/* * This file is part of the TREZOR project. * * Copyright (C) 2014 Pavol Rusnak * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ #include "signing.h" #include "fsm.h" #include "layout2.h" #include "messages.h" #include "transaction.h" #include "ecdsa.h" #include "protect.h" static uint32_t inputs_count; static uint32_t outputs_count; static const CoinType *coin; static const HDNode *root; static HDNode node; static bool signing = false; enum { STAGE_REQUEST_1_INPUT, STAGE_REQUEST_2_PREV_META, STAGE_REQUEST_2_PREV_INPUT, STAGE_REQUEST_2_PREV_OUTPUT, STAGE_REQUEST_3_INPUT, STAGE_REQUEST_3_OUTPUT, STAGE_REQUEST_4_OUTPUT } signing_stage; static uint32_t idx1i, idx2i, idx2o, idx3i, idx3o, idx4o; static TxRequest resp; static TxInputType input; static TxOutputBinType bin_output; static TxStruct to, tp, ti, tc; static uint8_t hash[32], hash_check[32], privkey[32], pubkey[33], sig[64]; static uint64_t to_spend, spending, change_spend; const uint32_t version = 1; const uint32_t lock_time = 0; static uint32_t progress, progress_total; /* Workflow of streamed signing I - input O - output foreach I: Request I STAGE_REQUEST_1_INPUT Calculate amount of I: Request prevhash I, META STAGE_REQUEST_2_PREV_META foreach prevhash I: STAGE_REQUEST_2_PREV_INPUT Request prevhash I foreach prevhash O: STAGE_REQUEST_2_PREV_OUTPUT Request prevhash O Store amount of I Calculate hash of streamed tx, compare to prevhash I foreach I: STAGE_REQUEST_3_INPUT Request I If I == I-to-be-signed: Fill scriptsig Add I to StreamTransactionSign foreach O: Request O STAGE_REQUEST_3_OUTPUT If I=0: Display output Ask for confirmation Add O to StreamTransactionSign If I=0: Check tx fee Calculate txhash else: Compare current hash with txhash If different: Failure Sign StreamTransactionSign Return signed chunk */ void send_req_1_input(void) { idx2i = idx2o = idx3i = idx3o = 0; signing_stage = STAGE_REQUEST_1_INPUT; resp.has_request_type = true; resp.request_type = RequestType_TXINPUT; resp.has_details = true; resp.details.has_request_index = true; resp.details.request_index = idx1i; msg_write(MessageType_MessageType_TxRequest, &resp); } void send_req_2_prev_meta(void) { signing_stage = STAGE_REQUEST_2_PREV_META; resp.has_request_type = true; resp.request_type = RequestType_TXMETA; resp.has_details = true; resp.details.has_tx_hash = true; resp.details.tx_hash.size = input.prev_hash.size; memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes, input.prev_hash.size); msg_write(MessageType_MessageType_TxRequest, &resp); } void send_req_2_prev_input(void) { signing_stage = STAGE_REQUEST_2_PREV_INPUT; resp.has_request_type = true; resp.request_type = RequestType_TXINPUT; resp.has_details = true; resp.details.has_request_index = true; resp.details.request_index = idx2i; resp.details.has_tx_hash = true; resp.details.tx_hash.size = input.prev_hash.size; memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes, resp.details.tx_hash.size); msg_write(MessageType_MessageType_TxRequest, &resp); } void send_req_2_prev_output(void) { signing_stage = STAGE_REQUEST_2_PREV_OUTPUT; resp.has_request_type = true; resp.request_type = RequestType_TXOUTPUT; resp.has_details = true; resp.details.has_request_index = true; resp.details.request_index = idx2o; resp.details.has_tx_hash = true; resp.details.tx_hash.size = input.prev_hash.size; memcpy(resp.details.tx_hash.bytes, input.prev_hash.bytes, resp.details.tx_hash.size); msg_write(MessageType_MessageType_TxRequest, &resp); } void send_req_3_input(void) { signing_stage = STAGE_REQUEST_3_INPUT; resp.has_request_type = true; resp.request_type = RequestType_TXINPUT; resp.has_details = true; resp.details.has_request_index = true; resp.details.request_index = idx3i; msg_write(MessageType_MessageType_TxRequest, &resp); } void send_req_3_output(void) { signing_stage = STAGE_REQUEST_3_OUTPUT; resp.has_request_type = true; resp.request_type = RequestType_TXOUTPUT; resp.has_details = true; resp.details.has_request_index = true; resp.details.request_index = idx3o; msg_write(MessageType_MessageType_TxRequest, &resp); } void send_req_4_output(void) { signing_stage = STAGE_REQUEST_4_OUTPUT; resp.has_request_type = true; resp.request_type = RequestType_TXOUTPUT; resp.has_details = true; resp.details.has_request_index = true; resp.details.request_index = idx4o; msg_write(MessageType_MessageType_TxRequest, &resp); } void send_req_finished(void) { resp.has_request_type = true; resp.request_type = RequestType_TXFINISHED; msg_write(MessageType_MessageType_TxRequest, &resp); } void signing_init(uint32_t _inputs_count, uint32_t _outputs_count, const CoinType *_coin, HDNode *_root) { inputs_count = _inputs_count; outputs_count = _outputs_count; coin = _coin; root = _root; idx1i = idx2i = idx2o = idx3i = idx3o = idx4o = 0; to_spend = 0; spending = 0; change_spend = 0; memset(&input, 0, sizeof(TxInputType)); memset(&resp, 0, sizeof(TxRequest)); signing = true; progress = 1; progress_total = inputs_count * (1 + inputs_count + outputs_count) + outputs_count; tx_init(&to, inputs_count, outputs_count, version, lock_time, false); send_req_1_input(); } void signing_txack(TransactionType *tx) { if (!signing) { fsm_sendFailure(FailureType_Failure_UnexpectedMessage, "Not in Signing mode"); layoutHome(); return; } int co; memset(&resp, 0, sizeof(TxRequest)); switch (signing_stage) { case STAGE_REQUEST_1_INPUT: layoutProgress("Preparing", 1000 * progress / progress_total, progress); progress++; memcpy(&input, tx->inputs, sizeof(TxInputType)); send_req_2_prev_meta(); return; case STAGE_REQUEST_2_PREV_META: tx_init(&tp, tx->inputs_cnt, tx->outputs_cnt, tx->version, tx->lock_time, false); send_req_2_prev_input(); return; case STAGE_REQUEST_2_PREV_INPUT: if (!tx_hash_input(&tp, tx->inputs)) { fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize input"); signing_abort(); return; } if (idx2i < tp.inputs_len - 1) { idx2i++; send_req_2_prev_input(); } else { send_req_2_prev_output(); } return; case STAGE_REQUEST_2_PREV_OUTPUT: if (!tx_hash_output(&tp, tx->bin_outputs)) { fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize output"); signing_abort(); return; } if (idx2o == input.prev_index) { to_spend += tx->bin_outputs[0].amount; } if (idx2o < tp.outputs_len - 1) { idx2o++; send_req_2_prev_output(); } else { tx_hash_final(&tp, hash, true); if (memcmp(hash, input.prev_hash.bytes, 32) != 0) { fsm_sendFailure(FailureType_Failure_Other, "Encountered invalid prevhash"); signing_abort(); return; } tx_init(&ti, inputs_count, outputs_count, version, lock_time, true); tx_init(&tc, inputs_count, outputs_count, version, lock_time, true); memset(privkey, 0, 32); memset(pubkey, 0, 33); send_req_3_input(); } return; case STAGE_REQUEST_3_INPUT: layoutProgress("Preparing", 1000 * progress / progress_total, progress); progress++; if (!tx_hash_input(&tc, tx->inputs)) { fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize input"); signing_abort(); return; } if (idx3i == idx1i) { memcpy(&node, root, sizeof(HDNode)); uint32_t k; for (k = 0; k < tx->inputs[0].address_n_count; k++) { hdnode_private_ckd(&node, tx->inputs[0].address_n[k]); } ecdsa_get_pubkeyhash(node.public_key, hash); tx->inputs[0].script_sig.size = compile_script_sig(coin->address_type, hash, tx->inputs[0].script_sig.bytes); if (tx->inputs[0].script_sig.size == 0) { fsm_sendFailure(FailureType_Failure_Other, "Failed to compile input"); signing_abort(); return; } memcpy(privkey, node.private_key, 32); memcpy(pubkey, node.public_key, 33); } else { tx->inputs[0].script_sig.size = 0; } if (!tx_hash_input(&ti, tx->inputs)) { fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize input"); signing_abort(); return; } if (idx3i < inputs_count - 1) { idx3i++; send_req_3_input(); } else { send_req_3_output(); } return; case STAGE_REQUEST_3_OUTPUT: layoutProgress("Signing", 1000 * progress / progress_total, progress); progress++; co = compile_output(coin, root, tx->outputs, &bin_output, idx1i == 0); if (co < 0) { fsm_sendFailure(FailureType_Failure_Other, "Signing cancelled by user"); signing_abort(); return; } else if (co == 0) { fsm_sendFailure(FailureType_Failure_Other, "Failed to compile output"); signing_abort(); return; } if (!tx_hash_output(&tc, &bin_output)) { fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize output"); signing_abort(); return; } if (!tx_hash_output(&ti, &bin_output)) { fsm_sendFailure(FailureType_Failure_Other, "Failed to serialize output"); signing_abort(); return; } if (idx1i == 0) { if (tx->outputs[0].address_n_count > 0) { // address_n set -> change address if (change_spend == 0) { // not set change_spend = tx->outputs[0].amount; } else { fsm_sendFailure(FailureType_Failure_Other, "Only one change output allowed"); signing_abort(); return; } } spending += tx->outputs[0].amount; } if (idx3o < outputs_count - 1) { idx3o++; send_req_3_output(); } else { if (idx1i == 0) { tx_hash_final(&tc, hash_check, false); } else { tx_hash_final(&tc, hash, false); if (memcmp(hash, hash_check, 32) != 0) { fsm_sendFailure(FailureType_Failure_Other, "Transaction has changed during signing"); signing_abort(); return; } } tx_hash_final(&ti, hash, false); resp.has_serialized = true; resp.serialized.has_signature_index = true; resp.serialized.signature_index = idx1i; resp.serialized.has_signature = true; resp.serialized.has_serialized_tx = true; ecdsa_sign_digest(privkey, hash, sig); resp.serialized.signature.size = ecdsa_sig_to_der(sig, resp.serialized.signature.bytes); input.script_sig.size = serialize_script_sig(resp.serialized.signature.bytes, resp.serialized.signature.size, pubkey, 33, input.script_sig.bytes); resp.serialized.serialized_tx.size = tx_serialize_input(&to, input.prev_hash.bytes, input.prev_index, input.script_sig.bytes, input.script_sig.size, input.sequence, resp.serialized.serialized_tx.bytes); if (idx1i < inputs_count - 1) { idx1i++; send_req_1_input(); } else { if (spending > to_spend) { fsm_sendFailure(FailureType_Failure_NotEnoughFunds, "Not enough funds"); layoutHome(); return; } uint64_t fee = to_spend - spending; if (fee > (((uint64_t)tc.size + 999) / 1000) * coin->maxfee_kb) { layoutFeeOverThreshold(coin, fee, ((uint64_t)tc.size + 999) / 1000); if (!protectButton(ButtonRequestType_ButtonRequest_FeeOverThreshold, false)) { fsm_sendFailure(FailureType_Failure_ActionCancelled, "Fee over threshold. Signing cancelled."); layoutHome(); return; } } // last confirmation layoutConfirmTx(coin, to_spend - change_spend - fee, fee); if (!protectButton(ButtonRequestType_ButtonRequest_SignTx, false)) { fsm_sendFailure(FailureType_Failure_ActionCancelled, "Signing cancelled by user"); signing_abort(); return; } send_req_4_output(); } } return; case STAGE_REQUEST_4_OUTPUT: layoutProgress("Signing", 1000 * progress / progress_total, progress); progress++; if (compile_output(coin, root, tx->outputs, &bin_output, false) <= 0) { fsm_sendFailure(FailureType_Failure_Other, "Failed to compile output"); signing_abort(); return; } resp.has_serialized = true; resp.serialized.has_serialized_tx = true; resp.serialized.serialized_tx.size = tx_serialize_output(&to, bin_output.amount, bin_output.script_pubkey.bytes, bin_output.script_pubkey.size, resp.serialized.serialized_tx.bytes); if (idx4o < outputs_count - 1) { idx4o++; send_req_4_output(); } else { send_req_finished(); signing_abort(); } return; } fsm_sendFailure(FailureType_Failure_Other, "Signing error"); signing_abort(); } void signing_abort(void) { if (signing) { layoutHome(); signing = false; } }