/* * This file is part of the Trezor project, https://trezor.io/ * * Copyright (C) 2014 Pavol Rusnak <stick@satoshilabs.com> * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see <http://www.gnu.org/licenses/>. */ #include "crypto.h" #include <string.h> #include "address.h" #include "aes/aes.h" #include "base58.h" #include "bip32.h" #include "cash_addr.h" #include "coins.h" #include "curves.h" #include "hmac.h" #include "layout.h" #include "pbkdf2.h" #include "secp256k1.h" #include "segwit_addr.h" #include "sha2.h" #define PATH_MAX_ACCOUNT 100 #define PATH_MAX_CHANGE 1 #define PATH_MAX_ADDRESS_INDEX 1000000 // SLIP-44 hardened coin type for Bitcoin #define SLIP44_BITCOIN 0x80000000 // SLIP-44 hardened coin type for all Testnet coins #define SLIP44_TESTNET 0x80000001 uint32_t ser_length(uint32_t len, uint8_t *out) { if (len < 253) { out[0] = len & 0xFF; return 1; } if (len < 0x10000) { out[0] = 253; out[1] = len & 0xFF; out[2] = (len >> 8) & 0xFF; return 3; } out[0] = 254; out[1] = len & 0xFF; out[2] = (len >> 8) & 0xFF; out[3] = (len >> 16) & 0xFF; out[4] = (len >> 24) & 0xFF; return 5; } uint32_t ser_length_hash(Hasher *hasher, uint32_t len) { if (len < 253) { hasher_Update(hasher, (const uint8_t *)&len, 1); return 1; } if (len < 0x10000) { uint8_t d = 253; hasher_Update(hasher, &d, 1); hasher_Update(hasher, (const uint8_t *)&len, 2); return 3; } uint8_t d = 254; hasher_Update(hasher, &d, 1); hasher_Update(hasher, (const uint8_t *)&len, 4); return 5; } uint32_t deser_length(const uint8_t *in, uint32_t *out) { if (in[0] < 253) { *out = in[0]; return 1; } if (in[0] == 253) { *out = in[1] + (in[2] << 8); return 1 + 2; } if (in[0] == 254) { *out = in[1] + (in[2] << 8) + (in[3] << 16) + ((uint32_t)in[4] << 24); return 1 + 4; } *out = 0; // ignore 64 bit return 1 + 8; } int sshMessageSign(HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature) { signature[0] = 0; // prefix: pad with zero, so all signatures are 65 bytes return hdnode_sign(node, message, message_len, HASHER_SHA2, signature + 1, NULL, NULL); } int gpgMessageSign(HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature) { signature[0] = 0; // prefix: pad with zero, so all signatures are 65 bytes const curve_info *ed25519_curve_info = get_curve_by_name(ED25519_NAME); if (ed25519_curve_info && node->curve == ed25519_curve_info) { // GPG supports variable size digest for Ed25519 signatures return hdnode_sign(node, message, message_len, 0, signature + 1, NULL, NULL); } else { // Ensure 256-bit digest before proceeding if (message_len != 32) { return 1; } return hdnode_sign_digest(node, message, signature + 1, NULL, NULL); } } int signifyMessageSign(HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature) { signature[0] = 0; // prefix: pad with zero, so all signatures are 65 bytes const curve_info *ed25519_curve_info = get_curve_by_name(ED25519_NAME); // only ed25519 is supported if (!ed25519_curve_info || node->curve != ed25519_curve_info) { return 1; } return hdnode_sign(node, message, message_len, 0, signature + 1, NULL, NULL); } static void cryptoMessageHash(const CoinInfo *coin, const uint8_t *message, size_t message_len, uint8_t hash[HASHER_DIGEST_LENGTH]) { Hasher hasher = {0}; hasher_Init(&hasher, coin->curve->hasher_sign); hasher_Update(&hasher, (const uint8_t *)coin->signed_message_header, strlen(coin->signed_message_header)); uint8_t varint[5] = {0}; uint32_t l = ser_length(message_len, varint); hasher_Update(&hasher, varint, l); hasher_Update(&hasher, message, message_len); hasher_Final(&hasher, hash); } int cryptoMessageSign(const CoinInfo *coin, HDNode *node, InputScriptType script_type, const uint8_t *message, size_t message_len, uint8_t *signature) { uint8_t hash[HASHER_DIGEST_LENGTH] = {0}; cryptoMessageHash(coin, message, message_len, hash); uint8_t pby = 0; int result = hdnode_sign_digest(node, hash, signature + 1, &pby, NULL); if (result == 0) { switch (script_type) { case InputScriptType_SPENDP2SHWITNESS: // segwit-in-p2sh signature[0] = 35 + pby; break; case InputScriptType_SPENDWITNESS: // segwit signature[0] = 39 + pby; break; default: // p2pkh signature[0] = 31 + pby; break; } } return result; } int cryptoMessageVerify(const CoinInfo *coin, const uint8_t *message, size_t message_len, const char *address, const uint8_t *signature) { // check for invalid signature prefix if (signature[0] < 27 || signature[0] > 43) { return 1; } uint8_t hash[HASHER_DIGEST_LENGTH] = {0}; cryptoMessageHash(coin, message, message_len, hash); uint8_t recid = (signature[0] - 27) % 4; bool compressed = signature[0] >= 31; // check if signature verifies the digest and recover the public key uint8_t pubkey[65] = {0}; if (ecdsa_recover_pub_from_sig(coin->curve->params, pubkey, signature + 1, hash, recid) != 0) { return 3; } // convert public key to compressed pubkey if necessary if (compressed) { pubkey[0] = 0x02 | (pubkey[64] & 1); } // check if the address is correct uint8_t addr_raw[MAX_ADDR_RAW_SIZE] = {0}; uint8_t recovered_raw[MAX_ADDR_RAW_SIZE] = {0}; // p2pkh if (signature[0] >= 27 && signature[0] <= 34) { size_t len = 0; if (coin->cashaddr_prefix) { if (!cash_addr_decode(addr_raw, &len, coin->cashaddr_prefix, address)) { return 2; } } else { len = base58_decode_check(address, coin->curve->hasher_base58, addr_raw, MAX_ADDR_RAW_SIZE); } ecdsa_get_address_raw(pubkey, coin->address_type, coin->curve->hasher_pubkey, recovered_raw); if (memcmp(recovered_raw, addr_raw, len) != 0 || len != address_prefix_bytes_len(coin->address_type) + 20) { return 2; } } else // segwit-in-p2sh if (signature[0] >= 35 && signature[0] <= 38) { size_t len = base58_decode_check(address, coin->curve->hasher_base58, addr_raw, MAX_ADDR_RAW_SIZE); ecdsa_get_address_segwit_p2sh_raw(pubkey, coin->address_type_p2sh, coin->curve->hasher_pubkey, recovered_raw); if (memcmp(recovered_raw, addr_raw, len) != 0 || len != address_prefix_bytes_len(coin->address_type_p2sh) + 20) { return 2; } } else // segwit if (signature[0] >= 39 && signature[0] <= 42) { int witver = 0; size_t len = 0; if (!coin->bech32_prefix || !segwit_addr_decode(&witver, recovered_raw, &len, coin->bech32_prefix, address)) { return 4; } ecdsa_get_pubkeyhash(pubkey, coin->curve->hasher_pubkey, addr_raw); if (memcmp(recovered_raw, addr_raw, len) != 0 || witver != 0 || len != 20) { return 2; } } else { return 4; } return 0; } /* ECIES disabled int cryptoMessageEncrypt(curve_point *pubkey, const uint8_t *msg, size_t msg_size, bool display_only, uint8_t *nonce, size_t *nonce_len, uint8_t *payload, size_t *payload_len, uint8_t *hmac, size_t *hmac_len, const uint8_t *privkey, const uint8_t *address_raw) { if (privkey && address_raw) { // signing == true HDNode node = {0}; payload[0] = display_only ? 0x81 : 0x01; uint32_t l = ser_length(msg_size, payload + 1); memcpy(payload + 1 + l, msg, msg_size); memcpy(payload + 1 + l + msg_size, address_raw, 21); hdnode_from_xprv(0, 0, 0, privkey, privkey, SECP256K1_NAME, &node); if (cryptoMessageSign(&node, msg, msg_size, payload + 1 + l + msg_size + 21) != 0) { return 1; } *payload_len = 1 + l + msg_size + 21 + 65; } else { payload[0] = display_only ? 0x80 : 0x00; uint32_t l = ser_length(msg_size, payload + 1); memcpy(payload + 1 + l, msg, msg_size); *payload_len = 1 + l + msg_size; } // generate random nonce curve_point R = {0}; bignum256 k = {0}; if (generate_k_random(&secp256k1, &k) != 0) { return 2; } // compute k*G scalar_multiply(&secp256k1, &k, &R); nonce[0] = 0x02 | (R.y.val[0] & 0x01); bn_write_be(&R.x, nonce + 1); *nonce_len = 33; // compute shared secret point_multiply(&secp256k1, &k, pubkey, &R); uint8_t shared_secret[33] = {0}; shared_secret[0] = 0x02 | (R.y.val[0] & 0x01); bn_write_be(&R.x, shared_secret + 1); // generate keying bytes uint8_t keying_bytes[80] = {0}; uint8_t salt[22 + 33] = {0}; memcpy(salt, "Bitcoin Secure Message", 22); memcpy(salt + 22, nonce, 33); pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes, 80); // encrypt payload aes_encrypt_ctx ctx = {0}; aes_encrypt_key256(keying_bytes, &ctx); aes_cfb_encrypt(payload, payload, *payload_len, keying_bytes + 64, &ctx); // compute hmac uint8_t out[32] = {0}; hmac_sha256(keying_bytes + 32, 32, payload, *payload_len, out); memcpy(hmac, out, 8); *hmac_len = 8; return 0; } int cryptoMessageDecrypt(curve_point *nonce, uint8_t *payload, size_t payload_len, const uint8_t *hmac, size_t hmac_len, const uint8_t *privkey, uint8_t *msg, size_t *msg_len, bool *display_only, bool *signing, uint8_t *address_raw) { if (hmac_len != 8) { return 1; } // compute shared secret curve_point R = {0}; bignum256 k = {0}; bn_read_be(privkey, &k); point_multiply(&secp256k1, &k, nonce, &R); uint8_t shared_secret[33] = {0}; shared_secret[0] = 0x02 | (R.y.val[0] & 0x01); bn_write_be(&R.x, shared_secret + 1); // generate keying bytes uint8_t keying_bytes[80] = {0}; uint8_t salt[22 + 33] = {0}; memcpy(salt, "Bitcoin Secure Message", 22); salt[22] = 0x02 | (nonce->y.val[0] & 0x01); bn_write_be(&(nonce->x), salt + 23); pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes, 80); // compute hmac uint8_t out[32] = {0}; hmac_sha256(keying_bytes + 32, 32, payload, payload_len, out); if (memcmp(hmac, out, 8) != 0) { return 2; } // decrypt payload aes_encrypt_ctx ctx = {0}; aes_encrypt_key256(keying_bytes, &ctx); aes_cfb_decrypt(payload, payload, payload_len, keying_bytes + 64, &ctx); // check first byte if (payload[0] != 0x00 && payload[0] != 0x01 && payload[0] != 0x80 && payload[0] != 0x81) { return 3; } *signing = payload[0] & 0x01; *display_only = payload[0] & 0x80; uint32_t l = 0; uint32_t o = 0; l = deser_length(payload + 1, &o); if (*signing) { // FIXME: assumes a raw address is 21 bytes (also below). if (1 + l + o + 21 + 65 != payload_len) { return 4; } // FIXME: cryptoMessageVerify changed to take the address_type as a parameter. if (cryptoMessageVerify(payload + 1 + l, o, payload + 1 + l + o, payload + 1 + l + o + 21) != 0) { return 5; } memcpy(address_raw, payload + 1 + l + o, 21); } else { if (1 + l + o != payload_len) { return 4; } } memcpy(msg, payload + 1 + l, o); *msg_len = o; return 0; } */ const HDNode *cryptoMultisigPubkey(const CoinInfo *coin, const MultisigRedeemScriptType *multisig, uint32_t index) { const HDNodeType *node_ptr = NULL; const uint32_t *address_n = NULL; uint32_t address_n_count = 0; if (multisig->nodes_count) { // use multisig->nodes if (index >= multisig->nodes_count) { return 0; } node_ptr = &(multisig->nodes[index]); address_n = multisig->address_n; address_n_count = multisig->address_n_count; } else if (multisig->pubkeys_count) { // use multisig->pubkeys if (index >= multisig->pubkeys_count) { return 0; } node_ptr = &(multisig->pubkeys[index].node); address_n = multisig->pubkeys[index].address_n; address_n_count = multisig->pubkeys[index].address_n_count; } else { return 0; } if (node_ptr->chain_code.size != 32) return 0; if (node_ptr->public_key.size != 33) return 0; static HDNode node; if (!hdnode_from_xpub(node_ptr->depth, node_ptr->child_num, node_ptr->chain_code.bytes, node_ptr->public_key.bytes, coin->curve_name, &node)) { return 0; } layoutProgressUpdate(true); for (uint32_t i = 0; i < address_n_count; i++) { if (!hdnode_public_ckd(&node, address_n[i])) { return 0; } layoutProgressUpdate(true); } return &node; } uint32_t cryptoMultisigPubkeyCount(const MultisigRedeemScriptType *multisig) { return multisig->nodes_count ? multisig->nodes_count : multisig->pubkeys_count; } int cryptoMultisigPubkeyIndex(const CoinInfo *coin, const MultisigRedeemScriptType *multisig, const uint8_t *pubkey) { for (size_t i = 0; i < cryptoMultisigPubkeyCount(multisig); i++) { const HDNode *pubnode = cryptoMultisigPubkey(coin, multisig, i); if (pubnode && memcmp(pubnode->public_key, pubkey, 33) == 0) { return i; } } return -1; } int cryptoMultisigFingerprint(const MultisigRedeemScriptType *multisig, uint8_t *hash) { static const HDNodeType *pubnodes[15], *swap; const uint32_t n = cryptoMultisigPubkeyCount(multisig); if (n < 1 || n > 15) { return 0; } if (multisig->m < 1 || multisig->m > 15) { return 0; } for (uint32_t i = 0; i < n; i++) { if (multisig->nodes_count) { // use multisig->nodes pubnodes[i] = &(multisig->nodes[i]); } else if (multisig->pubkeys_count) { // use multisig->pubkeys pubnodes[i] = &(multisig->pubkeys[i].node); } else { return 0; } } for (uint32_t i = 0; i < n; i++) { if (pubnodes[i]->public_key.size != 33) return 0; if (pubnodes[i]->chain_code.size != 32) return 0; } // minsort according to pubkey for (uint32_t i = 0; i < n - 1; i++) { for (uint32_t j = n - 1; j > i; j--) { if (memcmp(pubnodes[i]->public_key.bytes, pubnodes[j]->public_key.bytes, 33) > 0) { swap = pubnodes[i]; pubnodes[i] = pubnodes[j]; pubnodes[j] = swap; } } } // hash sorted nodes SHA256_CTX ctx = {0}; sha256_Init(&ctx); sha256_Update(&ctx, (const uint8_t *)&(multisig->m), sizeof(uint32_t)); for (uint32_t i = 0; i < n; i++) { sha256_Update(&ctx, (const uint8_t *)&(pubnodes[i]->depth), sizeof(uint32_t)); sha256_Update(&ctx, (const uint8_t *)&(pubnodes[i]->fingerprint), sizeof(uint32_t)); sha256_Update(&ctx, (const uint8_t *)&(pubnodes[i]->child_num), sizeof(uint32_t)); sha256_Update(&ctx, pubnodes[i]->chain_code.bytes, 32); sha256_Update(&ctx, pubnodes[i]->public_key.bytes, 33); } sha256_Update(&ctx, (const uint8_t *)&n, sizeof(uint32_t)); sha256_Final(&ctx, hash); layoutProgressUpdate(true); return 1; } int cryptoIdentityFingerprint(const IdentityType *identity, uint8_t *hash) { SHA256_CTX ctx = {0}; sha256_Init(&ctx); sha256_Update(&ctx, (const uint8_t *)&(identity->index), sizeof(uint32_t)); if (identity->has_proto && identity->proto[0]) { sha256_Update(&ctx, (const uint8_t *)(identity->proto), strlen(identity->proto)); sha256_Update(&ctx, (const uint8_t *)"://", 3); } if (identity->has_user && identity->user[0]) { sha256_Update(&ctx, (const uint8_t *)(identity->user), strlen(identity->user)); sha256_Update(&ctx, (const uint8_t *)"@", 1); } if (identity->has_host && identity->host[0]) { sha256_Update(&ctx, (const uint8_t *)(identity->host), strlen(identity->host)); } if (identity->has_port && identity->port[0]) { sha256_Update(&ctx, (const uint8_t *)":", 1); sha256_Update(&ctx, (const uint8_t *)(identity->port), strlen(identity->port)); } if (identity->has_path && identity->path[0]) { sha256_Update(&ctx, (const uint8_t *)(identity->path), strlen(identity->path)); } sha256_Final(&ctx, hash); return 1; } static bool check_cointype(const CoinInfo *coin, uint32_t slip44, bool full) { #if BITCOIN_ONLY (void)full; #else if (!full) { // Some wallets such as Electron-Cash (BCH) store coins on Bitcoin paths. // We can allow spending these coins from Bitcoin paths if the coin has // implemented strong replay protection via SIGHASH_FORKID. However, we // cannot allow spending any testnet coins from Bitcoin paths, because // otherwise an attacker could trick the user into spending BCH on a Bitcoin // path by signing a seemingly harmless BCH Testnet transaction. if (slip44 == SLIP44_BITCOIN && coin->has_fork_id && coin->coin_type != SLIP44_TESTNET) { return true; } } #endif return coin->coin_type == slip44; } bool coin_path_check(const CoinInfo *coin, InputScriptType script_type, uint32_t address_n_count, const uint32_t *address_n, bool has_multisig, CoinPathCheckLevel level) { // For level BASIC this function checks that a coin without strong replay // protection doesn't access paths that are known to be used by another coin. // Used by SignTx to ensure that a user cannot be coerced into signing a // testnet transaction or a Litecoin transaction which in fact spends Bitcoin. // For level KNOWN this function checks that the path is a recognized path for // the given coin. Used by GetAddress to prevent ransom attacks where a user // could be coerced to use an address with an unenumerable path. // For level SCRIPT_TYPE this function makes the same checks as in level // KNOWN, but includes script type checks. const bool check_known = (level >= CoinPathCheckLevel_KNOWN); const bool check_script_type = (level >= CoinPathCheckLevel_SCRIPT_TYPE); bool valid = true; // m/44' : BIP44 Legacy // m / purpose' / coin_type' / account' / change / address_index if (address_n_count > 0 && address_n[0] == (0x80000000 + 44)) { if (check_known) { valid = valid && (address_n_count == 5); } else { valid = valid && (address_n_count >= 2); } valid = valid && check_cointype(coin, address_n[1], check_known); if (check_script_type) { valid = valid && (script_type == InputScriptType_SPENDADDRESS); valid = valid && (!has_multisig); } if (check_known) { valid = valid && ((address_n[2] & 0x80000000) == 0x80000000); valid = valid && ((address_n[2] & 0x7fffffff) <= PATH_MAX_ACCOUNT); valid = valid && (address_n[3] <= PATH_MAX_CHANGE); valid = valid && (address_n[4] <= PATH_MAX_ADDRESS_INDEX); } return valid; } if (address_n_count > 0 && address_n[0] == (0x80000000 + 45)) { if (check_script_type) { valid = valid && has_multisig; } if (address_n_count == 4) { // m/45' - BIP45 Copay Abandoned Multisig P2SH // m / purpose' / cosigner_index / change / address_index // Patterns without a coin_type field must be treated as Bitcoin paths. valid = valid && check_cointype(coin, SLIP44_BITCOIN, check_known); if (check_script_type) { valid = valid && (script_type == InputScriptType_SPENDMULTISIG); } if (check_known) { valid = valid && (address_n[1] <= 100); valid = valid && (address_n[2] <= PATH_MAX_CHANGE); valid = valid && (address_n[3] <= PATH_MAX_ADDRESS_INDEX); } } else if (address_n_count == 5) { // Unchained Capital compatibility pattern. Will be removed in the // future. // m / 45' / coin_type' / account' / [0-1000000] / address_index valid = valid && check_cointype(coin, address_n[1], check_known); if (check_script_type) { valid = valid && (script_type == InputScriptType_SPENDADDRESS || script_type == InputScriptType_SPENDMULTISIG); } if (check_known) { valid = valid && ((address_n[2] & 0x80000000) == 0x80000000); valid = valid && ((address_n[2] & 0x7fffffff) <= PATH_MAX_ACCOUNT); valid = valid && (address_n[3] <= 1000000); valid = valid && (address_n[4] <= PATH_MAX_ADDRESS_INDEX); } } else if (address_n_count == 6) { // Unchained Capital compatibility pattern. Will be removed in the // future. // m/45'/coin_type'/account'/[0-1000000]/change/address_index // m/45'/coin_type/account/[0-1000000]/change/address_index valid = valid && check_cointype(coin, 0x80000000 | address_n[1], check_known); if (check_script_type) { valid = valid && (script_type == InputScriptType_SPENDADDRESS || script_type == InputScriptType_SPENDMULTISIG); } if (check_known) { valid = valid && ((address_n[1] & 0x80000000) == (address_n[2] & 0x80000000)); valid = valid && ((address_n[2] & 0x7fffffff) <= PATH_MAX_ACCOUNT); valid = valid && (address_n[3] <= 1000000); valid = valid && (address_n[4] <= PATH_MAX_CHANGE); valid = valid && (address_n[5] <= PATH_MAX_ADDRESS_INDEX); } } else { if (check_known) { return false; } } return valid; } // m/48' - BIP48 Copay Multisig P2SH // m / purpose' / coin_type' / account' / change / address_index // Electrum: // m / purpose' / coin_type' / account' / type' / change / address_index if (address_n_count > 0 && address_n[0] == (0x80000000 + 48)) { if (check_known) { valid = valid && (address_n_count == 5 || address_n_count == 6); } else { valid = valid && (address_n_count >= 2); } valid = valid && check_cointype(coin, address_n[1], check_known); if (check_script_type) { valid = valid && has_multisig; valid = valid && (script_type == InputScriptType_SPENDMULTISIG || script_type == InputScriptType_SPENDP2SHWITNESS || script_type == InputScriptType_SPENDWITNESS); } if (check_known) { valid = valid && ((address_n[2] & 0x80000000) == 0x80000000); valid = valid && ((address_n[2] & 0x7fffffff) <= PATH_MAX_ACCOUNT); if (address_n_count == 5) { valid = valid && (address_n[3] <= PATH_MAX_CHANGE); valid = valid && (address_n[4] <= PATH_MAX_ADDRESS_INDEX); } else if (address_n_count == 6) { valid = valid && ((address_n[3] & 0x80000000) == 0x80000000); valid = valid && ((address_n[3] & 0x7fffffff) <= 3); valid = valid && (address_n[4] <= PATH_MAX_CHANGE); valid = valid && (address_n[5] <= PATH_MAX_ADDRESS_INDEX); } else { return false; } } return valid; } // m/49' : BIP49 SegWit // m / purpose' / coin_type' / account' / change / address_index if (address_n_count > 0 && address_n[0] == (0x80000000 + 49)) { valid = valid && coin->has_segwit; if (check_known) { valid = valid && (address_n_count == 5); } else { valid = valid && (address_n_count >= 2); } valid = valid && check_cointype(coin, address_n[1], check_known); if (check_script_type) { valid = valid && (script_type == InputScriptType_SPENDP2SHWITNESS); } if (check_known) { valid = valid && ((address_n[2] & 0x80000000) == 0x80000000); valid = valid && ((address_n[2] & 0x7fffffff) <= PATH_MAX_ACCOUNT); valid = valid && (address_n[3] <= PATH_MAX_CHANGE); valid = valid && (address_n[4] <= PATH_MAX_ADDRESS_INDEX); } return valid; } // m/84' : BIP84 Native SegWit // m / purpose' / coin_type' / account' / change / address_index if (address_n_count > 0 && address_n[0] == (0x80000000 + 84)) { valid = valid && coin->has_segwit; valid = valid && (coin->bech32_prefix != NULL); if (check_known) { valid = valid && (address_n_count == 5); } else { valid = valid && (address_n_count >= 2); } valid = valid && check_cointype(coin, address_n[1], check_known); if (check_script_type) { valid = valid && (script_type == InputScriptType_SPENDWITNESS); } if (check_known) { valid = valid && ((address_n[2] & 0x80000000) == 0x80000000); valid = valid && ((address_n[2] & 0x7fffffff) <= PATH_MAX_ACCOUNT); valid = valid && (address_n[3] <= PATH_MAX_CHANGE); valid = valid && (address_n[4] <= PATH_MAX_ADDRESS_INDEX); } return valid; } // Green Address compatibility pattern. Will be removed in the future. // m / [1,4] / address_index if (address_n_count > 0 && (address_n[0] == 1 || address_n[0] == 4)) { valid = valid && (coin->coin_type == SLIP44_BITCOIN); if (check_known) { valid = valid && (address_n_count == 2); valid = valid && (address_n[1] <= PATH_MAX_ADDRESS_INDEX); } return valid; } // Green Address compatibility pattern. Will be removed in the future. // m / 3' / [1-100]' / [1,4] / address_index if (address_n_count > 0 && address_n[0] == (0x80000000 + 3)) { valid = valid && (coin->coin_type == SLIP44_BITCOIN); if (check_known) { valid = valid && (address_n_count == 4); valid = valid && ((address_n[1] & 0x80000000) == 0x80000000); valid = valid && ((address_n[1] & 0x7fffffff) <= 100); valid = valid && (address_n[2] == 1 || address_n[2] == 4); valid = valid && (address_n[3] <= PATH_MAX_ADDRESS_INDEX); } return valid; } // Green Address compatibility patterns. Will be removed in the future. // m / 1195487518 // m / 1195487518 / 6 / address_index if (address_n_count > 0 && address_n[0] == 1195487518) { valid = valid && (coin->coin_type == SLIP44_BITCOIN); if (check_known) { if (address_n_count == 3) { valid = valid && (address_n[1] == 6); valid = valid && (address_n[2] <= PATH_MAX_ADDRESS_INDEX); } else if (address_n_count != 1) { return false; } } return valid; } // Casa compatibility pattern. Will be removed in the future. // m / 49 / coin_type / account / change / address_index if (address_n_count > 0 && address_n[0] == 49) { if (check_known) { valid = valid && (address_n_count == 5); } else { valid = valid && (address_n_count >= 2); } valid = valid && check_cointype(coin, 0x80000000 | address_n[1], check_known); if (check_script_type) { valid = valid && (script_type == InputScriptType_SPENDP2SHWITNESS); } if (check_known) { valid = valid && ((address_n[1] & 0x80000000) == 0); valid = valid && (address_n[2] <= PATH_MAX_ACCOUNT); valid = valid && (address_n[3] <= PATH_MAX_CHANGE); valid = valid && (address_n[4] <= PATH_MAX_ADDRESS_INDEX); } return valid; } // we allow unknown paths only when a full check is not required return level == CoinPathCheckLevel_BASIC; }