/** * Copyright (c) 2013 Tomas Dzetkulic * Copyright (c) 2013 Pavol Rusnak * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include #include "rand.h" #include "sha256.h" #include "ecdsa.h" #include "secp256k1.h" #include "aux.h" // assumes x < 2*prime void mod(bignum256 *x, bignum256 const *prime) { int i = 8; uint32_t temp; // compare numbers while (i >= 0 && prime->val[i] == x->val[i]) --i; // if equal if (i == -1) { // set x to zero for (i = 0; i < 9; i++) { x->val[i] = 0; } } else { // if x is greater if (x->val[i] > prime->val[i]) { // substract p from x temp = 0x40000000u; for (i = 0; i < 9; i++) { temp += x->val[i] - prime->val[i]; x->val[i] = temp & 0x3FFFFFFF; temp >>= 30; temp += 0x3FFFFFFFu; } } } } // x = k * x // both inputs and result may be bigger than prime but not bigger than 2 * prime void multiply(const bignum256 *k, bignum256 *x, bignum256 const *prime) { int i, j; uint64_t temp = 0; uint32_t res[18], coef; // compute lower half of long multiplication for (i = 0; i < 9; i++) { for (j = 0; j <= i; j++) { temp += k->val[j] * (uint64_t)x->val[i-j]; } res[i] = temp & 0x3FFFFFFFu; temp >>= 30; } // compute upper half for (; i < 17; i++) { for (j = i - 8; j < 9 ; j++) { temp += k->val[j] * (uint64_t)x->val[i-j]; } res[i] = temp & 0x3FFFFFFFu; temp >>= 30; } res[17] = temp; // compute modulo p division is only estimated so this may give result greater than prime but not bigger than 2 * prime for (i = 16; i >= 8; i--) { // estimate (res / prime) coef = (res[i] >> 16) + (res[i+1] << 14); // substract (coef * prime) from res temp = 0x1000000000000000llu + res[i-8] - prime->val[0] * (uint64_t)coef; res[i-8] = temp & 0x3FFFFFFF; for (j = 1; j < 9; j++) { temp >>= 30; temp += 0xFFFFFFFC0000000llu + res[i-8+j] - prime->val[j] * (uint64_t)coef; res[i - 8 + j] = temp & 0x3FFFFFFF; } } // store the result for (i = 0; i < 9; i++) { x->val[i] = res[i]; } } void fast_mod(bignum256 *x, bignum256 const *prime) { int j; uint32_t coef; uint64_t temp; coef = x->val[8] >> 16; if (!coef) return; // substract (coef * prime) from x temp = 0x1000000000000000llu + x->val[0] - prime->val[0] * (uint64_t)coef; x->val[0] = temp & 0x3FFFFFFF; for (j = 1; j < 9; j++) { temp >>= 30; temp += 0xFFFFFFFC0000000llu + x->val[j] - prime->val[j] * (uint64_t)coef; x->val[j] = temp & 0x3FFFFFFF; } } // in field G_prime void inverse(bignum256 *x, bignum256 const *prime) { int i, j, k, len1, len2, mask; uint32_t u[9], v[9], s[10], r[10], temp, temp2; fast_mod(x, prime); mod(x, prime); for (i = 0; i < 9; i++) { u[i] = prime->val[i]; v[i] = x->val[i]; } len1 = 9; s[0] = 1; r[0] = 0; len2 = 1; k = 0; for (;;) { for (i = 0; i < len1; i++) { if (v[i]) break; } if (i == len1) break; for (;;) { for (i = 0; i < 30; i++) { if (u[0] & (1 << i)) break; } if (i == 0) break; mask = (1 << i) - 1; for (j = 0; j + 1 < len1; j++) { u[j] = (u[j] >> i) | ((u[j + 1] & mask) << (30 - i)); } u[j] = (u[j] >> i); mask = (1 << (30 - i)) - 1; s[len2] = s[len2 - 1] >> (30 - i); for (j = len2 - 1; j > 0; j--) { s[j] = (s[j - 1] >> (30 - i)) | ((s[j] & mask) << i); } s[0] = (s[0] & mask) << i; if (s[len2]) { r[len2] = 0; len2++; } k += i; } for (;;) { for (i = 0; i < 30; i++) { if (v[0] & (1 << i)) break; } if (i == 0) break; mask = (1 << i) - 1; for (j = 0; j + 1 < len1; j++) { v[j] = (v[j] >> i) | ((v[j + 1] & mask) << (30 - i)); } v[j] = (v[j] >> i); mask = (1 << (30 - i)) - 1; r[len2] = r[len2 - 1] >> (30 - i); for (j = len2 - 1; j > 0; j--) { r[j] = (r[j - 1] >> (30 - i)) | ((r[j] & mask) << i); } r[0] = (r[0] & mask) << i; if (r[len2]) { s[len2] = 0; len2++; } k += i; } i = len1 - 1; while (i>0 && u[i] == v[i]) i--; if (u[i] > v[i]) { temp = 0x40000000u + u[0] - v[0]; u[0] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; for (i = 1; i < len1; i++) { temp += 0x3FFFFFFFu + u[i] - v[i]; u[i-1] += (temp & 1) << 29; u[i] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; } temp = temp2 = 0; for (i = 0; i < len2; i++) { temp += s[i] + r[i]; temp2 += s[i] << 1; r[i] = temp & 0x3FFFFFFF; s[i] = temp2 & 0x3FFFFFFF; temp >>= 30; temp2 >>= 30; } if (temp != 0 || temp2 != 0) { r[len2] = temp; s[len2] = temp2; len2++; } } else { temp = 0x40000000u + v[0] - u[0]; v[0] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; for (i = 1; i < len1; i++) { temp += 0x3FFFFFFFu + v[i] - u[i]; v[i-1] += (temp & 1) << 29; v[i] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; } temp = temp2 = 0; for (i = 0; i < len2; i++) { temp += s[i] + r[i]; temp2 += r[i] << 1; s[i] = temp & 0x3FFFFFFF; r[i] = temp2 & 0x3FFFFFFF; temp >>= 30; temp2 >>= 30; } if (temp != 0 || temp2 != 0) { s[len2] = temp; r[len2] = temp2; len2++; } } if (u[len1 - 1] == 0 && v[len1 - 1] == 0) len1--; k++; } i = 8; while (i>0 && r[i] == prime->val[i]) i--; if (r[i] >= prime->val[i]) { temp = 1; for (i = 0; i < 9; i++) { temp += 0x3FFFFFFF + r[i] - prime->val[i]; r[i] = temp & 0x3FFFFFFF; temp >>= 30; } } temp = 1; for (i = 0; i < 9; i++) { temp += 0x3FFFFFFF + prime->val[i] - r[i]; r[i] = temp & 0x3FFFFFFF; temp >>= 30; } int done = 0; #ifdef USE_PRECOMPUTED_IV if (prime == &prime256k1) { for (j = 0; j < 9; j++) { x->val[j] = r[j]; } multiply(secp256k1_iv + k - 256, x, prime); fast_mod(x, prime); done = 1; } #endif if (!done) { for (j = 0; j < k; j++) { if (r[0] & 1) { temp = r[0] + prime->val[0]; r[0] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; for (i = 1; i < 9; i++) { temp += r[i] + prime->val[i]; r[i-1] += (temp & 1) << 29; r[i] = (temp >> 1) & 0x1FFFFFFF; temp >>= 30; } } else { for (i = 0; i < 8; i++) { r[i] = (r[i] >> 1) | ((r[i+1] & 1) << 29); } r[8] = r[8] >> 1; } } for (j = 0; j < 9; j++) { x->val[j] = r[j]; } } } // res = a - b // b < 2*prime; result not normalized void fast_substract(const bignum256 *a, const bignum256 *b, bignum256 *res) { int i; uint32_t temp = 0; for (i = 0; i < 9; i++) { temp += a->val[i] + 2u *prime256k1.val[i] - b->val[i]; res->val[i] = temp & 0x3FFFFFFF; temp >>= 30; } } // cp2 = cp1 + cp2 void point_add(const curve_point *cp1, curve_point *cp2) { int i; uint32_t temp; bignum256 lambda, inv, xr, yr; fast_substract(&(cp2->x), &(cp1->x), &inv); inverse(&inv, &prime256k1); fast_substract(&(cp2->y), &(cp1->y), &lambda); multiply(&inv, &lambda, &prime256k1); memcpy(&xr, &lambda, sizeof(bignum256)); multiply(&xr, &xr, &prime256k1); temp = 0; for (i = 0; i < 9; i++) { temp += xr.val[i] + 3u * prime256k1.val[i] - cp1->x.val[i] - cp2->x.val[i]; xr.val[i] = temp & 0x3FFFFFFF; temp >>= 30; } fast_mod(&xr, &prime256k1); fast_substract(&(cp1->x), &xr, &yr); // no need to fast_mod here // fast_mod(&yr); multiply(&lambda, &yr, &prime256k1); fast_substract(&yr, &(cp1->y), &yr); fast_mod(&yr, &prime256k1); memcpy(&(cp2->x), &xr, sizeof(bignum256)); memcpy(&(cp2->y), &yr, sizeof(bignum256)); } #ifndef USE_PRECOMPUTED_CP // cp = cp + cp void point_double(curve_point *cp) { int i; uint32_t temp; bignum256 lambda, inverse_y, xr, yr; memcpy(&inverse_y, &(cp->y), sizeof(bignum256)); inverse(&inverse_y, &prime256k1); memcpy(&lambda, &three_over_two256k1, sizeof(bignum256)); multiply(&inverse_y, &lambda, &prime256k1); multiply(&(cp->x), &lambda, &prime256k1); multiply(&(cp->x), &lambda, &prime256k1); memcpy(&xr, &lambda, sizeof(bignum256)); multiply(&xr, &xr, &prime256k1); temp = 0; for (i = 0; i < 9; i++) { temp += xr.val[i] + 3u * prime256k1.val[i] - 2u * cp->x.val[i]; xr.val[i] = temp & 0x3FFFFFFF; temp >>= 30; } fast_mod(&xr, &prime256k1); fast_substract(&(cp->x), &xr, &yr); // no need to fast_mod here // fast_mod(&yr); multiply(&lambda, &yr, &prime256k1); fast_substract(&yr, &(cp->y), &yr); fast_mod(&yr, &prime256k1); memcpy(&(cp->x), &xr, sizeof(bignum256)); memcpy(&(cp->y), &yr, sizeof(bignum256)); } #endif // res = k * G void scalar_multiply(bignum256 *k, curve_point *res) { int i, j; // result is zero int is_zero = 1; #ifdef USE_PRECOMPUTED_CP int exp = 0; #else curve_point curr; // initial res memcpy(&curr, &G256k1, sizeof(curve_point)); #endif for (i = 0; i < 9; i++) { for (j = 0; j < 30; j++) { if (i == 8 && (k->val[i] >> j) == 0) break; if (k->val[i] & (1u<x), &prime256k1); mod(&(res->y), &prime256k1); } // write DER encoding of number to buffer void write_der(const bignum256 *x, uint8_t *buf) { int i, j = 8, k = 8, len = 0; uint8_t r = 0, temp; buf[0] = 2; for (i = 0; i < 32; i++) { temp = (x->val[j] >> k) + r; k -= 8; if (k < 0) { r = (x->val[j]) << (-k); k += 30; j--; } else { r = 0; } if (len || temp) { buf[2 + len] = temp; len++; } } buf[1] = len; } // uses secp256k1 curve // priv_key is a 32 byte big endian stored number // msg is a data to be signed // msg_len is the message length // sig is at least 70 bytes long array for the signature // sig_len is the pointer to a uint that will contain resulting signature length. note that ((*sig_len) == sig[1]+2) void ecdsa_sign(uint8_t *priv_key, uint8_t *msg, uint32_t msg_len, uint8_t *sig, uint32_t *sig_len) { uint32_t i; uint64_t temp; uint8_t hash[32]; curve_point R; bignum256 k, z; bignum256 *da = &R.y; // compute hash function of message sha256(msg, msg_len, hash); // if double hash is required uncomment the following line: // sha256(hash, 32, hash); temp = 0; for (i = 0; i < 8; i++) { temp += (((uint64_t)read_be(hash + (7 - i) * 4)) << (2 * i)); z.val[i]= temp & 0x3FFFFFFF; temp >>= 30; } z.val[8] = temp; for (;;) { // generate random number k for (i = 0; i < 8; i++) { k.val[i] = random32() & 0x3FFFFFFF; } k.val[8] = random32() & 0xFFFF; // if k is too big or too small, we don't like it if (k.val[5] == 0x3FFFFFFF && k.val[6] == 0x3FFFFFFF && k.val[7] == 0x3FFFFFFF && k.val[8] == 0xFFFF) continue; if (k.val[5] == 0x0 && k.val[6] == 0x0 && k.val[7] == 0x0 && k.val[8] == 0x0) continue; // compute k*G scalar_multiply(&k, &R); // r = (rx mod n) mod(&R.x, &order256k1); // if r is zero, we try different k for (i = 0; i < 9; i++) { if (R.x.val[i] != 0) break; } if (i == 9) continue; inverse(&k, &order256k1); temp = 0; for (i = 0; i < 8; i++) { temp += (((uint64_t)read_be(priv_key + (7 - i) * 4)) << (2 * i)); da->val[i] = temp & 0x3FFFFFFF; temp >>= 30; } da->val[8] = temp; multiply(&R.x, da, &order256k1); for (i = 0; i < 8; i++) { da->val[i] += z.val[i]; da->val[i+1] += (da->val[i] >> 30); da->val[i] &= 0x3FFFFFFF; } da->val[8] += z.val[8]; multiply(da, &k, &order256k1); mod(&k, &order256k1); for (i = 0; i < 9; i++) { if (k.val[i] != 0) break; } if (i == 9) continue; // we are done, R.x and k is the result signature break; } write_der(&R.x, sig + 2); i = sig[3] + 2; write_der(&k, sig + 2 + i); i += sig[3+i] + 2; sig[0] = 0x30; sig[1] = i; *sig_len = i + 2; }