkey(inout->curve->params, inout->public_key, &a)) { return 0; } while (true) { bool failed = false; hmac_sha512(inout->chain_code, 32, data, sizeof(data), I); bn_read_be(I, &c); if (!bn_is_less(&c, &inout->curve->params->order)) { // >= order failed = true; } else { scalar_multiply(inout->curve->params, &c, &b); // b = c * G point_add(inout->curve->params, &a, &b); // b = a + b if (point_is_infinity(&b)) { failed = true; } } if (!failed) { inout->public_key[0] = 0x02 | (b.y.val[0] & 0x01); bn_write_be(&b.x, inout->public_key + 1); break; } data[0] = 1; memcpy(data + 1, I + 32, 32); } inout->depth++; inout->child_num = i; memcpy(inout->chain_code, I + 32, 32); // Wipe all stack data. MEMSET_BZERO(data, sizeof(data)); MEMSET_BZERO(I, sizeof(I)); MEMSET_BZERO(&a, sizeof(a)); MEMSET_BZERO(&b, sizeof(b)); MEMSET_BZERO(&c, sizeof(c)); return 1; } int hdnode_public_ckd_address_optimized(const curve_point *pub, const uint8_t *public_key, const uint8_t *chain_code, uint32_t i, uint32_t version, char *addr, int addrsize) { uint8_t data[1 + 32 + 4]; uint8_t I[32 + 32]; uint8_t child_pubkey[33]; curve_point b; bignum256 c; if (i & 0x80000000) { // private derivation return 0; } memcpy(data, public_key, 33); write_be(data + 33, i); while (true) { bool failed = false; hmac_sha512(chain_code, 32, data, sizeof(data), I); bn_read_be(I, &c); if (!bn_is_less(&c, &secp256k1.order)) { // >= order failed = true; } else { scalar_multiply(&secp256k1, &c, &b); // b = c * G point_add(&secp256k1, pub, &b); // b = a + b if (point_is_infinity(&b)) { failed = true; } } if (!failed) { child_pubkey[0] = 0x02 | (b.y.val[0] & 0x01); bn_write_be(&b.x, child_pubkey + 1); break; } data[0] = 1; memcpy(data + 1, I + 32, 32); } ecdsa_get_address(child_pubkey, version, addr, addrsize); return 1; } #if USE_BIP32_CACHE static bool private_ckd_cache_root_set = false; static HDNode private_ckd_cache_root; static int private_ckd_cache_index = 0; static struct { bool set; size_t depth; uint32_t i[BIP32_CACHE_MAXDEPTH]; HDNode node; } private_ckd_cache[BIP32_CACHE_SIZE]; int hdnode_private_ckd_cached(HDNode *inout, const uint32_t *i, size_t i_count) { if (i_count == 0) { return 1; } if (i_count == 1) { if (hdnode_private_ckd(inout, i[0]) == 0) return 0; return 1; } bool found = false; // if root is not set or not the same if (!private_ckd_cache_root_set || memcmp(&private_ckd_cache_root, inout, sizeof(HDNode)) != 0) { // clear the cache private_ckd_cache_index = 0; memset(private_ckd_cache, 0, sizeof(private_ckd_cache)); // setup new root memcpy(&private_ckd_cache_root, inout, sizeof(HDNode)); private_ckd_cache_root_set = true; } else { // try to find parent int j; for (j = 0; j < BIP32_CACHE_SIZE; j++) { if (private_ckd_cache[j].set && private_ckd_cache[j].depth == i_count - 1 && memcmp(private_ckd_cache[j].i, i, (i_count - 1) * sizeof(uint32_t)) == 0 && private_ckd_cache[j].node.curve == inout->curve) { memcpy(inout, &(private_ckd_cache[j].node), sizeof(HDNode)); found = true; break; } } } // else derive parent if (!found) { size_t k; for (k = 0; k < i_count - 1; k++) { if (hdnode_private_ckd(inout, i[k]) == 0) return 0; } // and save it memset(&(private_ckd_cache[private_ckd_cache_index]), 0, sizeof(private_ckd_cache[private_ckd_cache_index])); private_ckd_cache[private_ckd_cache_index].set = true; private_ckd_cache[private_ckd_cache_index].depth = i_count - 1; memcpy(private_ckd_cache[private_ckd_cache_index].i, i, (i_count - 1) * sizeof(uint32_t)); memcpy(&(private_ckd_cache[private_ckd_cache_index].node), inout, sizeof(HDNode)); private_ckd_cache_index = (private_ckd_cache_index + 1) % BIP32_CACHE_SIZE; } if (hdnode_private_ckd(inout, i[i_count - 1]) == 0) return 0; return 1; } #endif void hdnode_get_address_raw(HDNode *node, uint32_t version, uint8_t *addr_raw) { hdnode_fill_public_key(node); ecdsa_get_address_raw(node->public_key, version, addr_raw); } void hdnode_get_address(HDNode *node, uint32_t version, char *addr, int addrsize) { hdnode_fill_public_key(node); ecdsa_get_address(node->public_key, version, addr, addrsize); } void hdnode_fill_public_key(HDNode *node) { if (node->public_key[0] != 0) return; if (node->curve == &ed25519_info) { node->public_key[0] = 1; ed25519_publickey(node->private_key, node->public_key + 1); } else if (node->curve == &curve25519_info) { node->public_key[0] = 1; curve25519_publickey(node->public_key + 1, node->private_key); } else { ecdsa_get_public_key33(node->curve->params, node->private_key, node->public_key); } } #if USE_ETHEREUM int hdnode_get_ethereum_pubkeyhash(const HDNode *node, uint8_t *pubkeyhash) { uint8_t buf[65]; SHA3_CTX ctx; /* get uncompressed public key */ ecdsa_get_public_key65(node->curve->params, node->private_key, buf); /* compute sha3 of x and y coordinate without 04 prefix */ sha3_256_Init(&ctx); sha3_Update(&ctx, buf + 1, 64); keccak_Final(&ctx, buf); /* result are the least significant 160 bits */ memcpy(pubkeyhash, buf + 12, 20); return 1; } #endif // msg is a data to be signed // msg_len is the message length int hdnode_sign(HDNode *node, const uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint8_t *pby, int (*is_canonical)(uint8_t by, uint8_t sig[64])) { if (node->curve == &ed25519_info) { hdnode_fill_public_key(node); ed25519_sign(msg, msg_len, node->private_key, node->public_key + 1, sig); return 0; } else if (node->curve == &curve25519_info) { return 1; // signatures are not supported } else { return ecdsa_sign(node->curve->params, node->private_key, msg, msg_len, sig, pby, is_canonical); } } int hdnode_sign_digest(HDNode *node, const uint8_t *digest, uint8_t *sig, uint8_t *pby, int (*is_canonical)(uint8_t by, uint8_t sig[64])) { if (node->curve == &ed25519_info) { hdnode_fill_public_key(node); ed25519_sign(digest, 32, node->private_key, node->public_key + 1, sig); return 0; } else if (node->curve == &curve25519_info) { return 1; // signatures are not supported } else { return ecdsa_sign_digest(node->curve->params, node->private_key, digest, sig, pby, is_canonical); } } int hdnode_get_shared_key(const HDNode *node, const uint8_t *peer_public_key, uint8_t *session_key, int *result_size) { // Use elliptic curve Diffie-Helman to compute shared session key if (node->curve == &ed25519_info) { *result_size = 0; return 1; // ECDH is not supported } else if (node->curve == &curve25519_info) { session_key[0] = 0x04; if (peer_public_key[0] != 0x40) { return 1; // Curve25519 public key should start with 0x40 byte. } curve25519_scalarmult(session_key + 1, node->private_key, peer_public_key + 1); *result_size = 33; return 0; } else { if (ecdh_multiply(node->curve->params, node->private_key, peer_public_key, session_key) != 0) { return 1; } *result_size = 65; return 0; } } int hdnode_serialize(const HDNode *node, uint32_t fingerprint, uint32_t version, char use_public, char *str, int strsize) { uint8_t node_data[78]; write_be(node_data, version); node_data[4] = node->depth; write_be(node_data + 5, fingerprint); write_be(node_data + 9, node->child_num); memcpy(node_data + 13, node->chain_code, 32); if (use_public) { memcpy(node_data + 45, node->public_key, 33); } else { node_data[45] = 0; memcpy(node_data + 46, node->private_key, 32); } int ret = base58_encode_check(node_data, sizeof(node_data), str, strsize); MEMSET_BZERO(node_data, sizeof(node_data)); return ret; } int hdnode_serialize_public(const HDNode *node, uint32_t fingerprint, char *str, int strsize) { return hdnode_serialize(node, fingerprint, 0x0488B21E, 1, str, strsize); } int hdnode_serialize_private(const HDNode *node, uint32_t fingerprint, char *str, int strsize) { return hdnode_serialize(node, fingerprint, 0x0488ADE4, 0, str, strsize); } // check for validity of curve point in case of public data not performed int hdnode_deserialize(const char *str, HDNode *node, uint32_t *fingerprint) { uint8_t node_data[78]; memset(node, 0, sizeof(HDNode)); if (base58_decode_check(str, node_data, sizeof(node_data)) != sizeof(node_data)) { return -1; } node->curve = get_curve_by_name(SECP256K1_NAME); uint32_t version = read_be(node_data); if (version == 0x0488B21E) { // public node MEMSET_BZERO(node->private_key, sizeof(node->private_key)); memcpy(node->public_key, node_data + 45, 33); } else if (version == 0x0488ADE4) { // private node if (node_data[45]) { // invalid data return -2; } memcpy(node->private_key, node_data + 46, 32); MEMSET_BZERO(node->public_key, sizeof(node->public_key)); } else { return -3; // invalid version } node->depth = node_data[4]; if (fingerprint) { *fingerprint = read_be(node_data + 5); } node->child_num = read_be(node_data + 9); memcpy(node->chain_code, node_data + 13, 32); return 0; } const curve_info *get_curve_by_name(const char *curve_name) { if (curve_name == 0) { return 0; } if (strcmp(curve_name, SECP256K1_NAME) == 0) { return &secp256k1_info; } if (strcmp(curve_name, NIST256P1_NAME) == 0) { return &nist256p1_info; } if (strcmp(curve_name, ED25519_NAME) == 0) { return &ed25519_info; } if (strcmp(curve_name, CURVE25519_NAME) == 0) { return &curve25519_info; } return 0; }