/** * Copyright (c) 2013-2014 Tomas Dzetkulic * Copyright (c) 2013-2014 Pavol Rusnak * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */ #include #include #include "bignum.h" #include "hmac.h" #include "ecdsa.h" #include "bip32.h" #include "sha2.h" #include "ripemd160.h" #include "base58.h" #include "macros.h" #include "secp256k1.h" static const ecdsa_curve *default_curve = &secp256k1; int hdnode_from_xpub(uint32_t depth, uint32_t fingerprint, uint32_t child_num, const uint8_t *chain_code, const uint8_t *public_key, HDNode *out) { if (public_key[0] != 0x02 && public_key[0] != 0x03) { // invalid pubkey return 0; } out->depth = depth; out->fingerprint = fingerprint; out->child_num = child_num; memcpy(out->chain_code, chain_code, 32); MEMSET_BZERO(out->private_key, 32); memcpy(out->public_key, public_key, 33); return 1; } int hdnode_from_xprv(uint32_t depth, uint32_t fingerprint, uint32_t child_num, const uint8_t *chain_code, const uint8_t *private_key, HDNode *out) { bignum256 a; bn_read_be(private_key, &a); bool failed = false; if (bn_is_zero(&a)) { // == 0 failed = true; } else { if (!bn_is_less(&a, &default_curve->order)) { // >= order failed = true; } MEMSET_BZERO(&a, sizeof(a)); } if (failed) { return 0; } out->depth = depth; out->fingerprint = fingerprint; out->child_num = child_num; memcpy(out->chain_code, chain_code, 32); memcpy(out->private_key, private_key, 32); hdnode_fill_public_key(out); return 1; } int hdnode_from_seed(const uint8_t *seed, int seed_len, HDNode *out) { uint8_t I[32 + 32]; memset(out, 0, sizeof(HDNode)); out->depth = 0; out->fingerprint = 0x00000000; out->child_num = 0; hmac_sha512((uint8_t *)"Bitcoin seed", 12, seed, seed_len, I); memcpy(out->private_key, I, 32); bignum256 a; bn_read_be(out->private_key, &a); bool failed = false; if (bn_is_zero(&a)) { // == 0 failed = true; } else { if (!bn_is_less(&a, &default_curve->order)) { // >= order failed = true; } MEMSET_BZERO(&a, sizeof(a)); } if (!failed) { memcpy(out->chain_code, I + 32, 32); hdnode_fill_public_key(out); } MEMSET_BZERO(I, sizeof(I)); return failed ? 0 : 1; } int hdnode_private_ckd(HDNode *inout, uint32_t i) { uint8_t data[1 + 32 + 4]; uint8_t I[32 + 32]; uint8_t fingerprint[32]; bignum256 a, b; if (i & 0x80000000) { // private derivation data[0] = 0; memcpy(data + 1, inout->private_key, 32); } else { // public derivation memcpy(data, inout->public_key, 33); } write_be(data + 33, i); sha256_Raw(inout->public_key, 33, fingerprint); ripemd160(fingerprint, 32, fingerprint); inout->fingerprint = (fingerprint[0] << 24) + (fingerprint[1] << 16) + (fingerprint[2] << 8) + fingerprint[3]; bn_read_be(inout->private_key, &a); hmac_sha512(inout->chain_code, 32, data, sizeof(data), I); memcpy(inout->chain_code, I + 32, 32); memcpy(inout->private_key, I, 32); bn_read_be(inout->private_key, &b); bool failed = false; if (!bn_is_less(&b, &default_curve->order)) { // >= order failed = true; } if (!failed) { bn_addmod(&a, &b, &default_curve->order); bn_mod(&a, &default_curve->order); if (bn_is_zero(&a)) { failed = true; } } if (!failed) { inout->depth++; inout->child_num = i; bn_write_be(&a, inout->private_key); hdnode_fill_public_key(inout); } // making sure to wipe our memory MEMSET_BZERO(&a, sizeof(a)); MEMSET_BZERO(&b, sizeof(b)); MEMSET_BZERO(I, sizeof(I)); MEMSET_BZERO(fingerprint, sizeof(fingerprint)); MEMSET_BZERO(data, sizeof(data)); return failed ? 0 : 1; } int hdnode_public_ckd(HDNode *inout, uint32_t i) { uint8_t data[1 + 32 + 4]; uint8_t I[32 + 32]; uint8_t fingerprint[32]; curve_point a, b; bignum256 c; if (i & 0x80000000) { // private derivation return 0; } else { // public derivation memcpy(data, inout->public_key, 33); } write_be(data + 33, i); sha256_Raw(inout->public_key, 33, fingerprint); ripemd160(fingerprint, 32, fingerprint); inout->fingerprint = (fingerprint[0] << 24) + (fingerprint[1] << 16) + (fingerprint[2] << 8) + fingerprint[3]; memset(inout->private_key, 0, 32); bool failed = false; if (!ecdsa_read_pubkey(default_curve, inout->public_key, &a)) { failed = true; } if (!failed) { hmac_sha512(inout->chain_code, 32, data, sizeof(data), I); memcpy(inout->chain_code, I + 32, 32); bn_read_be(I, &c); if (!bn_is_less(&c, &default_curve->order)) { // >= order failed = true; } } if (!failed) { scalar_multiply(default_curve, &c, &b); // b = c * G point_add(default_curve, &a, &b); // b = a + b if (!ecdsa_validate_pubkey(default_curve, &b)) { failed = true; } } if (!failed) { inout->public_key[0] = 0x02 | (b.y.val[0] & 0x01); bn_write_be(&b.x, inout->public_key + 1); inout->depth++; inout->child_num = i; } // Wipe all stack data. MEMSET_BZERO(data, sizeof(data)); MEMSET_BZERO(I, sizeof(I)); MEMSET_BZERO(fingerprint, sizeof(fingerprint)); MEMSET_BZERO(&a, sizeof(a)); MEMSET_BZERO(&b, sizeof(b)); MEMSET_BZERO(&c, sizeof(c)); return failed ? 0 : 1; } #if USE_BIP32_CACHE static bool private_ckd_cache_root_set = false; static HDNode private_ckd_cache_root; static int private_ckd_cache_index = 0; static struct { bool set; size_t depth; uint32_t i[BIP32_CACHE_MAXDEPTH]; HDNode node; } private_ckd_cache[BIP32_CACHE_SIZE]; int hdnode_private_ckd_cached(HDNode *inout, const uint32_t *i, size_t i_count) { if (i_count == 0) { return 1; } if (i_count == 1) { if (hdnode_private_ckd(inout, i[0]) == 0) return 0; return 1; } bool found = false; // if root is not set or not the same if (!private_ckd_cache_root_set || memcmp(&private_ckd_cache_root, inout, sizeof(HDNode)) != 0) { // clear the cache private_ckd_cache_index = 0; memset(private_ckd_cache, 0, sizeof(private_ckd_cache)); // setup new root memcpy(&private_ckd_cache_root, inout, sizeof(HDNode)); private_ckd_cache_root_set = true; } else { // try to find parent int j; for (j = 0; j < BIP32_CACHE_SIZE; j++) { if (private_ckd_cache[j].set && private_ckd_cache[j].depth == i_count - 1 && memcmp(private_ckd_cache[j].i, i, (i_count - 1) * sizeof(uint32_t)) == 0) { memcpy(inout, &(private_ckd_cache[j].node), sizeof(HDNode)); found = true; break; } } } // else derive parent if (!found) { size_t k; for (k = 0; k < i_count - 1; k++) { if (hdnode_private_ckd(inout, i[k]) == 0) return 0; } // and save it memset(&(private_ckd_cache[private_ckd_cache_index]), 0, sizeof(private_ckd_cache[private_ckd_cache_index])); private_ckd_cache[private_ckd_cache_index].set = true; private_ckd_cache[private_ckd_cache_index].depth = i_count - 1; memcpy(private_ckd_cache[private_ckd_cache_index].i, i, (i_count - 1) * sizeof(uint32_t)); memcpy(&(private_ckd_cache[private_ckd_cache_index].node), inout, sizeof(HDNode)); private_ckd_cache_index = (private_ckd_cache_index + 1) % BIP32_CACHE_SIZE; } if (hdnode_private_ckd(inout, i[i_count - 1]) == 0) return 0; return 1; } #endif void hdnode_fill_public_key(HDNode *node) { ecdsa_get_public_key33(default_curve, node->private_key, node->public_key); } void hdnode_serialize(const HDNode *node, uint32_t version, char use_public, char *str, int strsize) { uint8_t node_data[78]; write_be(node_data, version); node_data[4] = node->depth; write_be(node_data + 5, node->fingerprint); write_be(node_data + 9, node->child_num); memcpy(node_data + 13, node->chain_code, 32); if (use_public) { memcpy(node_data + 45, node->public_key, 33); } else { node_data[45] = 0; memcpy(node_data + 46, node->private_key, 32); } base58_encode_check(node_data, sizeof(node_data), str, strsize); MEMSET_BZERO(node_data, sizeof(node_data)); } void hdnode_serialize_public(const HDNode *node, char *str, int strsize) { hdnode_serialize(node, 0x0488B21E, 1, str, strsize); } void hdnode_serialize_private(const HDNode *node, char *str, int strsize) { hdnode_serialize(node, 0x0488ADE4, 0, str, strsize); } // check for validity of curve point in case of public data not performed int hdnode_deserialize(const char *str, HDNode *node) { uint8_t node_data[78]; memset(node, 0, sizeof(HDNode)); if (!base58_decode_check(str, node_data, sizeof(node_data))) { return -1; } uint32_t version = read_be(node_data); if (version == 0x0488B21E) { // public node memcpy(node->public_key, node_data + 45, 33); } else if (version == 0x0488ADE4) { // private node if (node_data[45]) { // invalid data return -2; } memcpy(node->private_key, node_data + 46, 32); hdnode_fill_public_key(node); } else { return -3; // invalid version } node->depth = node_data[4]; node->fingerprint = read_be(node_data + 5); node->child_num = read_be(node_data + 9); memcpy(node->chain_code, node_data + 13, 32); return 0; }