import os import binascii import hashlib import unicodedata import tools import messages_pb2 as proto import types_pb2 as types from trezorlib.debuglink import DebugLink from mnemonic import Mnemonic # monkeypatching: text formatting of protobuf messages tools.monkeypatch_google_protobuf_text_format() def get_buttonrequest_value(code): # Converts integer code to its string representation of ButtonRequestType return [ k for k, v in types.ButtonRequestType.items() if v == code][0] def pprint(msg): if isinstance(msg, proto.FirmwareUpload): return "<%s> (%d bytes):\n" % (msg.__class__.__name__, msg.ByteSize()) else: return "<%s> (%d bytes):\n%s" % (msg.__class__.__name__, msg.ByteSize(), msg) class CallException(Exception): def __init__(self, code, message): super(CallException, self).__init__() self.args = [code, message] class PinException(CallException): pass class field(object): # Decorator extracts single value from # protobuf object. If the field is not # present, raises an exception. def __init__(self, field): self.field = field def __call__(self, f): def wrapped_f(*args, **kwargs): ret = f(*args, **kwargs) ret.HasField(self.field) return getattr(ret, self.field) return wrapped_f class expect(object): # Decorator checks if the method # returned one of expected protobuf messages # or raises an exception def __init__(self, *expected): self.expected = expected def __call__(self, f): def wrapped_f(*args, **kwargs): ret = f(*args, **kwargs) if not isinstance(ret, self.expected): raise Exception("Got %s, expected %s" % (ret.__class__, self.expected)) return ret return wrapped_f def normalize_nfc(txt): # Normalize string to UTF8 NFC for sign_message if isinstance(txt, str): utxt = txt.decode('utf8') elif isinstance(txt, unicode): utxt = txt else: raise Exception("String value expected") return unicodedata.normalize('NFC', utxt) class BaseClient(object): # Implements very basic layer of sending raw protobuf # messages to device and getting its response back. def __init__(self, transport, **kwargs): self.transport = transport super(BaseClient, self).__init__() # *args, **kwargs) def call_raw(self, msg): try: self.transport.session_begin() self.transport.write(msg) resp = self.transport.read_blocking() finally: self.transport.session_end() return resp def call(self, msg): try: self.transport.session_begin() resp = self.call_raw(msg) handler_name = "callback_%s" % resp.__class__.__name__ handler = getattr(self, handler_name, None) if handler != None: msg = handler(resp) if msg == None: raise Exception("Callback %s must return protobuf message, not None" % handler) resp = self.call(msg) finally: self.transport.session_end() return resp def callback_Failure(self, msg): if msg.code in (types.Failure_PinInvalid, types.Failure_PinCancelled, types.Failure_PinExpected): raise PinException(msg.code, msg.message) raise CallException(msg.code, msg.message) def close(self): self.transport.close() class DebugWireMixin(object): def call_raw(self, msg): print "SENDING", pprint(msg) resp = super(DebugWireMixin, self).call_raw(msg) print "RECEIVED", pprint(resp) return resp class TextUIMixin(object): # This class demonstrates easy test-based UI # integration between the device and wallet. # You can implement similar functionality # by implementing your own GuiMixin with # graphical widgets for every type of these callbacks. def __init__(self, *args, **kwargs): super(TextUIMixin, self).__init__(*args, **kwargs) def callback_ButtonRequest(self, msg): print "Sending ButtonAck for %s " % get_buttonrequest_value(msg.code) return proto.ButtonAck() def callback_PinMatrixRequest(self, msg): pin = raw_input("PIN required: %s " % msg.message) return proto.PinMatrixAck(pin=pin) def callback_PassphraseRequest(self, msg): passphrase = raw_input("Passphrase required: ") passphrase = str(bytearray(passphrase, 'utf-8')) return proto.PassphraseAck(passphrase=passphrase) def callback_WordRequest(self, msg): word = raw_input("Enter one word of mnemonic: ") return proto.WordAck(word=word) class DebugLinkMixin(object): # This class implements automatic responses # and other functionality for unit tests # for various callbacks, created in order # to automatically pass unit tests. # # This mixing should be used only for purposes # of unit testing, because it will fail to work # without special DebugLink interface provided # by the device. def __init__(self, *args, **kwargs): super(DebugLinkMixin, self).__init__(*args, **kwargs) self.debug = None self.in_with_statement = 0 # Always press Yes and provide correct pin self.setup_debuglink(True, True) # Do not expect any specific response from device self.expected_responses = None # Use blank passphrase self.set_passphrase('') def close(self): super(DebugLinkMixin, self).close() if self.debug: self.debug.close() def set_debuglink(self, debug_transport): self.debug = DebugLink(debug_transport) def __enter__(self): # For usage in with/expected_responses self.in_with_statement += 1 return self def __exit__(self, _type, value, traceback): self.in_with_statement -= 1 if _type != None: # Another exception raised return False # return isinstance(value, TypeError) # Evaluate missed responses in 'with' statement if self.expected_responses != None and len(self.expected_responses): raise Exception("Some of expected responses didn't come from device: %s" % \ [ pprint(x) for x in self.expected_responses ]) # Cleanup self.expected_responses = None return False def set_expected_responses(self, expected): if not self.in_with_statement: raise Exception("Must be called inside 'with' statement") self.expected_responses = expected def setup_debuglink(self, button, pin_correct): self.button = button # True -> YES button, False -> NO button self.pin_correct = pin_correct def set_passphrase(self, passphrase): self.passphrase = str(bytearray(Mnemonic.normalize_string(passphrase), 'utf-8')) def set_mnemonic(self, mnemonic): self.mnemonic = str(bytearray(Mnemonic.normalize_string(mnemonic), 'utf-8')).split(' ') def call_raw(self, msg): resp = super(DebugLinkMixin, self).call_raw(msg) self._check_request(resp) return resp def _check_request(self, msg): if self.expected_responses != None: try: expected = self.expected_responses.pop(0) except IndexError: raise CallException(types.Failure_Other, "Got %s, but no message has been expected" % pprint(msg)) if msg.__class__ != expected.__class__: raise CallException(types.Failure_Other, "Expected %s, got %s" % (pprint(expected), pprint(msg))) fields = expected.ListFields() # only filled (including extensions) for field, value in fields: if not msg.HasField(field.name) or getattr(msg, field.name) != value: raise CallException(types.Failure_Other, "Expected %s, got %s" % (pprint(expected), pprint(msg))) def callback_ButtonRequest(self, msg): print "ButtonRequest code:", get_buttonrequest_value(msg.code) print "Pressing button", self.button self.debug.press_button(self.button) return proto.ButtonAck() def callback_PinMatrixRequest(self, msg): if self.pin_correct: pin = self.debug.read_pin_encoded() else: pin = '444222' return proto.PinMatrixAck(pin=pin) def callback_PassphraseRequest(self, msg): print "Provided passphrase: '%s'" % self.passphrase return proto.PassphraseAck(passphrase=self.passphrase) def callback_WordRequest(self, msg): (word, pos) = self.debug.read_word() if word != '': return proto.WordAck(word=word) if pos != 0: return proto.WordAck(word=self.mnemonic[pos - 1]) raise Exception("Unexpected call") class ProtocolMixin(object): PRIME_DERIVATION_FLAG = 0x80000000 def __init__(self, *args, **kwargs): super(ProtocolMixin, self).__init__(*args, **kwargs) self.init_device() def get_tx_func_placeholder(txhash): raise Exception("Please call set_tx_func() first.") self.get_tx_func = get_tx_func_placeholder def set_tx_func(self, tx_func): self.get_tx_func = tx_func def init_device(self): self.features = expect(proto.Features)(self.call)(proto.Initialize()) def _get_local_entropy(self): return os.urandom(32) def _convert_prime(self, n): # Convert minus signs to uint32 with flag return [ int(abs(x) | self.PRIME_DERIVATION_FLAG) if x < 0 else x for x in n ] def expand_path(self, n): # Convert string of bip32 path to list of uint32 integers with prime flags # 0/-1/1' -> [0, 0x80000001, 0x80000001] if not n: return [] n = n.split('/') path = [] for x in n: prime = False if x.endswith("'"): x = x.replace('\'', '') prime = True if x.startswith('-'): prime = True x = abs(int(x)) if prime: x |= self.PRIME_DERIVATION_FLAG path.append(x) return path @field('node') @expect(proto.PublicKey) def get_public_node(self, n): n = self._convert_prime(n) return self.call(proto.GetPublicKey(address_n=n)) @field('address') @expect(proto.Address) def get_address(self, coin_name, n): n = self._convert_prime(n) return self.call(proto.GetAddress(address_n=n, coin_name=coin_name)) @field('entropy') @expect(proto.Entropy) def get_entropy(self, size): return self.call(proto.GetEntropy(size=size)) @field('message') @expect(proto.Success) def ping(self, msg, button_protection=False, pin_protection=False, passphrase_protection=False): msg = proto.Ping(message=msg, button_protection=button_protection, pin_protection=pin_protection, passphrase_protection=passphrase_protection) return self.call(msg) def get_device_id(self): return self.features.device_id @field('message') @expect(proto.Success) def apply_settings(self, label=None, language=None): settings = proto.ApplySettings() if label != None: settings.label = label if language: settings.language = language out = self.call(settings) self.init_device() # Reload Features return out @field('message') @expect(proto.Success) def change_pin(self, remove=False): ret = self.call(proto.ChangePin(remove=remove)) self.init_device() # Re-read features return ret @expect(proto.MessageSignature) def sign_message(self, coin_name, n, message): n = self._convert_prime(n) # Convert message to UTF8 NFC (seems to be a bitcoin-qt standard) message = normalize_nfc(message) # Convert message to ASCII stream message = str(bytearray(message, 'utf-8')) return self.call(proto.SignMessage(coin_name=coin_name, address_n=n, message=message)) def verify_message(self, address, signature, message): # Convert message to UTF8 NFC (seems to be a bitcoin-qt standard) message = normalize_nfc(message) # Convert message to ASCII stream message = str(bytearray(message, 'utf-8')) try: resp = self.call(proto.VerifyMessage(address=address, signature=signature, message=message)) except CallException as e: resp = e if isinstance(resp, proto.Success): return True return False @field('tx_size') @expect(proto.TxSize) def estimate_tx_size(self, coin_name, inputs, outputs): msg = proto.EstimateTxSize() msg.coin_name = coin_name msg.inputs_count = len(inputs) msg.outputs_count = len(outputs) return self.call(msg) def _prepare_simple_sign_tx(self, coin_name, inputs, outputs): msg = proto.SimpleSignTx() msg.coin_name = coin_name msg.inputs.extend(inputs) msg.outputs.extend(outputs) known_hashes = [] for inp in inputs: if inp.prev_hash in known_hashes: continue tx = msg.transactions.add() tx.CopyFrom(self.get_tx_func(binascii.hexlify(inp.prev_hash))) known_hashes.append(inp.prev_hash) return msg @field('serialized_tx') @expect(proto.TxRequest) def simple_sign_tx(self, coin_name, inputs, outputs): # TODO Deserialize tx and check if inputs/outputs fits msg = self._prepare_simple_sign_tx(coin_name, inputs, outputs) return self.call(msg) def sign_tx(self, coin_name, inputs, outputs): # Temporary solution, until streaming is implemented in the firmware return self.simple_sign_tx(coin_name, inputs, outputs) @field('message') @expect(proto.Success) def wipe_device(self): ret = self.call(proto.WipeDevice()) self.init_device() return ret @field('message') @expect(proto.Success) def recovery_device(self, word_count, passphrase_protection, pin_protection, label, language): if self.features.initialized: raise Exception("Device is initialized already. Call wipe_device() and try again.") if word_count not in (12, 18, 24): raise Exception("Invalid word count. Use 12/18/24") res = self.call(proto.RecoveryDevice(word_count=int(word_count), passphrase_protection=bool(passphrase_protection), pin_protection=bool(pin_protection), label=label, language=language, enforce_wordlist=True)) self.init_device() return res @field('message') @expect(proto.Success) def reset_device(self, display_random, strength, passphrase_protection, pin_protection, label, language): if self.features.initialized: raise Exception("Device is initialized already. Call wipe_device() and try again.") # Begin with device reset workflow msg = proto.ResetDevice(display_random=display_random, strength=strength, language=language, passphrase_protection=bool(passphrase_protection), pin_protection=bool(pin_protection), label=label) resp = self.call(msg) if not isinstance(resp, proto.EntropyRequest): raise Exception("Invalid response, expected EntropyRequest") external_entropy = self._get_local_entropy() print "Computer generated entropy:", binascii.hexlify(external_entropy) ret = self.call(proto.EntropyAck(entropy=external_entropy)) self.init_device() return ret @field('message') @expect(proto.Success) def load_device_by_mnemonic(self, mnemonic, pin, passphrase_protection, label, language, skip_checksum=False): m = Mnemonic('english') if not skip_checksum and not m.check(mnemonic): raise Exception("Invalid mnemonic checksum") # Convert mnemonic to UTF8 NKFD mnemonic = Mnemonic.normalize_string(mnemonic) # Convert mnemonic to ASCII stream mnemonic = str(bytearray(mnemonic, 'utf-8')) if self.features.initialized: raise Exception("Device is initialized already. Call wipe_device() and try again.") resp = self.call(proto.LoadDevice(mnemonic=mnemonic, pin=pin, passphrase_protection=passphrase_protection, language=language, label=label, skip_checksum=skip_checksum)) self.init_device() return resp @field('message') @expect(proto.Success) def load_device_by_xprv(self, xprv, pin, passphrase_protection, label): if self.features.initialized: raise Exception("Device is initialized already. Call wipe_device() and try again.") if xprv[0:4] not in ('xprv', 'tprv'): raise Exception("Unknown type of xprv") if len(xprv) < 100 and len(xprv) > 112: raise Exception("Invalid length of xprv") node = types.HDNodeType() data = tools.b58decode(xprv, None).encode('hex') if data[90:92] != '00': raise Exception("Contain invalid private key") checksum = hashlib.sha256(hashlib.sha256(binascii.unhexlify(data[:156])).digest()).hexdigest()[:8] if checksum != data[156:]: raise Exception("Checksum doesn't match") # version 0488ade4 # depth 00 # fingerprint 00000000 # child_num 00000000 # chaincode 873dff81c02f525623fd1fe5167eac3a55a049de3d314bb42ee227ffed37d508 # privkey 00e8f32e723decf4051aefac8e2c93c9c5b214313817cdb01a1494b917c8436b35 # checksum e77e9d71 node.depth = int(data[8:10], 16) node.fingerprint = int(data[10:18], 16) node.child_num = int(data[18:26], 16) node.chain_code = data[26:90].decode('hex') node.private_key = data[92:156].decode('hex') # skip 0x00 indicating privkey resp = self.call(proto.LoadDevice(node=node, pin=pin, passphrase_protection=passphrase_protection, language='english', label=label)) self.init_device() return resp def firmware_update(self, fp): if self.features.bootloader_mode == False: raise Exception("Device must be in bootloader mode") resp = self.call(proto.FirmwareErase()) if isinstance(resp, proto.Failure) and resp.code == types.Failure_FirmwareError: return False resp = self.call(proto.FirmwareUpload(payload=fp.read())) if isinstance(resp, proto.Success): return True elif isinstance(resp, proto.Failure) and resp.code == types.Failure_FirmwareError: return False raise Exception("Unexpected result " % resp) class TrezorClient(ProtocolMixin, TextUIMixin, BaseClient): pass class TrezorClientDebug(ProtocolMixin, TextUIMixin, DebugWireMixin, BaseClient): pass class TrezorDebugClient(ProtocolMixin, DebugLinkMixin, DebugWireMixin, BaseClient): pass ''' class TrezorClient(object): def _pprint(self, msg): ser = msg.SerializeToString() return "<%s> (%d bytes):\n%s" % (msg.__class__.__name__, len(ser), msg) def call(self, msg, expected=None, expected_buttonrequests=None): # TODO split this into normal and debug mode if self.debug: print '----------------------' print "Sending", self._pprint(msg) try: self.transport.session_begin() self.transport.write(msg) resp = self.transport.read_blocking() if isinstance(resp, proto.ButtonRequest): _pprint(self, msg): ser = msg.SerializeToString() if expected_buttonrequests != None: try: exp = expected_buttonrequests.pop(0) if resp.code != exp: raise CallException(types.Failure_Other, "Expected %s, got %s" % \ (self._get_buttonrequest_value(exp), self._get_buttonrequest_value(resp.code))) except IndexError: raise CallException(types.Failure_Other, "Got %s, but no ButtonRequest has been expected" % \ self._get_buttonrequest_value(resp.code)) print "ButtonRequest code:", self._get_buttonrequest_value(resp.code) if self.debuglink and self.debug_button: print "Pressing button", self.debug_button self.debuglink.press_button(self.debug_button) return self.call(proto.ButtonAck(), expected_buttonrequests=expected_buttonrequests) if isinstance(resp, proto.PinMatrixRequest): if self.debuglink: if self.debug_pin == 1: pin = self.debuglink.read_pin_encoded() msg2 = proto.PinMatrixAck(pin=pin) elif self.debug_pin == -1: msg2 = proto.Cancel() else: msg2 = proto.PinMatrixAck(pin='444444222222') else: pin = self.pin_func("PIN required: ", resp.message) msg2 = proto.PinMatrixAck(pin=pin) return self.call(msg2, expected=expected, expected_buttonrequests=expected_buttonrequests) if isinstance(resp, proto.PassphraseRequest): passphrase = self.passphrase_func("Passphrase required: ") ms(object)g2 = proto.PassphraseAck(passphrase=passphrase) return self.call(msg2, expected=expected, expected_buttonrequests=expected_buttonrequests) finally: self.transport.session_end() if isinstance(resp, proto.Failure): self.message_func(resp.message) if resp.code in (types.Failure_PinInvalid, types.Failure_PinCancelled, types.Failure_PinExpected): raise PinException(resp.code, resp.message) raise CallException(resp.code, resp.message) if self.debug: print "Received", self._pprint(resp) if expected and not isinstance(resp, expected): raise CallException("Expected %s message, got %s message" % (expected.DESCRIPTOR.name, resp.DESCRIPTOR.name)) if expected_buttonrequests != None and len(expected_buttonrequests): raise CallException(types.Failure_Other, "Following ButtonRequests were not in use: %s" % \ [ self._get_buttonrequest_value(x) for x in expected_buttonrequests]) return resp def _sign_tx(self, coin_name, inputs, outputs): '' inputs: list of TxInput outputs: list of TxOutput proto.TxInput(index=0, address_n=0, amount=0, prev_hash='', prev_index=0, #script_sig= ) proto.TxOutput(index=0, address='1Bitkey', #address_n=[], amount=100000000, script_type=proto.PAYTOADDRESS, #script_args= ) '' start = time.time() try: self.transport.session_begin() # Prepare and send initial message tx = proto.SignTx() tx.inputs_count = len(inputs) tx.outputs_count = len(outputs) res = self.call(tx) # Prepare structure for signatures signatures = [None]*len(inputs) serialized_tx = '' counter = 0 while True: counter += 1 if isinstance(res, proto.Failure): raise CallException("Signing failed") if not isinstance(res, proto.TxRequest): raise CallException("Unexpected message") # If there's some part of signed transaction, let's add it if res.serialized_tx: print "!!! RECEIVED PART OF SERIALIED TX (%d BYTES)" % len(res.serialized_tx) serialized_tx += res.serialized_tx if res.signed_index >= 0 and res.signature: print "!!! SIGNED INPUT", res.signed_index signatures[res.signed_index] = res.signature if res.request_index < 0: # Device didn't ask for more information, finish workflow break # Device asked for one more information, let's process it. if res.request_type == types.TXOUTPUT: res = self.call(outputs[res.request_index]) continue elif res.request_type == types.TXINPUT: print "REQUESTING", res.request_index res = self.call(inputs[res.request_index]) continue finally: self.transport.session_end() print "SIGNED IN %.03f SECONDS, CALLED %d MESSAGES, %d BYTES" % \ (time.time() - start, counter, len(serialized_tx)) return (signatures, serialized_tx) '''