/**
 * Copyright (c) 2013-2016 Tomas Dzetkulic
 * Copyright (c) 2013-2016 Pavol Rusnak
 * Copyright (c) 2015-2016 Jochen Hoenicke
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES
 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <stdbool.h>
#include <string.h>

#include "address.h"
#include "aes/aes.h"
#include "base58.h"
#include "bignum.h"
#include "bip32.h"
#include "cardano.h"
#include "curves.h"
#include "ecdsa.h"
#include "ed25519-donna/ed25519-sha3.h"
#include "ed25519-donna/ed25519.h"
#include "hmac.h"
#include "nist256p1.h"
#include "secp256k1.h"
#include "sha2.h"
#include "sha3.h"
#if USE_KECCAK
#include "ed25519-donna/ed25519-keccak.h"
#endif
#if USE_NEM
#include "nem.h"
#endif
#include "memzero.h"

const curve_info ed25519_info = {
    .bip32_name = ED25519_SEED_NAME,
    .params = NULL,
    .hasher_base58 = HASHER_SHA2D,
    .hasher_sign = HASHER_SHA2D,
    .hasher_pubkey = HASHER_SHA2_RIPEMD,
    .hasher_script = HASHER_SHA2,
};

const curve_info ed25519_sha3_info = {
    .bip32_name = "ed25519-sha3 seed",
    .params = NULL,
    .hasher_base58 = HASHER_SHA2D,
    .hasher_sign = HASHER_SHA2D,
    .hasher_pubkey = HASHER_SHA2_RIPEMD,
    .hasher_script = HASHER_SHA2,
};

#if USE_KECCAK
const curve_info ed25519_keccak_info = {
    .bip32_name = "ed25519-keccak seed",
    .params = NULL,
    .hasher_base58 = HASHER_SHA2D,
    .hasher_sign = HASHER_SHA2D,
    .hasher_pubkey = HASHER_SHA2_RIPEMD,
    .hasher_script = HASHER_SHA2,
};
#endif

const curve_info curve25519_info = {
    .bip32_name = "curve25519 seed",
    .params = NULL,
    .hasher_base58 = HASHER_SHA2D,
    .hasher_sign = HASHER_SHA2D,
    .hasher_pubkey = HASHER_SHA2_RIPEMD,
    .hasher_script = HASHER_SHA2,
};

int hdnode_from_xpub(uint32_t depth, uint32_t child_num,
                     const uint8_t *chain_code, const uint8_t *public_key,
                     const char *curve, HDNode *out) {
  const curve_info *info = get_curve_by_name(curve);
  if (info == 0) {
    return 0;
  }
  if (public_key[0] != 0x02 && public_key[0] != 0x03) {  // invalid pubkey
    return 0;
  }
  out->curve = info;
  out->depth = depth;
  out->child_num = child_num;
  memcpy(out->chain_code, chain_code, 32);
  memzero(out->private_key, 32);
  memzero(out->private_key_extension, 32);
  memcpy(out->public_key, public_key, 33);
  out->is_public_key_set = true;
  return 1;
}

int hdnode_from_xprv(uint32_t depth, uint32_t child_num,
                     const uint8_t *chain_code, const uint8_t *private_key,
                     const char *curve, HDNode *out) {
  bool failed = false;
  const curve_info *info = get_curve_by_name(curve);
  if (info == 0) {
    failed = true;
  } else if (info->params) {
    bignum256 a = {0};
    bn_read_be(private_key, &a);
    if (bn_is_zero(&a)) {  // == 0
      failed = true;
    } else {
      if (!bn_is_less(&a, &info->params->order)) {  // >= order
        failed = true;
      }
    }
    memzero(&a, sizeof(a));
  }

  if (failed) {
    return 0;
  }

  out->curve = info;
  out->depth = depth;
  out->child_num = child_num;
  memcpy(out->chain_code, chain_code, 32);
  memcpy(out->private_key, private_key, 32);
  memzero(out->public_key, sizeof(out->public_key));
  out->is_public_key_set = false;
  memzero(out->private_key_extension, sizeof(out->private_key_extension));
  return 1;
}

int hdnode_from_seed(const uint8_t *seed, int seed_len, const char *curve,
                     HDNode *out) {
  static CONFIDENTIAL uint8_t I[32 + 32];
  memzero(out, sizeof(HDNode));
  out->depth = 0;
  out->child_num = 0;
  out->curve = get_curve_by_name(curve);
  if (out->curve == 0) {
    return 0;
  }
  static CONFIDENTIAL HMAC_SHA512_CTX ctx;
  hmac_sha512_Init(&ctx, (const uint8_t *)out->curve->bip32_name,
                   strlen(out->curve->bip32_name));
  hmac_sha512_Update(&ctx, seed, seed_len);
  hmac_sha512_Final(&ctx, I);

  if (out->curve->params) {
    bignum256 a = {0};
    while (true) {
      bn_read_be(I, &a);
      if (!bn_is_zero(&a)                                   // != 0
          && bn_is_less(&a, &out->curve->params->order)) {  // < order
        break;
      }
      hmac_sha512_Init(&ctx, (const uint8_t *)out->curve->bip32_name,
                       strlen(out->curve->bip32_name));
      hmac_sha512_Update(&ctx, I, sizeof(I));
      hmac_sha512_Final(&ctx, I);
    }
    memzero(&a, sizeof(a));
  }
  memcpy(out->private_key, I, 32);
  memcpy(out->chain_code, I + 32, 32);
  memzero(out->public_key, sizeof(out->public_key));
  out->is_public_key_set = false;
  memzero(I, sizeof(I));
  return 1;
}

uint32_t hdnode_fingerprint(HDNode *node) {
  uint8_t digest[32] = {0};
  uint32_t fingerprint = 0;

  hdnode_fill_public_key(node);
  hasher_Raw(node->curve->hasher_pubkey, node->public_key, 33, digest);
  fingerprint = ((uint32_t)digest[0] << 24) + (digest[1] << 16) +
                (digest[2] << 8) + digest[3];
  memzero(digest, sizeof(digest));
  return fingerprint;
}

int hdnode_private_ckd_bip32(HDNode *inout, uint32_t i) {
  static CONFIDENTIAL uint8_t data[1 + 32 + 4];
  static CONFIDENTIAL uint8_t I[32 + 32];
  static CONFIDENTIAL bignum256 a, b;

#if USE_CARDANO
  if (inout->curve == &ed25519_cardano_info) {
    return 0;
  }
#endif

  if (i & 0x80000000) {  // private derivation
    data[0] = 0;
    memcpy(data + 1, inout->private_key, 32);
  } else {  // public derivation
    if (!inout->curve->params) {
      // SLIP-10 doesn't support private key to private key non-hardened
      // derivation for curve25519 and ed25519
      return 0;
    }
    if (hdnode_fill_public_key(inout) != 0) {
      return 0;
    }
    memcpy(data, inout->public_key, 33);
  }
  write_be(data + 33, i);

  bn_read_be(inout->private_key, &a);

  static CONFIDENTIAL HMAC_SHA512_CTX ctx;
  hmac_sha512_Init(&ctx, inout->chain_code, 32);
  hmac_sha512_Update(&ctx, data, sizeof(data));
  hmac_sha512_Final(&ctx, I);

  if (inout->curve->params) {
    while (true) {
      bool failed = false;
      bn_read_be(I, &b);
      if (!bn_is_less(&b, &inout->curve->params->order)) {  // >= order
        failed = true;
      } else {
        bn_add(&b, &a);
        bn_mod(&b, &inout->curve->params->order);
        if (bn_is_zero(&b)) {
          failed = true;
        }
      }

      if (!failed) {
        bn_write_be(&b, inout->private_key);
        break;
      }

      data[0] = 1;
      memcpy(data + 1, I + 32, 32);
      hmac_sha512_Init(&ctx, inout->chain_code, 32);
      hmac_sha512_Update(&ctx, data, sizeof(data));
      hmac_sha512_Final(&ctx, I);
    }
  } else {
    memcpy(inout->private_key, I, 32);
  }

  memcpy(inout->chain_code, I + 32, 32);
  inout->depth++;
  inout->child_num = i;
  memzero(inout->public_key, sizeof(inout->public_key));
  inout->is_public_key_set = false;

  // making sure to wipe our memory
  memzero(&a, sizeof(a));
  memzero(&b, sizeof(b));
  memzero(I, sizeof(I));
  memzero(data, sizeof(data));
  return 1;
}

int hdnode_private_ckd(HDNode *inout, uint32_t i) {
#if USE_CARDANO
  if (inout->curve == &ed25519_cardano_info) {
    return hdnode_private_ckd_cardano(inout, i);
  } else
#endif
  {
    return hdnode_private_ckd_bip32(inout, i);
  }
}

int hdnode_public_ckd(HDNode *inout, uint32_t i) {
  if (!inout->curve->params) {
    // SLIP-10 doesn't support public key to public key derivation for
    // curve25519 and ed25519, Cardano BIP32-ed22519 public key to public key
    // derivation is not implemented
    return 0;
  }

  uint8_t data[33 + 4] = {0};
  uint8_t digest[32 + 32] = {0};
  int result = 0;

  if (i & 0x80000000) {  // private derivation
    return 0;
  }

  memcpy(data, inout->public_key, 33);
  write_be(data + 33, i);

  while (true) {
    hmac_sha512(inout->chain_code, 32, data, sizeof(data), digest);

    result = ecdsa_tweak_pubkey(inout->curve->params, inout->public_key, digest,
                                inout->public_key);
    if (result == ECDSA_TWEAK_PUBKEY_SUCCESS) {
      memcpy(inout->chain_code, digest + 32, 32);
      inout->depth++;
      inout->child_num = i;
      memzero(inout->private_key, 32);
      break;
    }
    if (result != ECDSA_TWEAK_PUBKEY_INVALID_TWEAK_OR_RESULT_ERR) {
      break;
    }

    // The tweak is less than the order of the curve or the tweaked public key
    // is the point at infinity
    data[0] = 1;
    memcpy(data + 1, digest + 32, 32);
  }

  memzero(digest, sizeof(digest));
  memzero(data, sizeof(data));

  return result == ECDSA_TWEAK_PUBKEY_SUCCESS;
}

#if USE_BIP32_CACHE
static bool private_ckd_cache_root_set = false;
static CONFIDENTIAL HDNode private_ckd_cache_root;
static int private_ckd_cache_index = 0;

static CONFIDENTIAL struct {
  bool set;
  size_t depth;
  uint32_t i[BIP32_CACHE_MAXDEPTH];
  HDNode node;
} private_ckd_cache[BIP32_CACHE_SIZE];

void bip32_cache_clear(void) {
  private_ckd_cache_root_set = false;
  private_ckd_cache_index = 0;
  memzero(&private_ckd_cache_root, sizeof(private_ckd_cache_root));
  memzero(private_ckd_cache, sizeof(private_ckd_cache));
}

int hdnode_private_ckd_cached(HDNode *inout, const uint32_t *i, size_t i_count,
                              uint32_t *fingerprint) {
  if (i_count == 0) {
    // no way how to compute parent fingerprint
    return 1;
  }
  if (i_count == 1) {
    if (fingerprint) {
      *fingerprint = hdnode_fingerprint(inout);
    }
    if (hdnode_private_ckd(inout, i[0]) == 0) return 0;
    return 1;
  }

  bool found = false;
  // if root is not set or not the same
  if (!private_ckd_cache_root_set ||
      memcmp(&private_ckd_cache_root, inout, sizeof(HDNode)) != 0) {
    // clear the cache
    private_ckd_cache_index = 0;
    memzero(private_ckd_cache, sizeof(private_ckd_cache));
    // setup new root
    memcpy(&private_ckd_cache_root, inout, sizeof(HDNode));
    private_ckd_cache_root_set = true;
  } else {
    // try to find parent
    int j = 0;
    for (j = 0; j < BIP32_CACHE_SIZE; j++) {
      if (private_ckd_cache[j].set &&
          private_ckd_cache[j].depth == i_count - 1 &&
          memcmp(private_ckd_cache[j].i, i, (i_count - 1) * sizeof(uint32_t)) ==
              0 &&
          private_ckd_cache[j].node.curve == inout->curve) {
        memcpy(inout, &(private_ckd_cache[j].node), sizeof(HDNode));
        found = true;
        break;
      }
    }
  }

  // else derive parent
  if (!found) {
    size_t k = 0;
    for (k = 0; k < i_count - 1; k++) {
      if (hdnode_private_ckd(inout, i[k]) == 0) return 0;
    }
    // and save it
    memzero(&(private_ckd_cache[private_ckd_cache_index]),
            sizeof(private_ckd_cache[private_ckd_cache_index]));
    private_ckd_cache[private_ckd_cache_index].set = true;
    private_ckd_cache[private_ckd_cache_index].depth = i_count - 1;
    memcpy(private_ckd_cache[private_ckd_cache_index].i, i,
           (i_count - 1) * sizeof(uint32_t));
    memcpy(&(private_ckd_cache[private_ckd_cache_index].node), inout,
           sizeof(HDNode));
    private_ckd_cache_index = (private_ckd_cache_index + 1) % BIP32_CACHE_SIZE;
  }

  if (fingerprint) {
    *fingerprint = hdnode_fingerprint(inout);
  }
  if (hdnode_private_ckd(inout, i[i_count - 1]) == 0) return 0;

  return 1;
}
#endif

int hdnode_get_address_raw(HDNode *node, uint32_t version, uint8_t *addr_raw) {
  if (hdnode_fill_public_key(node) != 0) {
    return 1;
  }
  ecdsa_get_address_raw(node->public_key, version, node->curve->hasher_pubkey,
                        addr_raw);
  return 0;
}

int hdnode_get_address(HDNode *node, uint32_t version, char *addr,
                       int addrsize) {
  if (hdnode_fill_public_key(node) != 0) {
    return 1;
  }
  ecdsa_get_address(node->public_key, version, node->curve->hasher_pubkey,
                    node->curve->hasher_base58, addr, addrsize);
  return 0;
}

int hdnode_fill_public_key(HDNode *node) {
  if (node->is_public_key_set) {
    return 0;
  }

#if USE_BIP32_25519_CURVES
  if (node->curve->params) {
    if (ecdsa_get_public_key33(node->curve->params, node->private_key,
                               node->public_key) != 0) {
      return 1;
    }
  } else {
    // According to SLIP-10, curve25519 and ed25519 use the prefix 0x00
    node->public_key[0] = 0;
    if (node->curve == &ed25519_info) {
      ed25519_publickey(node->private_key, node->public_key + 1);
    } else if (node->curve == &ed25519_sha3_info) {
      ed25519_publickey_sha3(node->private_key, node->public_key + 1);
#if USE_KECCAK
    } else if (node->curve == &ed25519_keccak_info) {
      ed25519_publickey_keccak(node->private_key, node->public_key + 1);
#endif
    } else if (node->curve == &curve25519_info) {
      curve25519_scalarmult_basepoint(node->public_key + 1, node->private_key);
#if USE_CARDANO
    } else if (node->curve == &ed25519_cardano_info) {
      ed25519_publickey_ext(node->private_key, node->public_key + 1);
#endif
    }
  }
#else

  if (ecdsa_get_public_key33(node->curve->params, node->private_key,
                             node->public_key) != 0) {
    return 1;
  }
#endif
  node->is_public_key_set = true;
  return 0;
}

#if USE_ETHEREUM
int hdnode_get_ethereum_pubkeyhash(const HDNode *node, uint8_t *pubkeyhash) {
  uint8_t buf[65] = {0};
  SHA3_CTX ctx = {0};

  /* get uncompressed public key */
  if (ecdsa_get_public_key65(node->curve->params, node->private_key, buf) !=
      0) {
    return 0;
  }

  /* compute sha3 of x and y coordinate without 04 prefix */
  sha3_256_Init(&ctx);
  sha3_Update(&ctx, buf + 1, 64);
  keccak_Final(&ctx, buf);

  /* result are the least significant 160 bits */
  memcpy(pubkeyhash, buf + 12, 20);

  return 1;
}
#endif

#if USE_NEM
int hdnode_get_nem_address(HDNode *node, uint8_t version, char *address) {
  if (node->curve != &ed25519_keccak_info) {
    return 0;
  }

  if (hdnode_fill_public_key(node) != 0) {
    return 0;
  }

  return nem_get_address(&node->public_key[1], version, address);
}

int hdnode_get_nem_shared_key(const HDNode *node,
                              const ed25519_public_key peer_public_key,
                              const uint8_t *salt, ed25519_public_key mul,
                              uint8_t *shared_key) {
  if (node->curve != &ed25519_keccak_info) {
    return 0;
  }

  // sizeof(ed25519_public_key) == SHA3_256_DIGEST_LENGTH
  if (mul == NULL) mul = shared_key;

  if (ed25519_scalarmult_keccak(mul, node->private_key, peer_public_key)) {
    return 0;
  }

  for (size_t i = 0; i < 32; i++) {
    shared_key[i] = mul[i] ^ salt[i];
  }

  keccak_256(shared_key, 32, shared_key);
  return 1;
}

int hdnode_nem_encrypt(const HDNode *node, const ed25519_public_key public_key,
                       const uint8_t *iv_immut, const uint8_t *salt,
                       const uint8_t *payload, size_t size, uint8_t *buffer) {
  uint8_t last_block[AES_BLOCK_SIZE] = {0};
  uint8_t remainder = size % AES_BLOCK_SIZE;

  // Round down to last whole block
  size -= remainder;
  // Copy old last block
  memcpy(last_block, &payload[size], remainder);
  // Pad new last block with number of missing bytes
  memset(&last_block[remainder], AES_BLOCK_SIZE - remainder,
         AES_BLOCK_SIZE - remainder);

  // the IV gets mutated, so we make a copy not to touch the original
  uint8_t iv[AES_BLOCK_SIZE] = {0};
  memcpy(iv, iv_immut, AES_BLOCK_SIZE);

  uint8_t shared_key[SHA3_256_DIGEST_LENGTH] = {0};
  if (!hdnode_get_nem_shared_key(node, public_key, salt, NULL, shared_key)) {
    return 0;
  }

  aes_encrypt_ctx ctx = {0};

  int ret = aes_encrypt_key256(shared_key, &ctx);
  memzero(shared_key, sizeof(shared_key));

  if (ret != EXIT_SUCCESS) {
    return 0;
  }

  if (aes_cbc_encrypt(payload, buffer, size, iv, &ctx) != EXIT_SUCCESS) {
    return 0;
  }

  if (aes_cbc_encrypt(last_block, &buffer[size], sizeof(last_block), iv,
                      &ctx) != EXIT_SUCCESS) {
    return 0;
  }

  return 1;
}

int hdnode_nem_decrypt(const HDNode *node, const ed25519_public_key public_key,
                       uint8_t *iv, const uint8_t *salt, const uint8_t *payload,
                       size_t size, uint8_t *buffer) {
  uint8_t shared_key[SHA3_256_DIGEST_LENGTH] = {0};

  if (!hdnode_get_nem_shared_key(node, public_key, salt, NULL, shared_key)) {
    return 0;
  }

  aes_decrypt_ctx ctx = {0};

  int ret = aes_decrypt_key256(shared_key, &ctx);
  memzero(shared_key, sizeof(shared_key));

  if (ret != EXIT_SUCCESS) {
    return 0;
  }

  if (aes_cbc_decrypt(payload, buffer, size, iv, &ctx) != EXIT_SUCCESS) {
    return 0;
  }

  return 1;
}
#endif

// msg is a data to be signed
// msg_len is the message length
int hdnode_sign(HDNode *node, const uint8_t *msg, uint32_t msg_len,
                HasherType hasher_sign, uint8_t *sig, uint8_t *pby,
                int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
  if (node->curve->params) {
    return ecdsa_sign(node->curve->params, hasher_sign, node->private_key, msg,
                      msg_len, sig, pby, is_canonical);
  } else if (node->curve == &curve25519_info) {
    return 1;  // signatures are not supported
  } else {
    if (node->curve == &ed25519_info) {
      ed25519_sign(msg, msg_len, node->private_key, sig);
    } else if (node->curve == &ed25519_sha3_info) {
      ed25519_sign_sha3(msg, msg_len, node->private_key, sig);
#if USE_KECCAK
    } else if (node->curve == &ed25519_keccak_info) {
      ed25519_sign_keccak(msg, msg_len, node->private_key, sig);
#endif
    } else {
      return 1;  // unknown or unsupported curve
    }
    return 0;
  }
}

int hdnode_sign_digest(HDNode *node, const uint8_t *digest, uint8_t *sig,
                       uint8_t *pby,
                       int (*is_canonical)(uint8_t by, uint8_t sig[64])) {
  if (node->curve->params) {
    return ecdsa_sign_digest(node->curve->params, node->private_key, digest,
                             sig, pby, is_canonical);
  } else if (node->curve == &curve25519_info) {
    return 1;  // signatures are not supported
  } else {
    return hdnode_sign(node, digest, 32, 0, sig, pby, is_canonical);
  }
}

int hdnode_get_shared_key(const HDNode *node, const uint8_t *peer_public_key,
                          uint8_t *session_key, int *result_size) {
  // Use elliptic curve Diffie-Helman to compute shared session key
  if (node->curve->params) {
    if (ecdh_multiply(node->curve->params, node->private_key, peer_public_key,
                      session_key) != 0) {
      return 1;
    }
    *result_size = 65;
    return 0;
  } else if (node->curve == &curve25519_info) {
    // The prefix 0x04 doesn't make sense here, and may be changed or removed in
    // the future
    session_key[0] = 0x04;
    if (peer_public_key[0] != 0x40) {
      return 1;  // Curve25519 public key should start with 0x40 byte.
    }
    curve25519_scalarmult(session_key + 1, node->private_key,
                          peer_public_key + 1);
    *result_size = 33;
    return 0;
  } else {
    *result_size = 0;
    return 1;  // ECDH is not supported
  }
}

static int hdnode_serialize(const HDNode *node, uint32_t fingerprint,
                            uint32_t version, bool use_private, char *str,
                            int strsize) {
  uint8_t node_data[78] = {0};
  write_be(node_data, version);
  node_data[4] = node->depth;
  write_be(node_data + 5, fingerprint);
  write_be(node_data + 9, node->child_num);
  memcpy(node_data + 13, node->chain_code, 32);
  if (use_private) {
    node_data[45] = 0;
    memcpy(node_data + 46, node->private_key, 32);
  } else {
    memcpy(node_data + 45, node->public_key, 33);
  }
  int ret = base58_encode_check(node_data, sizeof(node_data),
                                node->curve->hasher_base58, str, strsize);
  memzero(node_data, sizeof(node_data));
  return ret;
}

int hdnode_serialize_public(const HDNode *node, uint32_t fingerprint,
                            uint32_t version, char *str, int strsize) {
  return hdnode_serialize(node, fingerprint, version, false, str, strsize);
}

int hdnode_serialize_private(const HDNode *node, uint32_t fingerprint,
                             uint32_t version, char *str, int strsize) {
  return hdnode_serialize(node, fingerprint, version, true, str, strsize);
}

// check for validity of curve point in case of public data not performed
static int hdnode_deserialize(const char *str, uint32_t version,
                              bool use_private, const char *curve, HDNode *node,
                              uint32_t *fingerprint) {
  uint8_t node_data[78] = {0};
  memzero(node, sizeof(HDNode));
  node->curve = get_curve_by_name(curve);
  if (base58_decode_check(str, node->curve->hasher_base58, node_data,
                          sizeof(node_data)) != sizeof(node_data)) {
    return -1;
  }
  uint32_t ver = read_be(node_data);
  if (ver != version) {
    return -3;  // invalid version
  }
  if (use_private) {
    // invalid data
    if (node_data[45]) {
      return -2;
    }
    memcpy(node->private_key, node_data + 46, 32);
    memzero(node->public_key, sizeof(node->public_key));
    node->is_public_key_set = false;
  } else {
    memzero(node->private_key, sizeof(node->private_key));
    memcpy(node->public_key, node_data + 45, 33);
    node->is_public_key_set = true;
  }
  node->depth = node_data[4];
  if (fingerprint) {
    *fingerprint = read_be(node_data + 5);
  }
  node->child_num = read_be(node_data + 9);
  memcpy(node->chain_code, node_data + 13, 32);
  return 0;
}

int hdnode_deserialize_public(const char *str, uint32_t version,
                              const char *curve, HDNode *node,
                              uint32_t *fingerprint) {
  return hdnode_deserialize(str, version, false, curve, node, fingerprint);
}

int hdnode_deserialize_private(const char *str, uint32_t version,
                               const char *curve, HDNode *node,
                               uint32_t *fingerprint) {
  return hdnode_deserialize(str, version, true, curve, node, fingerprint);
}

const curve_info *get_curve_by_name(const char *curve_name) {
  if (curve_name == 0) {
    return 0;
  }
  if (strcmp(curve_name, SECP256K1_NAME) == 0) {
    return &secp256k1_info;
  }
  if (strcmp(curve_name, SECP256K1_DECRED_NAME) == 0) {
    return &secp256k1_decred_info;
  }
  if (strcmp(curve_name, SECP256K1_GROESTL_NAME) == 0) {
    return &secp256k1_groestl_info;
  }
  if (strcmp(curve_name, SECP256K1_SMART_NAME) == 0) {
    return &secp256k1_smart_info;
  }
  if (strcmp(curve_name, NIST256P1_NAME) == 0) {
    return &nist256p1_info;
  }
  if (strcmp(curve_name, ED25519_NAME) == 0) {
    return &ed25519_info;
  }
#if USE_CARDANO
  if (strcmp(curve_name, ED25519_CARDANO_NAME) == 0) {
    return &ed25519_cardano_info;
  }
#endif
  if (strcmp(curve_name, ED25519_SHA3_NAME) == 0) {
    return &ed25519_sha3_info;
  }
#if USE_KECCAK
  if (strcmp(curve_name, ED25519_KECCAK_NAME) == 0) {
    return &ed25519_keccak_info;
  }
#endif
  if (strcmp(curve_name, CURVE25519_NAME) == 0) {
    return &curve25519_info;
  }
  return 0;
}