/** * Copyright (c) 2013-2014 Tomas Dzetkulic * Copyright (c) 2013-2014 Pavol Rusnak * Copyright (c) 2015 Jochen Hoenicke * Copyright (c) 2016 Alex Beregszaszi * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include "bignum.h" #include #include #include #include #include "memzero.h" #include "script.h" /* This library implements 256-bit numbers arithmetic. An unsigned 256-bit number is represented by a bignum256 structure, that is an array of nine 32-bit values called limbs. Limbs are digits of the number in the base 2**29 representation in the little endian order. This means that bignum256 x; represents the value sum([x[i] * 2**(29*i) for i in range(9)). A limb of a bignum256 is *normalized* iff it's less than 2**29. A bignum256 is *normalized* iff every its limb is normalized. A number is *fully reduced modulo p* iff it is less than p. A number is *partly reduced modulo p* iff is is less than 2*p. The number p is usually a prime number such that 2^256 - 2^224 <= p <= 2^256. All functions except bn_fast_mod expect that all their bignum256 inputs are normalized. (The function bn_fast_mod allows the input number to have the most significant limb unnormalized). All bignum256 outputs of all functions are guaranteed to be normalized. A number can be partly reduced with bn_fast_mod, a partly reduced number can be fully reduced with bn_mod. A function has *constant control flow with regard to its argument* iff the order in which instructions of the function are executed doesn't depend on the value of the argument. A function has *constant memory access flow with regard to its argument* iff the memory addresses that are acessed and the order in which they are accessed don't depend on the value of the argument. A function *has contant control (memory access) flow* iff it has constant control (memory access) flow with regard to all its arguments. The following function has contant control flow with regard to its arugment n, however is doesn't have constant memory access flow with regard to it: void (int n, int *a) } a[0] = 0; a[n] = 0; // memory address reveals the value of n } Unless stated otherwise all functions are supposed to have both constant control flow and constant memory access flow. */ #define BN_MAX_DECIMAL_DIGITS \ 79 // floor(log(2**(LIMBS * BITS_PER_LIMB), 10)) + 1 // y = (bignum256) x // Assumes x is normalized and x < 2**261 == 2**(BITS_PER_LIMB * LIMBS) // Guarantees y is normalized void bn_copy_lower(const bignum512 *x, bignum256 *y) { for (int i = 0; i < BN_LIMBS; i++) { y->val[i] = x->val[i]; } } // out_number = (bignum256) in_number // Assumes in_number is a raw bigendian 256-bit number // Guarantees out_number is normalized void bn_read_be(const uint8_t *in_number, bignum256 *out_number) { uint32_t temp = 0; for (int i = 0; i < BN_LIMBS - 1; i++) { uint32_t limb = read_be(in_number + (BN_LIMBS - 2 - i) * 4); temp |= limb << (BN_EXTRA_BITS * i); out_number->val[i] = temp & BN_LIMB_MASK; temp = limb >> (32 - BN_EXTRA_BITS * (i + 1)); } out_number->val[BN_LIMBS - 1] = temp; } // out_number = (bignum512) in_number // Assumes in_number is a raw bigendian 512-bit number // Guarantees out_number is normalized void bn_read_be_512(const uint8_t *in_number, bignum512 *out_number) { bignum256 lower = {0}, upper = {0}; bn_read_be(in_number + 32, &lower); bn_read_be(in_number, &upper); const int shift_length = BN_BITS_PER_LIMB * BN_LIMBS - 256; uint32_t shift = upper.val[0] & ((1 << shift_length) - 1); for (int i = 0; i < shift_length; i++) { bn_rshift(&upper); } lower.val[BN_LIMBS - 1] |= shift << (BN_BITS_PER_LIMB - shift_length); for (int i = 0; i < BN_LIMBS; i++) { out_number->val[i] = lower.val[i]; } for (int i = 0; i < BN_LIMBS; i++) { out_number->val[i + BN_LIMBS] = upper.val[i]; } } // out_number = (256BE) in_number // Assumes in_number < 2**256 // Guarantess out_number is a raw bigendian 256-bit number void bn_write_be(const bignum256 *in_number, uint8_t *out_number) { uint32_t temp = in_number->val[BN_LIMBS - 1]; for (int i = BN_LIMBS - 2; i >= 0; i--) { uint32_t limb = in_number->val[i]; temp = (temp << (BN_BITS_PER_LIMB - BN_EXTRA_BITS * i)) | (limb >> (BN_EXTRA_BITS * i)); write_be(out_number + (BN_LIMBS - 2 - i) * 4, temp); temp = limb; } } // out_number = (bignum256) in_number // Assumes in_number is a raw little endian 256-bit number // Guarantees out_number is normalized void bn_read_le(const uint8_t *in_number, bignum256 *out_number) { uint32_t temp = 0; for (int i = 0; i < BN_LIMBS - 1; i++) { uint32_t limb = read_le(in_number + i * 4); temp |= limb << (BN_EXTRA_BITS * i); out_number->val[i] = temp & BN_LIMB_MASK; temp = limb >> (32 - BN_EXTRA_BITS * (i + 1)); } out_number->val[BN_LIMBS - 1] = temp; } // out_number = (256LE) in_number // Assumes in_number < 2**256 // Guarantess out_number is a raw little endian 256-bit number void bn_write_le(const bignum256 *in_number, uint8_t *out_number) { uint32_t temp = in_number->val[BN_LIMBS - 1]; for (int i = BN_LIMBS - 2; i >= 0; i--) { uint32_t limb = in_number->val[i]; temp = (temp << (BN_BITS_PER_LIMB - BN_EXTRA_BITS * i)) | (limb >> (BN_EXTRA_BITS * i)); write_le(out_number + i * 4, temp); temp = limb; } } // out_number = (bignum256) in_number // Guarantees out_number is normalized void bn_read_uint32(uint32_t in_number, bignum256 *out_number) { out_number->val[0] = in_number & BN_LIMB_MASK; out_number->val[1] = in_number >> BN_BITS_PER_LIMB; for (uint32_t i = 2; i < BN_LIMBS; i++) out_number->val[i] = 0; } // out_number = (bignum256) in_number // Guarantees out_number is normalized void bn_read_uint64(uint64_t in_number, bignum256 *out_number) { out_number->val[0] = in_number & BN_LIMB_MASK; out_number->val[1] = (in_number >>= BN_BITS_PER_LIMB) & BN_LIMB_MASK; out_number->val[2] = in_number >> BN_BITS_PER_LIMB; for (uint32_t i = 3; i < BN_LIMBS; i++) out_number->val[i] = 0; } // Returns the bitsize of x // Assumes x is normalized // The function doesn't have neither constant control flow nor constant memory // access flow int bn_bitcount(const bignum256 *x) { for (int i = BN_LIMBS - 1; i >= 0; i--) { uint32_t limb = x->val[i]; if (limb != 0) { // __builtin_clz returns the number of leading zero bits starting at the // most significant bit position return i * BN_BITS_PER_LIMB + (32 - __builtin_clz(limb)); } } return 0; } // Returns the number of decimal digits of x; if x is 0, returns 1 // Assumes x is normalized // The function doesn't have neither constant control flow nor constant memory // access flow unsigned int bn_digitcount(const bignum256 *x) { bignum256 val = {0}; bn_copy(x, &val); unsigned int digits = 1; for (unsigned int i = 0; i < BN_MAX_DECIMAL_DIGITS; i += 3) { uint32_t limb = 0; bn_divmod1000(&val, &limb); if (limb >= 100) { digits = i + 3; } else if (limb >= 10) { digits = i + 2; } else if (limb >= 1) { digits = i + 1; } } memzero(&val, sizeof(val)); return digits; } // x = 0 // Guarantees x is normalized void bn_zero(bignum256 *x) { for (int i = 0; i < BN_LIMBS; i++) { x->val[i] = 0; } } // x = 1 // Guarantees x is normalized void bn_one(bignum256 *x) { x->val[0] = 1; for (int i = 1; i < BN_LIMBS; i++) { x->val[i] = 0; } } // Returns x == 0 // Assumes x is normalized int bn_is_zero(const bignum256 *x) { uint32_t result = 0; for (int i = 0; i < BN_LIMBS; i++) { result |= x->val[i]; } return !result; } // Returns x == 1 // Assumes x is normalized int bn_is_one(const bignum256 *x) { uint32_t result = x->val[0] ^ 1; for (int i = 1; i < BN_LIMBS; i++) { result |= x->val[i]; } return !result; } // Returns x < y // Assumes x, y are normalized int bn_is_less(const bignum256 *x, const bignum256 *y) { uint32_t res1 = 0; uint32_t res2 = 0; for (int i = BN_LIMBS - 1; i >= 0; i--) { res1 = (res1 << 1) | (x->val[i] < y->val[i]); res2 = (res2 << 1) | (x->val[i] > y->val[i]); } return res1 > res2; } // Returns x == y // Assumes x, y are normalized int bn_is_equal(const bignum256 *x, const bignum256 *y) { uint32_t result = 0; for (int i = 0; i < BN_LIMBS; i++) { result |= x->val[i] ^ y->val[i]; } return !result; } // res = cond if truecase else falsecase // Assumes cond is either 0 or 1 // Works properly even if &res == &truecase or &res == &falsecase or // &truecase == &falsecase or &res == &truecase == &falsecase void bn_cmov(bignum256 *res, volatile uint32_t cond, const bignum256 *truecase, const bignum256 *falsecase) { // Intentional use of bitwise OR operator to ensure constant-time assert((int)(cond == 1) | (int)(cond == 0)); uint32_t tmask = -cond; // tmask = 0xFFFFFFFF if cond else 0x00000000 uint32_t fmask = ~tmask; // fmask = 0x00000000 if cond else 0xFFFFFFFF for (int i = 0; i < BN_LIMBS; i++) { res->val[i] = (truecase->val[i] & tmask) | (falsecase->val[i] & fmask); } } // x = -x % prime if cond else x, // Explicitly x = (3 * prime - x if x > prime else 2 * prime - x) if cond else // else (x if x > prime else x + prime) // Assumes x is normalized and partly reduced // Assumes cond is either 1 or 0 // Guarantees x is normalized // Assumes prime is normalized and // 0 < prime < 2**260 == 2**(BITS_PER_LIMB * LIMBS - 1) void bn_cnegate(volatile uint32_t cond, bignum256 *x, const bignum256 *prime) { // Intentional use of bitwise OR operator to ensure constant time assert((int)(cond == 1) | (int)(cond == 0)); uint32_t tmask = -cond; // tmask = 0xFFFFFFFF if cond else 0x00000000 uint32_t fmask = ~tmask; // fmask = 0x00000000 if cond else 0xFFFFFFFF bn_mod(x, prime); // x < prime uint32_t acc1 = 1; uint32_t acc2 = 0; for (int i = 0; i < BN_LIMBS; i++) { acc1 += (BN_BASE - 1) + 2 * prime->val[i] - x->val[i]; // acc1 neither overflows 32 bits nor underflows 0 // Proof: // acc1 + (BASE - 1) + 2 * prime[i] - x[i] // >= (BASE - 1) - x >= (2**BITS_PER_LIMB - 1) - (2**BITS_PER_LIMB - 1) // == 0 // acc1 + (BASE - 1) + 2 * prime[i] - x[i] // <= acc1 + (BASE - 1) + 2 * prime[i] // <= (2**(32 - BITS_PER_LIMB) - 1) + 2 * (2**BITS_PER_LIMB - 1) + // (2**BITS_PER_LIMB - 1) // == 7 + 3 * 2**29 < 2**32 acc2 += prime->val[i] + x->val[i]; // acc2 doesn't overflow 32 bits // Proof: // acc2 + prime[i] + x[i] // <= 2**(32 - BITS_PER_LIMB) - 1 + 2 * (2**BITS_PER_LIMB - 1) // == 2**(32 - BITS_PER_LIMB) + 2**(BITS_PER_LIMB + 1) - 2 // == 2**30 + 5 < 2**32 // x = acc1 & LIMB_MASK if cond else acc2 & LIMB_MASK x->val[i] = ((acc1 & tmask) | (acc2 & fmask)) & BN_LIMB_MASK; acc1 >>= BN_BITS_PER_LIMB; // acc1 <= 7 == 2**(32 - BITS_PER_LIMB) - 1 // acc1 == 2**(BITS_PER_LIMB * (i + 1)) + 2 * prime[:i + 1] - x[:i + 1] // >> BITS_PER_LIMB * (i + 1) acc2 >>= BN_BITS_PER_LIMB; // acc2 <= 7 == 2**(32 - BITS_PER_LIMB) - 1 // acc2 == prime[:i + 1] + x[:i + 1] >> BITS_PER_LIMB * (i + 1) } // assert(acc1 == 1); // assert prime <= 2**260 // assert(acc2 == 0); // clang-format off // acc1 == 1 // Proof: // acc1 == 2**(BITS_PER_LIMB * LIMBS) + 2 * prime[:LIMBS] - x[:LIMBS] >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + 2 * prime - x >> BITS_PER_LIMB * LIMBS // <= 2**(BITS_PER_LIMB * LIMBS) + 2 * prime >> BITS_PER_LIMB * LIMBS // <= 2**(BITS_PER_LIMB * LIMBS) + 2 * (2**(BITS_PER_LIMB * LIMBS - 1) - 1) >> BITS_PER_LIMB * LIMBS // <= 2**(BITS_PER_LIMB * LIMBS) + 2**(BITS_PER_LIMB * LIMBS) - 2 >> BITS_PER_LIMB * LIMBS // == 1 // acc1 == 2**(BITS_PER_LIMB * LIMBS) + 2 * prime[:LIMBS] - x[:LIMBS] >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + 2 * prime - x >> BITS_PER_LIMB * LIMBS // >= 2**(BITS_PER_LIMB * LIMBS) + 0 >> BITS_PER_LIMB * LIMBS // == 1 // acc2 == 0 // Proof: // acc2 == prime[:LIMBS] + x[:LIMBS] >> BITS_PER_LIMB * LIMBS // == prime + x >> BITS_PER_LIMB * LIMBS // <= 2 * prime - 1 >> BITS_PER_LIMB * LIMBS // <= 2 * (2**(BITS_PER_LIMB * LIMBS - 1) - 1) - 1 >> 261 // == 2**(BITS_PER_LIMB * LIMBS) - 3 >> BITS_PER_LIMB * LIMBS // == 0 // clang-format on } // x <<= 1 // Assumes x is normalized, x < 2**260 == 2**(LIMBS*BITS_PER_LIMB - 1) // Guarantees x is normalized void bn_lshift(bignum256 *x) { for (int i = BN_LIMBS - 1; i > 0; i--) { x->val[i] = ((x->val[i] << 1) & BN_LIMB_MASK) | (x->val[i - 1] >> (BN_BITS_PER_LIMB - 1)); } x->val[0] = (x->val[0] << 1) & BN_LIMB_MASK; } // x >>= 1, i.e. x = floor(x/2) // Assumes x is normalized // Guarantees x is normalized // If x is partly reduced (fully reduced) modulo prime, // guarantess x will be partly reduced (fully reduced) modulo prime void bn_rshift(bignum256 *x) { for (int i = 0; i < BN_LIMBS - 1; i++) { x->val[i] = (x->val[i] >> 1) | ((x->val[i + 1] & 1) << (BN_BITS_PER_LIMB - 1)); } x->val[BN_LIMBS - 1] >>= 1; } // Sets i-th least significant bit (counting from zero) // Assumes x is normalized and 0 <= i < 261 == LIMBS*BITS_PER_LIMB // Guarantees x is normalized // The function has constant control flow but not constant memory access flow // with regard to i void bn_setbit(bignum256 *x, uint16_t i) { assert(i < BN_LIMBS * BN_BITS_PER_LIMB); x->val[i / BN_BITS_PER_LIMB] |= (1u << (i % BN_BITS_PER_LIMB)); } // clears i-th least significant bit (counting from zero) // Assumes x is normalized and 0 <= i < 261 == LIMBS*BITS_PER_LIMB // Guarantees x is normalized // The function has constant control flow but not constant memory access flow // with regard to i void bn_clearbit(bignum256 *x, uint16_t i) { assert(i < BN_LIMBS * BN_BITS_PER_LIMB); x->val[i / BN_BITS_PER_LIMB] &= ~(1u << (i % BN_BITS_PER_LIMB)); } // returns i-th least significant bit (counting from zero) // Assumes x is normalized and 0 <= i < 261 == LIMBS*BITS_PER_LIMB // The function has constant control flow but not constant memory access flow // with regard to i uint32_t bn_testbit(const bignum256 *x, uint16_t i) { assert(i < BN_LIMBS * BN_BITS_PER_LIMB); return (x->val[i / BN_BITS_PER_LIMB] >> (i % BN_BITS_PER_LIMB)) & 1; } // res = x ^ y // Assumes x, y are normalized // Guarantees res is normalized // Works properly even if &res == &x or &res == &y or &res == &x == &y void bn_xor(bignum256 *res, const bignum256 *x, const bignum256 *y) { for (int i = 0; i < BN_LIMBS; i++) { res->val[i] = x->val[i] ^ y->val[i]; } } // x = x / 2 % prime // Explicitly x = x / 2 if is_even(x) else (x + prime) / 2 // Assumes x is normalized, x + prime < 261 == LIMBS * BITS_PER_LIMB // Guarantees x is normalized // If x is partly reduced (fully reduced) modulo prime, // guarantess x will be partly reduced (fully reduced) modulo prime // Assumes prime is an odd number and normalized void bn_mult_half(bignum256 *x, const bignum256 *prime) { // x = x / 2 if is_even(x) else (x + prime) / 2 uint32_t x_is_odd_mask = -(x->val[0] & 1); // x_is_odd_mask = 0xFFFFFFFF if is_odd(x) else 0 uint32_t acc = (x->val[0] + (prime->val[0] & x_is_odd_mask)) >> 1; // acc < 2**BITS_PER_LIMB // Proof: // acc == x[0] + prime[0] & x_is_odd_mask >> 1 // <= (2**(BITS_PER_LIMB) - 1) + (2**(BITS_PER_LIMB) - 1) >> 1 // == 2**(BITS_PER_LIMB + 1) - 2 >> 1 // < 2**(BITS_PER_LIMB) for (int i = 0; i < BN_LIMBS - 1; i++) { uint32_t temp = (x->val[i + 1] + (prime->val[i + 1] & x_is_odd_mask)); // temp < 2**(BITS_PER_LIMB + 1) // Proof: // temp == x[i + 1] + val[i + 1] & x_is_odd_mask // <= (2**(BITS_PER_LIMB) - 1) + (2**(BITS_PER_LIMB) - 1) // < 2**(BITS_PER_LIMB + 1) acc += (temp & 1) << (BN_BITS_PER_LIMB - 1); // acc doesn't overflow 32 bits // Proof: // acc + (temp & 1 << BITS_PER_LIMB - 1) // <= 2**(BITS_PER_LIMB + 1) + 2**(BITS_PER_LIMB - 1) // <= 2**30 + 2**28 < 2**32 x->val[i] = acc & BN_LIMB_MASK; acc >>= BN_BITS_PER_LIMB; acc += temp >> 1; // acc < 2**(BITS_PER_LIMB + 1) // Proof: // acc + (temp >> 1) // <= (2**(32 - BITS_PER_LIMB) - 1) + (2**(BITS_PER_LIMB + 1) - 1 >> 1) // == 7 + 2**(BITS_PER_LIMB) - 1 < 2**(BITS_PER_LIMB + 1) // acc == x[:i+2]+(prime[:i+2] & x_is_odd_mask) >> BITS_PER_LIMB * (i+1) } x->val[BN_LIMBS - 1] = acc; // assert(acc >> BITS_PER_LIMB == 0); // acc >> BITS_PER_LIMB == 0 // Proof: // acc // == x[:LIMBS] + (prime[:LIMBS] & x_is_odd_mask) >> BITS_PER_LIMB*LIMBS // == x + (prime & x_is_odd_mask) >> BITS_PER_LIMB * LIMBS // <= x + prime >> BITS_PER_LIMB * LIMBS // <= 2**(BITS_PER_LIMB * LIMBS) - 1 >> BITS_PER_LIMB * LIMBS // == 0 } // x = x * k % prime // Assumes x is normalized, 0 <= k <= 8 = 2**(32 - BITS_PER_LIMB) // Assumes prime is normalized and 2^256 - 2^224 <= prime <= 2^256 // Guarantees x is normalized and partly reduced modulo prime void bn_mult_k(bignum256 *x, uint8_t k, const bignum256 *prime) { assert(k <= 8); for (int i = 0; i < BN_LIMBS; i++) { x->val[i] = k * x->val[i]; // x[i] doesn't overflow 32 bits // k * x[i] <= 2**(32 - BITS_PER_LIMB) * (2**BITS_PER_LIMB - 1) // < 2**(32 - BITS_PER_LIMB) * 2**BITS_PER_LIMB == 2**32 } bn_fast_mod(x, prime); } // Reduces partly reduced x modulo prime // Explicitly x = x if x < prime else x - prime // Assumes x is partly reduced modulo prime // Guarantees x is fully reduced modulo prime // Assumes prime is nonzero and normalized void bn_mod(bignum256 *x, const bignum256 *prime) { uint32_t x_less_prime = bn_is_less(x, prime); bignum256 temp = {0}; bn_subtract(x, prime, &temp); bn_cmov(x, x_less_prime, x, &temp); memzero(&temp, sizeof(temp)); } // Auxiliary function for bn_multiply // res = k * x // Assumes k and x are normalized // Guarantees res is normalized 18 digit little endian number in base 2**29 void bn_multiply_long(const bignum256 *k, const bignum256 *x, bignum512 *res) { // Uses long multiplication in base 2**29, see // https://en.wikipedia.org/wiki/Multiplication_algorithm#Long_multiplication uint64_t acc = 0; // compute lower half for (int i = 0; i < BN_LIMBS; i++) { for (int j = 0; j <= i; j++) { acc += k->val[j] * (uint64_t)x->val[i - j]; // acc doesn't overflow 64 bits // Proof: // acc <= acc + sum([k[j] * x[i-j] for j in range(i)]) // <= (2**(64 - BITS_PER_LIMB) - 1) + // LIMBS * (2**BITS_PER_LIMB - 1) * (2**BITS_PER_LIMB - 1) // == (2**35 - 1) + 9 * (2**29 - 1) * (2**29 - 1) // <= 2**35 + 9 * 2**58 < 2**64 } res->val[i] = acc & BN_LIMB_MASK; acc >>= BN_BITS_PER_LIMB; // acc <= 2**35 - 1 == 2**(64 - BITS_PER_LIMB) - 1 } // compute upper half for (int i = BN_LIMBS; i < 2 * BN_LIMBS - 1; i++) { for (int j = i - BN_LIMBS + 1; j < BN_LIMBS; j++) { acc += k->val[j] * (uint64_t)x->val[i - j]; // acc doesn't overflow 64 bits // Proof: // acc <= acc + sum([k[j] * x[i-j] for j in range(i)]) // <= (2**(64 - BITS_PER_LIMB) - 1) // LIMBS * (2**BITS_PER_LIMB - 1) * (2**BITS_PER_LIMB - 1) // == (2**35 - 1) + 9 * (2**29 - 1) * (2**29 - 1) // <= 2**35 + 9 * 2**58 < 2**64 } res->val[i] = acc & (BN_BASE - 1); acc >>= BN_BITS_PER_LIMB; // acc < 2**35 == 2**(64 - BITS_PER_LIMB) } res->val[2 * BN_LIMBS - 1] = acc; } // Auxiliary function for bn_multiply // Assumes 0 <= d <= 8 == LIMBS - 1 // Assumes res is normalized and res < 2**(256 + 29*d + 31) // Guarantess res in normalized and res < 2 * prime * 2**(29*d) // Assumes prime is normalized, 2**256 - 2**224 <= prime <= 2**256 void bn_multiply_reduce_step(bignum512 *res, const bignum256 *prime, uint32_t d) { // clang-format off // Computes res = res - (res // 2**(256 + BITS_PER_LIMB * d)) * prime * 2**(BITS_PER_LIMB * d) // res - (res // 2**(256 + BITS_PER_LIMB * d)) * prime * 2**(BITS_PER_LIMB * d) < 2 * prime * 2**(BITS_PER_LIMB * d) // Proof: // res - res // (2**(256 + BITS_PER_LIMB * d)) * 2**(BITS_PER_LIMB * d) * prime // == res - res // (2**(256 + BITS_PER_LIMB * d)) * 2**(BITS_PER_LIMB * d) * (2**256 - (2**256 - prime)) // == res - res // (2**(256 + BITS_PER_LIMB * d)) * 2**(BITS_PER_LIMB * d) * 2**256 + res // (2**(256 + BITS_PER_LIMB * d)) * 2**(BITS_PER_LIMB * d) * (2**256 - prime) // == (res % 2**(256 + BITS_PER_LIMB * d)) + res // (2**256 + BITS_PER_LIMB * d) * 2**(BITS_PER_LIMB * d) * (2**256 - prime) // <= (2**(256 + 29*d + 31) % 2**(256 + 29*d)) + (2**(256 + 29*d + 31) - 1) / (2**256 + 29*d) * 2**(29*d) * (2**256 - prime) // <= 2**(256 + 29*d) + 2**(256 + 29*d + 31) / (2**256 + 29*d) * 2**(29*d) * (2**256 - prime) // == 2**(256 + 29*d) + 2**31 * 2**(29*d) * (2**256 - prime) // == 2**(29*d) * (2**256 + 2**31 * (2*256 - prime)) // <= 2**(29*d) * (2**256 + 2**31 * 2*224) // <= 2**(29*d) * (2**256 + 2**255) // <= 2**(29*d) * 2 * (2**256 - 2**224) // <= 2 * prime * 2**(29*d) // clang-format on uint32_t coef = (res->val[d + BN_LIMBS - 1] >> (256 - (BN_LIMBS - 1) * BN_BITS_PER_LIMB)) + (res->val[d + BN_LIMBS] << ((BN_LIMBS * BN_BITS_PER_LIMB) - 256)); // coef == res // 2**(256 + BITS_PER_LIMB * d) // coef < 2**31 // Proof: // coef == res // 2**(256 + BITS_PER_LIMB * d) // < 2**(256 + 29 * d + 31) // 2**(256 + 29 * d) // == 2**31 const int shift = 31; uint64_t acc = 1ull << shift; for (int i = 0; i < BN_LIMBS; i++) { acc += (((uint64_t)(BN_BASE - 1)) << shift) + res->val[d + i] - prime->val[i] * (uint64_t)coef; // acc neither overflow 64 bits nor underflow zero // Proof: // acc + ((BASE - 1) << shift) + res[d + i] - prime[i] * coef // >= ((BASE - 1) << shift) - prime[i] * coef // == 2**shift * (2**BITS_PER_LIMB - 1) - (2**BITS_PER_LIMB - 1) * // (2**31 - 1) // == (2**shift - 2**31 + 1) * (2**BITS_PER_LIMB - 1) // == (2**31 - 2**31 + 1) * (2**29 - 1) // == 2**29 - 1 > 0 // acc + ((BASE - 1) << shift) + res[d + i] - prime[i] * coef // <= acc + ((BASE - 1) << shift) + res[d+i] // <= (2**(64 - BITS_PER_LIMB) - 1) + 2**shift * (2**BITS_PER_LIMB - 1) // + (2*BITS_PER_LIMB - 1) // == (2**(64 - BITS_PER_LIMB) - 1) + (2**shift + 1) * // (2**BITS_PER_LIMB - 1) // == (2**35 - 1) + (2**31 + 1) * (2**29 - 1) // <= 2**35 + 2**60 + 2**29 < 2**64 res->val[d + i] = acc & BN_LIMB_MASK; acc >>= BN_BITS_PER_LIMB; // acc <= 2**(64 - BITS_PER_LIMB) - 1 == 2**35 - 1 // acc == (1 << BITS_PER_LIMB * (i + 1) + shift) + res[d : d + i + 1] // - coef * prime[:i + 1] >> BITS_PER_LIMB * (i + 1) } // acc += (((uint64_t)(BASE - 1)) << shift) + res[d + LIMBS]; // acc >>= BITS_PER_LIMB; // assert(acc <= 1ul << shift); // clang-format off // acc == 1 << shift // Proof: // acc // == (1 << BITS_PER_LIMB * (LIMBS + 1) + shift) + res[d : d + LIMBS + 1] - coef * prime[:LIMBS] >> BITS_PER_LIMB * (LIMBS + 1) // == (1 << BITS_PER_LIMB * (LIMBS + 1) + shift) + res[d : d + LIMBS + 1] - coef * prime >> BITS_PER_LIMB * (LIMBS + 1) // == (1 << BITS_PER_LIMB * (LIMBS + 1) + shift) + (res[d : d + LIMBS + 1] - coef * prime) >> BITS_PER_LIMB * (LIMBS + 1) // <= (1 << BITS_PER_LIMB * (LIMBS + 1) + shift) + (res[:d] + BASE**d * res[d : d + LIMBS + 1] - BASE**d * coef * prime)//BASE**d >> BITS_PER_LIMB * (LIMBS + 1) // <= (1 << BITS_PER_LIMB * (LIMBS + 1) + shift) + (res - BASE**d * coef * prime) // BASE**d >> BITS_PER_LIMB * (LIMBS + 1) // == (1 << BITS_PER_LIMB * (LIMBS + 1) + shift) + (2 * prime * BASE**d) // BASE**d >> BITS_PER_LIMB * (LIMBS + 1) // <= (1 << 321) + 2 * 2**256 >> 290 // == 1 << 31 == 1 << shift // == (1 << BITS_PER_LIMB * (LIMBS + 1) + shift) + res[d : d + LIMBS + 1] - coef * prime[:LIMBS + 1] >> BITS_PER_LIMB * (LIMBS + 1) // >= (1 << BITS_PER_LIMB * (LIMBS + 1) + shift) + 0 >> BITS_PER_LIMB * (LIMBS + 1) // == 1 << shift // clang-format on res->val[d + BN_LIMBS] = 0; } // Partly reduces x // Assumes x in normalized and res < 2**519 // Guarantees x is normalized and partly reduced modulo prime // Assumes prime is normalized, 2**256 - 2**224 <= prime <= 2**256 void bn_reduce(bignum512 *x, const bignum256 *prime) { for (int i = BN_LIMBS - 1; i >= 0; i--) { // res < 2**(256 + 29*i + 31) // Proof: // if i == LIMBS - 1: // res < 2**519 // == 2**(256 + 29 * 8 + 31) // == 2**(256 + 29 * (LIMBS - 1) + 31) // else: // res < 2 * prime * 2**(29 * (i + 1)) // <= 2**256 * 2**(29*i + 29) < 2**(256 + 29*i + 31) bn_multiply_reduce_step(x, prime, i); } } // x = k * x % prime // Assumes k, x are normalized, k * x < 2**519 // Guarantees x is normalized and partly reduced modulo prime // Assumes prime is normalized, 2**256 - 2**224 <= prime <= 2**256 void bn_multiply(const bignum256 *k, bignum256 *x, const bignum256 *prime) { bignum512 res = {0}; bn_multiply_long(k, x, &res); bn_reduce(&res, prime); bn_copy_lower(&res, x); memzero(&res, sizeof(res)); } // Partly reduces x modulo prime // Assumes limbs of x except the last (the most significant) one are normalized // Assumes prime is normalized and 2^256 - 2^224 <= prime <= 2^256 // Guarantees x is normalized and partly reduced modulo prime void bn_fast_mod(bignum256 *x, const bignum256 *prime) { // Computes x = x - (x // 2**256) * prime // x < 2**((LIMBS - 1) * BITS_PER_LIMB + 32) == 2**264 // x - (x // 2**256) * prime < 2 * prime // Proof: // x - (x // 2**256) * prime // == x - (x // 2**256) * (2**256 - (2**256 - prime)) // == x - ((x // 2**256) * 2**256) + (x // 2**256) * (2**256 - prime) // == (x % prime) + (x // 2**256) * (2**256 - prime) // <= prime - 1 + (2**264 // 2**256) * (2**256 - prime) // <= 2**256 + 2**8 * 2**224 == 2**256 + 2**232 // < 2 * (2**256 - 2**224) // <= 2 * prime // x - (x // 2**256 - 1) * prime < 2 * prime // Proof: // x - (x // 2**256) * prime + prime // == x - (x // 2**256) * (2**256 - (2**256 - prime)) + prime // == x - ((x//2**256) * 2**256) + (x//2**256) * (2**256 - prime) + prime // == (x % prime) + (x // 2**256) * (2**256 - prime) + prime // <= 2 * prime - 1 + (2**264 // 2**256) * (2**256 - prime) // <= 2 * prime + 2**8 * 2**224 == 2**256 + 2**232 + 2**256 - 2**224 // < 2 * (2**256 - 2**224) // <= 2 * prime uint32_t coef = x->val[BN_LIMBS - 1] >> (256 - ((BN_LIMBS - 1) * BN_BITS_PER_LIMB)); // clang-format off // coef == x // 2**256 // 0 <= coef < 2**((LIMBS - 1) * BITS_PER_LIMB + 32 - 256) == 256 // Proof: //* Let x[[a : b] be the number consisting of a-th to (b-1)-th bit of the number x. // x[LIMBS - 1] >> (256 - ((LIMBS - 1) * BITS_PER_LIMB)) // == x[[(LIMBS - 1) * BITS_PER_LIMB : (LIMBS - 1) * BITS_PER_LIMB + 32]] >> (256 - ((LIMBS - 1) * BITS_PER_LIMB)) // == x[[256 - ((LIMBS - 1) * BITS_PER_LIMB) + (LIMBS - 1) * BITS_PER_LIMB : (LIMBS - 1) * BITS_PER_LIMB + 32]] // == x[[256 : (LIMBS - 1) * BITS_PER_LIMB + 32]] // == x[[256 : 264]] == x // 2**256 // clang-format on const int shift = 8; uint64_t acc = 1ull << shift; for (int i = 0; i < BN_LIMBS; i++) { acc += (((uint64_t)(BN_BASE - 1)) << shift) + x->val[i] - prime->val[i] * (uint64_t)coef; // acc neither overflows 64 bits nor underflows 0 // Proof: // acc + (BASE - 1 << shift) + x[i] - prime[i] * coef // >= (BASE - 1 << shift) - prime[i] * coef // >= 2**shift * (2**BITS_PER_LIMB - 1) - (2**BITS_PER_LIMB - 1) * 255 // == (2**shift - 255) * (2**BITS_PER_LIMB - 1) // == (2**8 - 255) * (2**29 - 1) == 2**29 - 1 >= 0 // acc + (BASE - 1 << shift) + x[i] - prime[i] * coef // <= acc + ((BASE - 1) << shift) + x[i] // <= (2**(64 - BITS_PER_LIMB) - 1) + 2**shift * (2**BITS_PER_LIMB - 1) // + (2**32 - 1) // == (2**35 - 1) + 2**8 * (2**29 - 1) + 2**32 // < 2**35 + 2**37 + 2**32 < 2**64 x->val[i] = acc & BN_LIMB_MASK; acc >>= BN_BITS_PER_LIMB; // acc <= 2**(64 - BITS_PER_LIMB) - 1 == 2**35 - 1 // acc == (1 << BITS_PER_LIMB * (i + 1) + shift) + x[:i + 1] // - coef * prime[:i + 1] >> BITS_PER_LIMB * (i + 1) } // assert(acc == 1 << shift); // clang-format off // acc == 1 << shift // Proof: // acc // == (1 << BITS_PER_LIMB * LIMBS + shift) + x[:LIMBS] - coef * prime[:LIMBS] >> BITS_PER_LIMB * LIMBS // == (1 << BITS_PER_LIMB * LIMBS + shift) + (x - coef * prime) >> BITS_PER_LIMB * LIMBS // <= (1 << BITS_PER_LIMB * LIMBS + shift) + (2 * prime) >> BITS_PER_LIMB * LIMBS // <= (1 << BITS_PER_LIMB * LIMBS + shift) + 2 * 2**256 >> BITS_PER_LIMB * LIMBS // <= 2**269 + 2**257 >> 2**261 // <= 1 << 8 == 1 << shift // acc // == (1 << BITS_PER_LIMB * LIMBS + shift) + x[:LIMBS] - coef * prime[:LIMBS] >> BITS_PER_LIMB * LIMBS // >= (1 << BITS_PER_LIMB * LIMBS + shift) + 0 >> BITS_PER_LIMB * LIMBS // == (1 << BITS_PER_LIMB * LIMBS + shift) + 0 >> BITS_PER_LIMB * LIMBS // <= 1 << 8 == 1 << shift // clang-format on } // res = x**e % prime // Assumes both x and e are normalized, x < 2**259 // Guarantees res is normalized and partly reduced modulo prime // Works properly even if &x == &res // Assumes prime is normalized, 2**256 - 2**224 <= prime <= 2**256 // The function doesn't have neither constant control flow nor constant memory // access flow with regard to e void bn_power_mod(const bignum256 *x, const bignum256 *e, const bignum256 *prime, bignum256 *res) { // Uses iterative right-to-left exponentiation by squaring, see // https://en.wikipedia.org/wiki/Modular_exponentiation#Right-to-left_binary_method bignum256 acc = {0}; bn_copy(x, &acc); bn_one(res); for (int i = 0; i < BN_LIMBS; i++) { uint32_t limb = e->val[i]; for (int j = 0; j < BN_BITS_PER_LIMB; j++) { // Break if the following bits of the last limb are zero if (i == BN_LIMBS - 1 && limb == 0) break; if (limb & 1) // acc * res < 2**519 // Proof: // acc * res <= max(2**259 - 1, 2 * prime) * (2 * prime) // == max(2**259 - 1, 2**257) * 2**257 < 2**259 * 2**257 // == 2**516 < 2**519 bn_multiply(&acc, res, prime); limb >>= 1; // acc * acc < 2**519 // Proof: // acc * acc <= max(2**259 - 1, 2 * prime)**2 // <= (2**259)**2 == 2**518 < 2**519 bn_multiply(&acc, &acc, prime); } // acc == x**(e[:i + 1]) % prime } memzero(&acc, sizeof(acc)); } // x = sqrt(x) % prime // Explicitly x = x**((prime+1)/4) % prime // The other root is -sqrt(x) // Assumes x is normalized, x < 2**259 and quadratic residuum mod prime // Assumes prime is a prime number, prime % 4 == 3, it is normalized and // 2**256 - 2**224 <= prime <= 2**256 // Guarantees x is normalized and fully reduced modulo prime // The function doesn't have neither constant control flow nor constant memory // access flow with regard to prime void bn_sqrt(bignum256 *x, const bignum256 *prime) { // Uses the Lagrange formula for the primes of the special form, see // http://en.wikipedia.org/wiki/Quadratic_residue#Prime_or_prime_power_modulus // If prime % 4 == 3, then sqrt(x) % prime == x**((prime+1)//4) % prime assert(prime->val[BN_LIMBS - 1] % 4 == 3); // e = (prime + 1) // 4 bignum256 e = {0}; bn_copy(prime, &e); bn_addi(&e, 1); bn_rshift(&e); bn_rshift(&e); bn_power_mod(x, &e, prime, x); bn_mod(x, prime); memzero(&e, sizeof(e)); } // a = 1/a % 2**n // Assumes a is odd, 1 <= n <= 32 // The function doesn't have neither constant control flow nor constant memory // access flow with regard to n uint32_t inverse_mod_power_two(uint32_t a, uint32_t n) { // Uses "Explicit Quadratic Modular inverse modulo 2" from section 3.3 of "On // Newton-Raphson iteration for multiplicative inverses modulo prime powers" // by Jean-Guillaume Dumas, see // https://arxiv.org/pdf/1209.6626.pdf // 1/a % 2**n // = (2-a) * product([1 + (a-1)**(2**i) for i in range(1, floor(log2(n)))]) uint32_t acc = 2 - a; uint32_t f = a - 1; // mask = (1 << n) - 1 uint32_t mask = n == 32 ? 0xFFFFFFFF : (1u << n) - 1; for (uint32_t i = 1; i < n; i <<= 1) { f = (f * f) & mask; acc = (acc * (1 + f)) & mask; } return acc; } // x = (x / 2**BITS_PER_LIMB) % prime // Assumes both x and prime are normalized // Assumes prime is an odd number and normalized // Guarantees x is normalized // If x is partly reduced (fully reduced) modulo prime, // guarantess x will be partly reduced (fully reduced) modulo prime void bn_divide_base(bignum256 *x, const bignum256 *prime) { // Uses an explicit formula for the modular inverse of power of two // (x / 2**n) % prime == (x + ((-x / prime) % 2**n) * prime) // 2**n // Proof: // (x + ((-x / prime) % 2**n) * prime) % 2**n // == (x - x / prime * prime) % 2**n // == 0 // (x + ((-1 / prime) % 2**n) * prime) % prime // == x // if x < prime: // (x + ((-x / prime) % 2**n) * prime) // 2**n // <= ((prime - 1) + (2**n - 1) * prime) / 2**n // == (2**n * prime - 1) / 2**n == prime - 1 / 2**n < prime // if x < 2 * prime: // (x + ((-x / prime) % 2**n) * prime) // 2**n // <= ((2 * prime - 1) + (2**n - 1) * prime) / 2**n // == (2**n * prime + prime - 1) / 2**n // == prime + (prime - 1) / 2**n < 2 * prime // m = (-x / prime) % 2**BITS_PER_LIMB uint32_t m = (x->val[0] * (BN_BASE - inverse_mod_power_two( prime->val[0], BN_BITS_PER_LIMB))) & BN_LIMB_MASK; // m < 2**BITS_PER_LIMB uint64_t acc = x->val[0] + (uint64_t)m * prime->val[0]; acc >>= BN_BITS_PER_LIMB; for (int i = 1; i < BN_LIMBS; i++) { acc = acc + x->val[i] + (uint64_t)m * prime->val[i]; // acc does not overflow 64 bits // acc == acc + x + m * prime // <= 2**(64 - BITS_PER_LIMB) + 2**(BITS_PER_LIMB) // 2**(BITS_PER_LIMB) * 2**(BITS_PER_LIMB) // <= 2**(2 * BITS_PER_LIMB) + 2**(64 - BITS_PER_LIMB) + // 2**(BITS_PER_LIMB) // <= 2**58 + 2**35 + 2**29 < 2**64 x->val[i - 1] = acc & BN_LIMB_MASK; acc >>= BN_BITS_PER_LIMB; // acc < 2**35 == 2**(64 - BITS_PER_LIMB) // acc == x[:i + 1] + m * prime[:i + 1] >> BITS_PER_LIMB * (i + 1) } x->val[BN_LIMBS - 1] = acc; assert(acc >> BN_BITS_PER_LIMB == 0); // clang-format off // acc >> BITS_PER_LIMB == 0 // Proof: // acc >> BITS_PER_LIMB // == (x[:LIMB] + m * prime[:LIMB] >> BITS_PER_LIMB * LIMBS) >> BITS_PER_LIMB * (LIMBS + 1) // == x + m * prime >> BITS_PER_LIMB * (LIMBS + 1) // <= (2**(BITS_PER_LIMB * LIMBS) - 1) + (2**BITS_PER_LIMB - 1) * (2**(BITS_PER_LIMB * LIMBS) - 1) >> BITS_PER_LIMB * (LIMBS + 1) // == 2**(BITS_PER_LIMB * LIMBS) - 1 + 2**(BITS_PER_LIMB * (LIMBS + 1)) - 2**(BITS_PER_LIMB * LIMBS) - 2**BITS_PER_LIMB + 1 >> BITS_PER_LIMB * (LIMBS + 1) // == 2**(BITS_PER_LIMB * (LIMBS + 1)) - 2**BITS_PER_LIMB >> BITS_PER_LIMB * (LIMBS + 1) // == 0 // clang-format on } #if !USE_INVERSE_FAST // x = 1/x % prime if x != 0 else 0 // Assumes x is normalized // Assumes prime is a prime number // Guarantees x is normalized and fully reduced modulo prime // Assumes prime is normalized, 2**256 - 2**224 <= prime <= 2**256 // The function doesn't have neither constant control flow nor constant memory // access flow with regard to prime static void bn_inverse_slow(bignum256 *x, const bignum256 *prime) { // Uses formula 1/x % prime == x**(prime - 2) % prime // See https://en.wikipedia.org/wiki/Fermat%27s_little_theorem bn_fast_mod(x, prime); // e = prime - 2 bignum256 e = {0}; bn_read_uint32(2, &e); bn_subtract(prime, &e, &e); bn_power_mod(x, &e, prime, x); bn_mod(x, prime); memzero(&e, sizeof(e)); } #endif #if false // x = 1/x % prime if x != 0 else 0 // Assumes x is is_normalized // Assumes GCD(x, prime) = 1 // Guarantees x is normalized and fully reduced modulo prime // Assumes prime is odd, normalized, 2**256 - 2**224 <= prime <= 2**256 // The function doesn't have neither constant control flow nor constant memory // access flow with regard to prime and x static void bn_inverse_fast(bignum256 *x, const bignum256 *prime) { // "The Almost Montgomery Inverse" from the section 3 of "Constant Time // Modular Inversion" by Joppe W. Bos // See http://www.joppebos.com/files/CTInversion.pdf /* u = prime v = x & prime s = 1 r = 0 k = 0 while v != 1: k += 1 if is_even(u): u = u // 2 s = 2 * s elif is_even(v): v = v // 2 r = 2 * r elif v < u: u = (u - v) // 2 r = r + s s = 2 * s else: v = (v - u) // 2 s = r + s r = 2 * r s = (s / 2**k) % prime return s */ if (bn_is_zero(x)) return; bn_fast_mod(x, prime); bn_mod(x, prime); bignum256 u = {0}, v = {0}, r = {0}, s = {0}; bn_copy(prime, &u); bn_copy(x, &v); bn_one(&s); bn_zero(&r); int k = 0; while (!bn_is_one(&v)) { if ((u.val[0] & 1) == 0) { bn_rshift(&u); bn_lshift(&s); } else if ((v.val[0] & 1) == 0) { bn_rshift(&v); bn_lshift(&r); } else if (bn_is_less(&v, &u)) { bn_subtract(&u, &v, &u); bn_rshift(&u); bn_add(&r, &s); bn_lshift(&s); } else { bn_subtract(&v, &u, &v); bn_rshift(&v); bn_add(&s, &r); bn_lshift(&r); } k += 1; assert(!bn_is_zero(&v)); // assert GCD(x, prime) == 1 } // s = s / 2**(k // BITS_PER_LIMB * BITS_PER_LIMB) for (int i = 0; i < k / BITS_PER_LIMB; i++) { bn_divide_base(&s, prime); } // s = s / 2**(k % BITS_PER_LIMB) for (int i = 0; i < k % BN_BITS_PER_LIMB; i++) { bn_mult_half(&s, prime); } bn_copy(&s, x); memzero(&u, sizeof(u)); memzero(&v, sizeof(v)); memzero(&r, sizeof(r)); memzero(&s, sizeof(s)); } #endif #if USE_INVERSE_FAST // x = 1/x % prime if x != 0 else 0 // Assumes x is is_normalized // Assumes GCD(x, prime) = 1 // Guarantees x is normalized and fully reduced modulo prime // Assumes prime is odd, normalized, 2**256 - 2**224 <= prime <= 2**256 // The function has constant control flow but not constant memory access flow // with regard to prime and x static void bn_inverse_fast(bignum256 *x, const bignum256 *prime) { // Custom constant time version of "The Almost Montgomery Inverse" from the // section 3 of "Constant Time Modular Inversion" by Joppe W. Bos // See http://www.joppebos.com/files/CTInversion.pdf /* u = prime v = x % prime s = 1 r = 0 k = 0 while v != 1: k += 1 if is_even(u): # b1 u = u // 2 s = 2 * s elif is_even(v): # b2 v = v // 2 r = 2 * r elif v < u: # b3 u = (u - v) // 2 r = r + s s = 2 * s else: # b4 v = (v - u) // 2 s = r + s r = 2 * r s = (s / 2**k) % prime return s */ bn_fast_mod(x, prime); bn_mod(x, prime); bignum256 u = {0}, v = {0}, r = {0}, s = {0}; bn_copy(prime, &u); bn_copy(x, &v); bn_one(&s); bn_zero(&r); bignum256 zero = {0}; bn_zero(&zero); int k = 0; int finished = 0, u_even = 0, v_even = 0, v_less_u = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0; finished = 0; for (int i = 0; i < 2 * BN_LIMBS * BN_BITS_PER_LIMB; i++) { finished = finished | -bn_is_one(&v); u_even = -bn_is_even(&u); v_even = -bn_is_even(&v); v_less_u = -bn_is_less(&v, &u); b1 = ~finished & u_even; b2 = ~finished & ~b1 & v_even; b3 = ~finished & ~b1 & ~b2 & v_less_u; b4 = ~finished & ~b1 & ~b2 & ~b3; // The ternary operator for pointers with constant control flow // BN_INVERSE_FAST_TERNARY(c, t, f) = t if c else f // Very nasty hack, sorry for that #define BN_INVERSE_FAST_TERNARY(c, t, f) \ ((void *)(((c) & (uintptr_t)(t)) | (~(c) & (uintptr_t)(f)))) bn_subtract(BN_INVERSE_FAST_TERNARY(b3, &u, &v), BN_INVERSE_FAST_TERNARY( b3 | b4, BN_INVERSE_FAST_TERNARY(b3, &v, &u), &zero), BN_INVERSE_FAST_TERNARY(b3, &u, &v)); bn_add(BN_INVERSE_FAST_TERNARY(b3, &r, &s), BN_INVERSE_FAST_TERNARY(b3 | b4, BN_INVERSE_FAST_TERNARY(b3, &s, &r), &zero)); bn_rshift(BN_INVERSE_FAST_TERNARY(b1 | b3, &u, &v)); bn_lshift(BN_INVERSE_FAST_TERNARY(b1 | b3, &s, &r)); k = k - ~finished; } // s = s / 2**(k // BITS_PER_LIMB * BITS_PER_LIMB) for (int i = 0; i < 2 * BN_LIMBS; i++) { // s = s / 2**BITS_PER_LIMB % prime if i < k // BITS_PER_LIMB else s bn_copy(&s, &r); bn_divide_base(&r, prime); bn_cmov(&s, i < k / BN_BITS_PER_LIMB, &r, &s); } // s = s / 2**(k % BITS_PER_LIMB) for (int i = 0; i < BN_BITS_PER_LIMB; i++) { // s = s / 2 % prime if i < k % BITS_PER_LIMB else s bn_copy(&s, &r); bn_mult_half(&r, prime); bn_cmov(&s, i < k % BN_BITS_PER_LIMB, &r, &s); } bn_cmov(x, bn_is_zero(x), x, &s); memzero(&u, sizeof(u)); memzero(&v, sizeof(v)); memzero(&r, sizeof(s)); memzero(&s, sizeof(s)); } #endif #if false // x = 1/x % prime if x != 0 else 0 // Assumes x is is_normalized // Assumes GCD(x, prime) = 1 // Guarantees x is normalized and fully reduced modulo prime // Assumes prime is odd, normalized, 2**256 - 2**224 <= prime <= 2**256 static void bn_inverse_fast(bignum256 *x, const bignum256 *prime) { // Custom constant time version of "The Almost Montgomery Inverse" from the // section 3 of "Constant Time Modular Inversion" by Joppe W. Bos // See http://www.joppebos.com/files/CTInversion.pdf /* u = prime v = x % prime s = 1 r = 0 k = 0 while v != 1: k += 1 if is_even(u): # b1 u = u // 2 s = 2 * s elif is_even(v): # b2 v = v // 2 r = 2 * r elif v < u: # b3 u = (u - v) // 2 r = r + s s = 2 * s else: # b4 v = (v - u) // 2 s = r + s r = 2 * r s = (s / 2**k) % prime return s */ bn_fast_mod(x, prime); bn_mod(x, prime); bignum256 u = {0}, v = {0}, r = {0}, s = {0}; bn_copy(prime, &u); bn_copy(x, &v); bn_one(&s); bn_zero(&r); bignum256 zero = {0}; bn_zero(&zero); int k = 0; uint32_t finished = 0, u_even = 0, v_even = 0, v_less_u = 0, b1 = 0, b2 = 0, b3 = 0, b4 = 0; finished = 0; bignum256 u_half = {0}, v_half = {0}, u_minus_v_half = {0}, v_minus_u_half = {0}, r_plus_s = {0}, r_twice = {0}, s_twice = {0}; for (int i = 0; i < 2 * BN_LIMBS * BN_BITS_PER_LIMB; i++) { finished = finished | bn_is_one(&v); u_even = bn_is_even(&u); v_even = bn_is_even(&v); v_less_u = bn_is_less(&v, &u); b1 = (finished ^ 1) & u_even; b2 = (finished ^ 1) & (b1 ^ 1) & v_even; b3 = (finished ^ 1) & (b1 ^ 1) & (b2 ^ 1) & v_less_u; b4 = (finished ^ 1) & (b1 ^ 1) & (b2 ^ 1) & (b3 ^ 1); // u_half = u // 2 bn_copy(&u, &u_half); bn_rshift(&u_half); // v_half = v // 2 bn_copy(&v, &v_half); bn_rshift(&v_half); // u_minus_v_half = (u - v) // 2 bn_subtract(&u, &v, &u_minus_v_half); bn_rshift(&u_minus_v_half); // v_minus_u_half = (v - u) // 2 bn_subtract(&v, &u, &v_minus_u_half); bn_rshift(&v_minus_u_half); // r_plus_s = r + s bn_copy(&r, &r_plus_s); bn_add(&r_plus_s, &s); // r_twice = 2 * r bn_copy(&r, &r_twice); bn_lshift(&r_twice); // s_twice = 2 * s bn_copy(&s, &s_twice); bn_lshift(&s_twice); bn_cmov(&u, b1, &u_half, &u); bn_cmov(&u, b3, &u_minus_v_half, &u); bn_cmov(&v, b2, &v_half, &v); bn_cmov(&v, b4, &v_minus_u_half, &v); bn_cmov(&r, b2 | b4, &r_twice, &r); bn_cmov(&r, b3, &r_plus_s, &r); bn_cmov(&s, b1 | b3, &s_twice, &s); bn_cmov(&s, b4, &r_plus_s, &s); k = k + (finished ^ 1); } // s = s / 2**(k // BITS_PER_LIMB * BITS_PER_LIMB) for (int i = 0; i < 2 * BN_LIMBS; i++) { // s = s / 2**BITS_PER_LIMB % prime if i < k // BITS_PER_LIMB else s bn_copy(&s, &r); bn_divide_base(&r, prime); bn_cmov(&s, i < k / BITS_PER_LIMB, &r, &s); } // s = s / 2**(k % BITS_PER_LIMB) for (int i = 0; i < BN_BITS_PER_LIMB; i++) { // s = s / 2 % prime if i < k % BITS_PER_LIMB else s bn_copy(&s, &r); bn_mult_half(&r, prime); bn_cmov(&s, i < k % BN_BITS_PER_LIMB, &r, &s); } bn_cmov(x, bn_is_zero(x), x, &s); memzero(&u, sizeof(u)); memzero(&v, sizeof(v)); memzero(&r, sizeof(r)); memzero(&s, sizeof(s)); memzero(&u_half, sizeof(u_half)); memzero(&v_half, sizeof(v_half)); memzero(&u_minus_v_half, sizeof(u_minus_v_half)); memzero(&v_minus_u_half, sizeof(v_minus_u_half)); memzero(&r_twice, sizeof(r_twice)); memzero(&s_twice, sizeof(s_twice)); memzero(&r_plus_s, sizeof(r_plus_s)); } #endif // Normalizes x // Assumes x < 2**261 == 2**(LIMBS * BITS_PER_LIMB) // Guarantees x is normalized void bn_normalize(bignum256 *x) { uint32_t acc = 0; for (int i = 0; i < BN_LIMBS; i++) { acc += x->val[i]; // acc doesn't overflow 32 bits // Proof: // acc + x[i] // <= (2**(32 - BITS_PER_LIMB) - 1) + (2**BITS_PER_LIMB - 1) // == 7 + 2**29 - 1 < 2**32 x->val[i] = acc & BN_LIMB_MASK; acc >>= (BN_BITS_PER_LIMB); // acc <= 7 == 2**(32 - BITS_PER_LIMB) - 1 } } // x = x + y // Assumes x, y are normalized, x + y < 2**(LIMBS*BITS_PER_LIMB) == 2**261 // Guarantees x is normalized // Works properly even if &x == &y void bn_add(bignum256 *x, const bignum256 *y) { uint32_t acc = 0; for (int i = 0; i < BN_LIMBS; i++) { acc += x->val[i] + y->val[i]; // acc doesn't overflow 32 bits // Proof: // acc + x[i] + y[i] // <= (2**(32 - BITS_PER_LIMB) - 1) + 2 * (2**BITS_PER_LIMB - 1) // == (2**(32 - BITS_PER_LIMB) - 1) + 2**(BITS_PER_LIMB + 1) - 2 // == 7 + 2**30 - 2 < 2**32 x->val[i] = acc & BN_LIMB_MASK; acc >>= BN_BITS_PER_LIMB; // acc <= 7 == 2**(32 - BITS_PER_LIMB) - 1 // acc == x[:i + 1] + y[:i + 1] >> BITS_PER_LIMB * (i + 1) } // assert(acc == 0); // assert x + y < 2**261 // acc == 0 // Proof: // acc == x[:LIMBS] + y[:LIMBS] >> LIMBS * BITS_PER_LIMB // == x + y >> LIMBS * BITS_PER_LIMB // <= 2**(LIMBS * BITS_PER_LIMB) - 1 >> LIMBS * BITS_PER_LIMB == 0 } // x = x + y % prime // Assumes x, y are normalized // Guarantees x is normalized and partly reduced modulo prime // Assumes prime is normalized and 2^256 - 2^224 <= prime <= 2^256 void bn_addmod(bignum256 *x, const bignum256 *y, const bignum256 *prime) { for (int i = 0; i < BN_LIMBS; i++) { x->val[i] += y->val[i]; // x[i] doesn't overflow 32 bits // Proof: // x[i] + y[i] // <= 2 * (2**BITS_PER_LIMB - 1) // == 2**30 - 2 < 2**32 } bn_fast_mod(x, prime); } // x = x + y // Assumes x is normalized // Assumes y <= 2**32 - 2**29 == 2**32 - 2**BITS_PER_LIMB and // x + y < 2**261 == 2**(LIMBS * BITS_PER_LIMB) // Guarantees x is normalized void bn_addi(bignum256 *x, uint32_t y) { // assert(y <= 3758096384); // assert y <= 2**32 - 2**29 uint32_t acc = y; for (int i = 0; i < BN_LIMBS; i++) { acc += x->val[i]; // acc doesn't overflow 32 bits // Proof: // if i == 0: // acc + x[i] == y + x[0] // <= (2**32 - 2**BITS_PER_LIMB) + (2**BITS_PER_LIMB - 1) // == 2**32 - 1 < 2**32 // else: // acc + x[i] // <= (2**(32 - BITS_PER_LIMB) - 1) + (2**BITS_PER_LIMB - 1) // == 7 + 2**29 - 1 < 2**32 x->val[i] = acc & BN_LIMB_MASK; acc >>= (BN_BITS_PER_LIMB); // acc <= 7 == 2**(32 - BITS_PER_LIMB) - 1 // acc == x[:i + 1] + y >> BITS_PER_LIMB * (i + 1) } // assert(acc == 0); // assert x + y < 2**261 // acc == 0 // Proof: // acc == x[:LIMBS] + y << LIMBS * BITS_PER_LIMB // == x + y << LIMBS * BITS_PER_LIMB // <= 2**(LIMBS + BITS_PER_LIMB) - 1 << LIMBS * BITS_PER_LIMB // == 0 } // x = x - y % prime // Explicitly x = x + prime - y // Assumes x, y are normalized // Assumes y < prime[0], x + prime - y < 2**261 == 2**(LIMBS * BITS_PER_LIMB) // Guarantees x is normalized // If x is fully reduced modulo prime, // guarantess x will be partly reduced modulo prime // Assumes prime is nonzero and normalized void bn_subi(bignum256 *x, uint32_t y, const bignum256 *prime) { assert(y < prime->val[0]); // x = x + prime - y uint32_t acc = -y; for (int i = 0; i < BN_LIMBS; i++) { acc += x->val[i] + prime->val[i]; // acc neither overflows 32 bits nor underflows 0 // Proof: // acc + x[i] + prime[i] // <= (2**(32 - BITS_PER_LIMB) - 1) + 2 * (2**BITS_PER_LIMB - 1) // <= 7 + 2**30 - 2 < 2**32 // acc + x[i] + prime[i] // >= -y + prime[0] >= 0 x->val[i] = acc & BN_LIMB_MASK; acc >>= BN_BITS_PER_LIMB; // acc <= 7 == 2**(32 - BITS_PER_LIMB) - 1 // acc == x[:i + 1] + prime[:i + 1] - y >> BITS_PER_LIMB * (i + 1) } // assert(acc == 0); // assert x + prime - y < 2**261 // acc == 0 // Proof: // acc == x[:LIMBS] + prime[:LIMBS] - y >> BITS_PER_LIMB * LIMBS // == x + prime - y >> BITS_PER_LIMB * LIMBS // <= 2**(LIMBS * BITS_PER_LIMB) - 1 >> BITS_PER_LIMB * LIMBS == 0 } // res = x - y % prime // Explicitly res = x + (2 * prime - y) // Assumes x, y are normalized, y is partly reduced // Assumes x + 2 * prime - y < 2**261 == 2**(BITS_PER_LIMB * LIMBS) // Guarantees res is normalized // Assumes prime is nonzero and normalized void bn_subtractmod(const bignum256 *x, const bignum256 *y, bignum256 *res, const bignum256 *prime) { // res = x + (2 * prime - y) uint32_t acc = 1; for (int i = 0; i < BN_LIMBS; i++) { acc += (BN_BASE - 1) + x->val[i] + 2 * prime->val[i] - y->val[i]; // acc neither overflows 32 bits nor underflows 0 // Proof: // acc + (BASE - 1) + x[i] + 2 * prime[i] - y[i] // >= (BASE - 1) - y[i] // == (2**BITS_PER_LIMB - 1) - (2**BITS_PER_LIMB - 1) == 0 // acc + (BASE - 1) + x[i] + 2 * prime[i] - y[i] // <= acc + (BASE - 1) + x[i] + 2 * prime[i] // <= (2**(32 - BITS_PER_LIMB) - 1) + (2**BITS_PER_LIMB - 1) + // (2**BITS_PER_LIMB - 1) + 2 * (2**BITS_PER_LIMB - 1) // <= (2**(32 - BITS_PER_LIMB) - 1) + 4 * (2**BITS_PER_LIMB - 1) // == 7 + 4 * 2**29 - 4 == 2**31 + 3 < 2**32 res->val[i] = acc & (BN_BASE - 1); acc >>= BN_BITS_PER_LIMB; // acc <= 7 == 2**(32 - BITS_PER_LIMB) - 1 // acc == 2**(BITS_PER_LIMB * (i + 1)) + x[:i+1] - y[:i+1] + 2*prime[:i+1] // >> BITS_PER_LIMB * (i+1) } // assert(acc == 1); // assert x + 2 * prime - y < 2**261 // clang-format off // acc == 1 // Proof: // acc == 2**(BITS_PER_LIMB * LIMBS) + x[:LIMBS] - y[:LIMBS] + 2 * prime[:LIMBS] >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + x - y + 2 * prime >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + x + (2 * prime - y) >> BITS_PER_LIMB * LIMBS // <= 2**(BITS_PER_LIMB * LIMBS) + 2**(BITS_PER_LIMB * LIMBS) - 1 >> BITS_PER_LIMB * LIMBS // <= 2 * 2**(BITS_PER_LIMB * LIMBS) - 1 >> BITS_PER_LIMB * LIMBS // == 1 // acc == 2**(BITS_PER_LIMB * LIMBS) + x[:LIMBS] - y[:LIMBS] + 2 * prime[:LIMBS] >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + x - y + 2 * prime >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + x + (2 * prime - y) >> BITS_PER_LIMB * LIMBS // >= 2**(BITS_PER_LIMB * LIMBS) + 0 + 1 >> BITS_PER_LIMB * LIMBS // == 1 // clang-format on } // res = x - y // Assumes x, y are normalized and x >= y // Guarantees res is normalized // Works properly even if &x == &y or &x == &res or &y == &res or // &x == &y == &res void bn_subtract(const bignum256 *x, const bignum256 *y, bignum256 *res) { uint32_t acc = 1; for (int i = 0; i < BN_LIMBS; i++) { acc += (BN_BASE - 1) + x->val[i] - y->val[i]; // acc neither overflows 32 bits nor underflows 0 // Proof: // acc + (BASE - 1) + x[i] - y[i] // >= (BASE - 1) - y == (2**BITS_PER_LIMB - 1) - (2**BITS_PER_LIMB - 1) // == 0 // acc + (BASE - 1) + x[i] - y[i] // <= acc + (BASE - 1) + x[i] // <= (2**(32 - BITS_PER_LIMB) - 1) + (2**BITS_PER_LIMB - 1) + // (2**BITS_PER_LIMB - 1) // == 7 + 2 * 2**29 < 2 **32 res->val[i] = acc & BN_LIMB_MASK; acc >>= BN_BITS_PER_LIMB; // acc <= 7 == 2**(32 - BITS_PER_LIMB) - 1 // acc == 2**(BITS_PER_LIMB * (i + 1)) + x[:i + 1] - y[:i + 1] // >> BITS_PER_LIMB * (i + 1) } // assert(acc == 1); // assert x >= y // clang-format off // acc == 1 // Proof: // acc == 2**(BITS_PER_LIMB * LIMBS) + x[:LIMBS] - y[:LIMBS] >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + x - y >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + x >> BITS_PER_LIMB * LIMBS // <= 2**(BITS_PER_LIMB * LIMBS) + 2**(BITS_PER_LIMB * LIMBS) - 1 >> BITS_PER_LIMB * LIMBS // <= 2 * 2**(BITS_PER_LIMB * LIMBS) - 1 >> BITS_PER_LIMB * LIMBS // == 1 // acc == 2**(BITS_PER_LIMB * LIMBS) + x[:LIMBS] - y[:LIMBS] >> BITS_PER_LIMB * LIMBS // == 2**(BITS_PER_LIMB * LIMBS) + x - y >> BITS_PER_LIMB * LIMBS // >= 2**(BITS_PER_LIMB * LIMBS) >> BITS_PER_LIMB * LIMBS // == 1 } // Returns 0 if x is zero // Returns 1 if x is a square modulo prime // Returns -1 if x is not a square modulo prime // Assumes x is normalized, x < 2**259 // Assumes prime is normalized, 2**256 - 2**224 <= prime <= 2**256 // Assumes prime is a prime // The function doesn't have neither constant control flow nor constant memory // access flow with regard to prime int bn_legendre(const bignum256 *x, const bignum256 *prime) { // This is a naive implementation // A better implementation would be to use the Euclidean algorithm together with the quadratic reciprocity law // e = (prime - 1) / 2 bignum256 e = {0}; bn_copy(prime, &e); bn_rshift(&e); // res = x**e % prime bignum256 res = {0}; bn_power_mod(x, &e, prime, &res); bn_mod(&res, prime); if (bn_is_one(&res)) { return 1; } if (bn_is_zero(&res)) { return 0; } return -1; } // q = x // d, r = x % d // Assumes x is normalized, 1 <= d <= 61304 // Guarantees q is normalized void bn_long_division(bignum256 *x, uint32_t d, bignum256 *q, uint32_t *r) { assert(1 <= d && d < 61304); uint32_t acc = 0; *r = x->val[BN_LIMBS - 1] % d; q->val[BN_LIMBS - 1] = x->val[BN_LIMBS - 1] / d; for (int i = BN_LIMBS - 2; i >= 0; i--) { acc = *r * (BN_BASE % d) + x->val[i]; // acc doesn't overflow 32 bits // Proof: // r * (BASE % d) + x[i] // <= (d - 1) * (d - 1) + (2**BITS_PER_LIMB - 1) // == d**2 - 2*d + 2**BITS_PER_LIMB // == 61304**2 - 2 * 61304 + 2**29 // == 3758057808 + 2**29 < 2**32 q->val[i] = *r * (BN_BASE / d) + (acc / d); // q[i] doesn't overflow 32 bits // Proof: // r * (BASE // d) + (acc // d) // <= (d - 1) * (2**BITS_PER_LIMB / d) + // ((d**2 - 2*d + 2**BITS_PER_LIMB) / d) // <= (d - 1) * (2**BITS_PER_LIMB / d) + (d - 2 + 2**BITS_PER_LIMB / d) // == (d - 1 + 1) * (2**BITS_PER_LIMB / d) + d - 2 // == 2**BITS_PER_LIMB + d - 2 <= 2**29 + 61304 < 2**32 // q[i] == (r * BASE + x[i]) // d // Proof: // q[i] == r * (BASE // d) + (acc // d) // == r * (BASE // d) + (r * (BASE % d) + x[i]) // d // == (r * d * (BASE // d) + r * (BASE % d) + x[i]) // d // == (r * (d * (BASE // d) + (BASE % d)) + x[i]) // d // == (r * BASE + x[i]) // d // q[i] < 2**BITS_PER_LIMB // Proof: // q[i] == (r * BASE + x[i]) // d // <= ((d - 1) * 2**BITS_PER_LIMB + (2**BITS_PER_LIMB - 1)) / d // == (d * 2**BITS_PER_LIMB - 1) / d == 2**BITS_PER_LIMB - 1 / d // < 2**BITS_PER_LIMB *r = acc % d; // r == (r * BASE + x[i]) % d // Proof: // r == acc % d == (r * (BASE % d) + x[i]) % d // == (r * BASE + x[i]) % d // x[:i] == q[:i] * d + r } } // x = x // 58, r = x % 58 // Assumes x is normalized // Guarantees x is normalized void bn_divmod58(bignum256 *x, uint32_t *r) { bn_long_division(x, 58, x, r); } // x = x // 1000, r = x % 1000 // Assumes x is normalized // Guarantees x is normalized void bn_divmod1000(bignum256 *x, uint32_t *r) { bn_long_division(x, 1000, x, r); } // x = x // 10, r = x % 10 // Assumes x is normalized // Guarantees x is normalized void bn_divmod10(bignum256 *x, uint32_t *r) { bn_long_division(x, 10, x, r); } // Formats amount // Assumes amount is normalized // Assumes prefix and suffix are null-terminated strings // Assumes output is an array of length output_length // The function doesn't have neither constant control flow nor constant memory // access flow with regard to any its argument size_t bn_format(const bignum256 *amount, const char *prefix, const char *suffix, unsigned int decimals, int exponent, bool trailing, char thousands, char *output, size_t output_length) { /* Python prototype of the function: def format(amount, prefix, suffix, decimals, exponent, trailing, thousands): if exponent >= 0: amount *= 10**exponent else: amount //= 10 ** (-exponent) d = pow(10, decimals) integer_part = amount // d integer_str = f"{integer_part:,}".replace(",", thousands or "") if decimals: decimal_part = amount % d decimal_str = f".{decimal_part:0{decimals}d}" if not trailing: decimal_str = decimal_str.rstrip("0").rstrip(".") else: decimal_str = "" return prefix + integer_str + decimal_str + suffix */ // Auxiliary macro for bn_format // If enough space adds one character to output starting from the end #define BN_FORMAT_ADD_OUTPUT_CHAR(c) \ { \ --position; \ if (output <= position && position < output + output_length) { \ *position = (c); \ } else { \ memset(output, '\0', output_length); \ return 0; \ } \ } bignum256 temp = {0}; bn_copy(amount, &temp); uint32_t digit = 0; char *position = output + output_length; // Add string ending character BN_FORMAT_ADD_OUTPUT_CHAR('\0'); // Add suffix size_t suffix_length = suffix ? strlen(suffix) : 0; for (int i = suffix_length - 1; i >= 0; --i) BN_FORMAT_ADD_OUTPUT_CHAR(suffix[i]) // amount //= 10**exponent for (; exponent < 0; ++exponent) { // if temp == 0, there is no need to divide it by 10 anymore if (bn_is_zero(&temp)) { exponent = 0; break; } bn_divmod10(&temp, &digit); } // exponent >= 0 && decimals >= 0 bool fractional_part = false; // is fractional-part of amount present { // Add fractional-part digits of amount // Add trailing zeroes unsigned int trailing_zeros = decimals < (unsigned int) exponent ? decimals : (unsigned int) exponent; // When casting a negative int to unsigned int, UINT_MAX is added to the int before // Since exponent >= 0, the value remains unchanged decimals -= trailing_zeros; exponent -= trailing_zeros; if (trailing && trailing_zeros) { fractional_part = true; for (; trailing_zeros > 0; --trailing_zeros) BN_FORMAT_ADD_OUTPUT_CHAR('0') } // exponent == 0 || decimals == 0 // Add significant digits and leading zeroes for (; decimals > 0; --decimals) { bn_divmod10(&temp, &digit); if (fractional_part || digit || trailing) { fractional_part = true; BN_FORMAT_ADD_OUTPUT_CHAR('0' + digit) } else if (bn_is_zero(&temp)) { // We break since the remaining digits are zeroes and fractional_part == trailing == false decimals = 0; break; } } // decimals == 0 } if (fractional_part) { BN_FORMAT_ADD_OUTPUT_CHAR('.') } { // Add integer-part digits of amount // Add trailing zeroes int digits = 0; if (!bn_is_zero(&temp)) { for (; exponent > 0; --exponent) { ++digits; BN_FORMAT_ADD_OUTPUT_CHAR('0') if (thousands != 0 && digits % 3 == 0) { BN_FORMAT_ADD_OUTPUT_CHAR(thousands) } } } // decimals == 0 && exponent == 0 // Add significant digits bool is_zero = false; do { ++digits; bn_divmod10(&temp, &digit); is_zero = bn_is_zero(&temp); BN_FORMAT_ADD_OUTPUT_CHAR('0' + digit) if (thousands != 0 && !is_zero && digits % 3 == 0) { BN_FORMAT_ADD_OUTPUT_CHAR(thousands) } } while (!is_zero); } // Add prefix size_t prefix_length = prefix ? strlen(prefix) : 0; for (int i = prefix_length - 1; i >= 0; --i) BN_FORMAT_ADD_OUTPUT_CHAR(prefix[i]) // Move formatted amount to the start of output int length = output - position + output_length; memmove(output, position, length); return length - 1; } #if USE_BN_PRINT // Prints x in hexadecimal // Assumes x is normalized and x < 2**256 void bn_print(const bignum256 *x) { printf("%06x", x->val[8]); printf("%08x", ((x->val[7] << 3) | (x->val[6] >> 26))); printf("%07x", ((x->val[6] << 2) | (x->val[5] >> 27)) & 0x0FFFFFFF); printf("%07x", ((x->val[5] << 1) | (x->val[4] >> 28)) & 0x0FFFFFFF); printf("%07x", x->val[4] & 0x0FFFFFFF); printf("%08x", ((x->val[3] << 3) | (x->val[2] >> 26))); printf("%07x", ((x->val[2] << 2) | (x->val[1] >> 27)) & 0x0FFFFFFF); printf("%07x", ((x->val[1] << 1) | (x->val[0] >> 28)) & 0x0FFFFFFF); printf("%07x", x->val[0] & 0x0FFFFFFF); } // Prints comma separated list of limbs of x void bn_print_raw(const bignum256 *x) { for (int i = 0; i < BN_LIMBS - 1; i++) { printf("0x%08x, ", x->val[i]); } printf("0x%08x", x->val[BN_LIMBS - 1]); } #endif #if USE_INVERSE_FAST void bn_inverse(bignum256 *x, const bignum256 *prime) { bn_inverse_fast(x, prime); } #else void bn_inverse(bignum256 *x, const bignum256 *prime) { bn_inverse_slow(x, prime); } #endif