/* * Copyright (c) Pavol Rusnak, SatoshiLabs * * Licensed under TREZOR License * see LICENSE file for details */ #include "py/objstr.h" #include "trezor-crypto/ecdsa.h" #include "trezor-crypto/secp256k1.h" typedef struct _mp_obj_Secp256k1_t { mp_obj_base_t base; } mp_obj_Secp256k1_t; STATIC mp_obj_t mod_TrezorCrypto_Secp256k1_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) { mp_arg_check_num(n_args, n_kw, 0, 0, false); mp_obj_Secp256k1_t *o = m_new_obj(mp_obj_Secp256k1_t); o->base.type = type; return MP_OBJ_FROM_PTR(o); } /// def trezor.crypto.curve.secp256k1.generate_secret() -> bytes: /// ''' /// Generate secret key. /// ''' STATIC mp_obj_t mod_TrezorCrypto_Secp256k1_generate_secret(mp_obj_t self) { vstr_t vstr; vstr_init_len(&vstr, 32); for (;;) { random_buffer((uint8_t *)vstr.buf, 32); // check whether secret > 0 && secret < curve_order if (0 == memcmp(vstr.buf, "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 32)) continue; if (0 <= memcmp(vstr.buf, "\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFE\xBA\xAE\xDC\xE6\xAF\x48\xA0\x3B\xBF\xD2\x5E\x8C\xD0\x36\x41\x41", 32)) continue; break; } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_1(mod_TrezorCrypto_Secp256k1_generate_secret_obj, mod_TrezorCrypto_Secp256k1_generate_secret); /// def trezor.crypto.curve.secp256k1.publickey(secret_key: bytes, compressed: bool=True) -> bytes: /// ''' /// Computes public key from secret key. /// ''' STATIC mp_obj_t mod_TrezorCrypto_Secp256k1_publickey(size_t n_args, const mp_obj_t *args) { mp_buffer_info_t sk; mp_get_buffer_raise(args[1], &sk, MP_BUFFER_READ); if (sk.len != 32) { mp_raise_ValueError("Invalid length of secret key"); } bool compressed = n_args < 3 || args[2] == mp_const_true; vstr_t vstr; if (compressed) { vstr_init_len(&vstr, 33); ecdsa_get_public_key33(&secp256k1, (const uint8_t *)sk.buf, (uint8_t *)vstr.buf); } else { vstr_init_len(&vstr, 65); ecdsa_get_public_key65(&secp256k1, (const uint8_t *)sk.buf, (uint8_t *)vstr.buf); } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_TrezorCrypto_Secp256k1_publickey_obj, 2, 3, mod_TrezorCrypto_Secp256k1_publickey); /// def trezor.crypto.curve.secp256k1.sign(secret_key: bytes, message: bytes) -> bytes: /// ''' /// Uses secret key to produce the signature of message. /// ''' STATIC mp_obj_t mod_TrezorCrypto_Secp256k1_sign(mp_obj_t self, mp_obj_t secret_key, mp_obj_t message) { mp_buffer_info_t sk, msg; mp_get_buffer_raise(secret_key, &sk, MP_BUFFER_READ); mp_get_buffer_raise(message, &msg, MP_BUFFER_READ); if (sk.len != 32) { mp_raise_ValueError("Invalid length of secret key"); } if (msg.len == 0) { mp_raise_ValueError("Empty data to sign"); } vstr_t vstr; vstr_init_len(&vstr, 65); uint8_t pby; if (0 != ecdsa_sign(&secp256k1, (const uint8_t *)sk.buf, (const uint8_t *)msg.buf, msg.len, (uint8_t *)vstr.buf, &pby, NULL)) { // TODO: is_canonical mp_raise_ValueError("Signing failed"); } (void)pby; return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(mod_TrezorCrypto_Secp256k1_sign_obj, mod_TrezorCrypto_Secp256k1_sign); /// def trezor.crypto.curve.secp256k1.verify(public_key: bytes, signature: bytes, message: bytes) -> bool: /// ''' /// Uses public key to verify the signature of the message /// Returns True on success. /// ''' STATIC mp_obj_t mod_TrezorCrypto_Secp256k1_verify(size_t n_args, const mp_obj_t *args) { mp_buffer_info_t pk, sig, msg; mp_get_buffer_raise(args[1], &pk, MP_BUFFER_READ); mp_get_buffer_raise(args[2], &sig, MP_BUFFER_READ); mp_get_buffer_raise(args[3], &msg, MP_BUFFER_READ); if (pk.len != 33 && pk.len != 65) { mp_raise_ValueError("Invalid length of public key"); } if (sig.len != 65) { mp_raise_ValueError("Invalid length of signature"); } if (msg.len == 0) { mp_raise_ValueError("Empty data to verify"); } return mp_obj_new_bool(0 == ecdsa_verify(&secp256k1, (const uint8_t *)pk.buf, (const uint8_t *)sig.buf, (const uint8_t *)msg.buf, msg.len)); } STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(mod_TrezorCrypto_Secp256k1_verify_obj, 4, 4, mod_TrezorCrypto_Secp256k1_verify); /// def trezor.crypto.curve.secp256k1.multiply(secret_key: bytes, public_key: bytes) -> bytes: /// ''' /// Multiplies point defined by public_key with scalar defined by secret_key /// Useful for ECDH /// ''' STATIC mp_obj_t mod_TrezorCrypto_Secp256k1_multiply(mp_obj_t self, mp_obj_t secret_key, mp_obj_t public_key) { mp_buffer_info_t sk, pk; mp_get_buffer_raise(secret_key, &sk, MP_BUFFER_READ); mp_get_buffer_raise(public_key, &pk, MP_BUFFER_READ); if (sk.len != 32) { mp_raise_ValueError("Invalid length of secret key"); } if (pk.len != 33 && pk.len != 65) { mp_raise_ValueError("Invalid length of public key"); } vstr_t vstr; vstr_init_len(&vstr, 65); if (0 != ecdh_multiply(&secp256k1, (const uint8_t *)sk.buf, (const uint8_t *)pk.buf, (uint8_t *)vstr.buf)) { mp_raise_ValueError("Multiply failed"); } return mp_obj_new_str_from_vstr(&mp_type_bytes, &vstr); } STATIC MP_DEFINE_CONST_FUN_OBJ_3(mod_TrezorCrypto_Secp256k1_multiply_obj, mod_TrezorCrypto_Secp256k1_multiply); STATIC const mp_rom_map_elem_t mod_TrezorCrypto_Secp256k1_locals_dict_table[] = { { MP_ROM_QSTR(MP_QSTR_generate_secret), MP_ROM_PTR(&mod_TrezorCrypto_Secp256k1_generate_secret_obj) }, { MP_ROM_QSTR(MP_QSTR_publickey), MP_ROM_PTR(&mod_TrezorCrypto_Secp256k1_publickey_obj) }, { MP_ROM_QSTR(MP_QSTR_sign), MP_ROM_PTR(&mod_TrezorCrypto_Secp256k1_sign_obj) }, { MP_ROM_QSTR(MP_QSTR_verify), MP_ROM_PTR(&mod_TrezorCrypto_Secp256k1_verify_obj) }, { MP_ROM_QSTR(MP_QSTR_multiply), MP_ROM_PTR(&mod_TrezorCrypto_Secp256k1_multiply_obj) }, }; STATIC MP_DEFINE_CONST_DICT(mod_TrezorCrypto_Secp256k1_locals_dict, mod_TrezorCrypto_Secp256k1_locals_dict_table); STATIC const mp_obj_type_t mod_TrezorCrypto_Secp256k1_type = { { &mp_type_type }, .name = MP_QSTR_Secp256k1, .make_new = mod_TrezorCrypto_Secp256k1_make_new, .locals_dict = (void*)&mod_TrezorCrypto_Secp256k1_locals_dict, };