/* * This file is part of the Trezor project, https://trezor.io/ * * Copyright (c) SatoshiLabs * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ // Communications Device Class Code (bFunctionClass, bInterfaceClass) #define USB_CLASS_CDC 0x02 // Data Interface Class Code (bInterfaceClass) #define USB_CLASS_DATA 0x0A // Class Subclass Code (bFunctionSubClass, bInterfaceSubClass) #define USB_CDC_SUBCLASS_ACM 0x02 // Communications Interface Class Control Protocol Codes (bFunctionProtocol, // bInterfaceProtocol) #define USB_CDC_PROTOCOL_AT 0x01 // Descriptor Types (bDescriptorType) #define USB_DESC_TYPE_ASSOCIATION 0x0B #define USB_DESC_TYPE_CS_INTERACE 0x24 // Descriptor SubTypes (bDescriptorSubtype) #define USB_DESC_TYPE_HEADER 0x00 #define USB_DESC_TYPE_CM 0x01 #define USB_DESC_TYPE_ACM 0x02 #define USB_DESC_TYPE_UNION 0x06 // Data Phase Transfer Direction (bmRequest) #define USB_REQ_DIR_MASK 0x80 #define USB_REQ_DIR_H2D 0x00 #define USB_REQ_DIR_D2H 0x80 // Class-Specific Request Codes for PSTN subclasses #define USB_CDC_SET_LINE_CODING 0x20 #define USB_CDC_GET_LINE_CODING 0x21 #define USB_CDC_SET_CONTROL_LINE_STATE 0x22 /* usb_vcp_add adds and configures new USB VCP interface according to * configuration options passed in `info`. */ secbool usb_vcp_add(const usb_vcp_info_t *info) { usb_iface_t *iface = usb_get_iface(info->iface_num); if (iface == NULL) { return secfalse; // Invalid interface number } if (iface->type != USB_IFACE_TYPE_DISABLED) { return secfalse; // Interface is already enabled } usb_vcp_descriptor_block_t *d = usb_desc_alloc_iface(sizeof(usb_vcp_descriptor_block_t)); if (d == NULL) { return secfalse; // Not enough space in the configuration descriptor } if ((info->ep_cmd & USB_EP_DIR_MASK) != USB_EP_DIR_IN) { return secfalse; // IN CMD EP is invalid } if ((info->ep_in & USB_EP_DIR_MASK) != USB_EP_DIR_IN) { return secfalse; // IN EP is invalid } if ((info->ep_out & USB_EP_DIR_MASK) != USB_EP_DIR_OUT) { return secfalse; // OUT EP is invalid } if ((info->rx_buffer_len == 0) || (info->rx_buffer_len & (info->rx_buffer_len - 1)) != 0) { return secfalse; // Capacity needs to be a power of 2 } if ((info->tx_buffer_len == 0) || (info->tx_buffer_len & (info->tx_buffer_len - 1)) != 0) { return secfalse; // Capacity needs to be a power of 2 } if (info->rx_buffer == NULL) { return secfalse; } if (info->rx_packet == NULL) { return secfalse; } if (info->tx_buffer == NULL) { return secfalse; } if (info->tx_packet == NULL) { return secfalse; } // Interface association descriptor d->assoc.bLength = sizeof(usb_interface_assoc_descriptor_t); d->assoc.bDescriptorType = USB_DESC_TYPE_ASSOCIATION; d->assoc.bFirstInterface = info->iface_num; d->assoc.bInterfaceCount = 2; d->assoc.bFunctionClass = USB_CLASS_CDC; d->assoc.bFunctionSubClass = USB_CDC_SUBCLASS_ACM; d->assoc.bFunctionProtocol = USB_CDC_PROTOCOL_AT; d->assoc.iFunction = 0; // Interface descriptor d->iface_cdc.bLength = sizeof(usb_interface_descriptor_t); d->iface_cdc.bDescriptorType = USB_DESC_TYPE_INTERFACE; d->iface_cdc.bInterfaceNumber = info->iface_num; d->iface_cdc.bAlternateSetting = 0; d->iface_cdc.bNumEndpoints = 1; d->iface_cdc.bInterfaceClass = USB_CLASS_CDC; d->iface_cdc.bInterfaceSubClass = USB_CDC_SUBCLASS_ACM; d->iface_cdc.bInterfaceProtocol = USB_CDC_PROTOCOL_AT; d->iface_cdc.iInterface = USBD_IDX_INTERFACE_STR; // Header Functional Descriptor d->fheader.bFunctionLength = sizeof(usb_vcp_header_descriptor_t); d->fheader.bDescriptorType = USB_DESC_TYPE_CS_INTERACE; d->fheader.bDescriptorSubtype = USB_DESC_TYPE_HEADER; d->fheader.bcdCDC = 0x1001; // USB Class Definitions for Communication // Devices Specification release number. // Call Management Functional Descriptor d->fcm.bFunctionLength = sizeof(usb_vcp_cm_descriptor_t); d->fcm.bDescriptorType = USB_DESC_TYPE_CS_INTERACE; d->fcm.bDescriptorSubtype = USB_DESC_TYPE_CM; // Device sends/receives call management information only over the // Communication Class interface. Device does not handle call management // itself. d->fcm.bmCapabilities = 0x00; d->fcm.bDataInterface = info->data_iface_num; // ACM Functional Descriptor d->facm.bFunctionLength = sizeof(usb_vcp_acm_descriptor_t); d->facm.bDescriptorType = USB_DESC_TYPE_CS_INTERACE; d->facm.bDescriptorSubtype = USB_DESC_TYPE_ACM; // Device supports the request combination of Set_Line_Coding, // Set_Control_Line_State, Get_Line_Coding, and the notification Serial_State. d->facm.bmCapabilities = 0x02; // Union Functional Descriptor d->funion.bFunctionLength = sizeof(usb_vcp_union_descriptor_t); d->funion.bDescriptorType = USB_DESC_TYPE_CS_INTERACE; d->funion.bDescriptorSubtype = USB_DESC_TYPE_UNION; d->funion.bControlInterface = info->iface_num; d->funion.bSubordinateInterface0 = info->data_iface_num; // IN CMD endpoint (control) d->ep_cmd.bLength = sizeof(usb_endpoint_descriptor_t); d->ep_cmd.bDescriptorType = USB_DESC_TYPE_ENDPOINT; d->ep_cmd.bEndpointAddress = info->ep_cmd; d->ep_cmd.bmAttributes = USBD_EP_TYPE_INTR; d->ep_cmd.wMaxPacketSize = USB_CDC_MAX_CMD_PACKET_LEN; d->ep_cmd.bInterval = info->polling_interval; // Interface descriptor d->iface_data.bLength = sizeof(usb_interface_descriptor_t); d->iface_data.bDescriptorType = USB_DESC_TYPE_INTERFACE; d->iface_data.bInterfaceNumber = info->data_iface_num; d->iface_data.bAlternateSetting = 0; d->iface_data.bNumEndpoints = 2; d->iface_data.bInterfaceClass = USB_CLASS_DATA; d->iface_data.bInterfaceSubClass = 0; d->iface_data.bInterfaceProtocol = 0; d->iface_data.iInterface = USBD_IDX_INTERFACE_STR; // OUT endpoint (receiving) d->ep_out.bLength = sizeof(usb_endpoint_descriptor_t); d->ep_out.bDescriptorType = USB_DESC_TYPE_ENDPOINT; d->ep_out.bEndpointAddress = info->ep_out; d->ep_out.bmAttributes = USBD_EP_TYPE_BULK; d->ep_out.wMaxPacketSize = info->max_packet_len; d->ep_out.bInterval = 0; // IN endpoint (sending) d->ep_in.bLength = sizeof(usb_endpoint_descriptor_t); d->ep_in.bDescriptorType = USB_DESC_TYPE_ENDPOINT; d->ep_in.bEndpointAddress = info->ep_in; d->ep_in.bmAttributes = USBD_EP_TYPE_BULK; d->ep_in.wMaxPacketSize = info->max_packet_len; d->ep_in.bInterval = 0; // Config descriptor usb_desc_add_iface(sizeof(usb_vcp_descriptor_block_t)); usb_config_desc ->bNumInterfaces++; // usb_vcp_descriptor_block_t contains 2 interfaces // Interface state iface->type = USB_IFACE_TYPE_VCP; iface->vcp.desc_block = d; iface->vcp.rx_ring.buf = info->rx_buffer; iface->vcp.rx_ring.cap = info->rx_buffer_len; iface->vcp.rx_ring.read = 0; iface->vcp.rx_ring.write = 0; iface->vcp.tx_ring.buf = info->tx_buffer; iface->vcp.tx_ring.cap = info->tx_buffer_len; iface->vcp.tx_ring.read = 0; iface->vcp.tx_ring.write = 0; iface->vcp.rx_packet = info->rx_packet; iface->vcp.tx_packet = info->tx_packet; iface->vcp.rx_intr_fn = info->rx_intr_fn; iface->vcp.rx_intr_byte = info->rx_intr_byte; iface->vcp.ep_cmd = info->ep_cmd; iface->vcp.ep_in = info->ep_in; iface->vcp.ep_out = info->ep_out; iface->vcp.max_packet_len = info->max_packet_len; iface->vcp.ep_in_is_idle = 1; return sectrue; } static inline size_t ring_length(usb_rbuf_t *b) { return (b->write - b->read); } static inline int ring_empty(usb_rbuf_t *b) { return ring_length(b) == 0; } static inline int ring_full(usb_rbuf_t *b) { return ring_length(b) == b->cap; } secbool usb_vcp_can_read(uint8_t iface_num) { usb_iface_t *iface = usb_get_iface(iface_num); if (iface == NULL) { return secfalse; // Invalid interface number } if (iface->type != USB_IFACE_TYPE_VCP) { return secfalse; // Invalid interface type } if (ring_empty(&iface->vcp.rx_ring)) { return secfalse; // Nothing in the rx buffer } return sectrue; } secbool usb_vcp_can_write(uint8_t iface_num) { usb_iface_t *iface = usb_get_iface(iface_num); if (iface == NULL) { return secfalse; // Invalid interface number } if (iface->type != USB_IFACE_TYPE_VCP) { return secfalse; // Invalid interface type } if (ring_full(&iface->vcp.tx_ring)) { return secfalse; // Tx ring buffer is full } return sectrue; } int usb_vcp_read(uint8_t iface_num, uint8_t *buf, uint32_t len) { usb_iface_t *iface = usb_get_iface(iface_num); if (iface == NULL) { return -1; // Invalid interface number } if (iface->type != USB_IFACE_TYPE_VCP) { return -2; // Interface interface type } usb_vcp_state_t *state = &iface->vcp; // Read from the rx ring buffer usb_rbuf_t *b = &state->rx_ring; size_t mask = b->cap - 1; size_t i; for (i = 0; (i < len) && !ring_empty(b); i++) { buf[i] = b->buf[b->read & mask]; b->read++; } return i; } int usb_vcp_write(uint8_t iface_num, const uint8_t *buf, uint32_t len) { usb_iface_t *iface = usb_get_iface(iface_num); if (iface == NULL) { return -1; // Invalid interface number } if (iface->type != USB_IFACE_TYPE_VCP) { return -2; // Interface interface type } usb_vcp_state_t *state = &iface->vcp; // Write into the tx ring buffer usb_rbuf_t *b = &state->tx_ring; size_t mask = b->cap - 1; size_t i; for (i = 0; (i < len) && !ring_full(b); i++) { b->buf[b->write & mask] = buf[i]; b->write++; } return i; } int usb_vcp_read_blocking(uint8_t iface_num, uint8_t *buf, uint32_t len, int timeout) { uint32_t start = HAL_GetTick(); while (sectrue != usb_vcp_can_read(iface_num)) { if (timeout >= 0 && HAL_GetTick() - start >= timeout) { return 0; // Timeout } __WFI(); // Enter sleep mode, waiting for interrupt } return usb_vcp_read(iface_num, buf, len); } int usb_vcp_write_blocking(uint8_t iface_num, const uint8_t *buf, uint32_t len, int timeout) { uint32_t start = HAL_GetTick(); uint32_t i = 0; while (i < len) { while (sectrue != usb_vcp_can_write(iface_num)) { if (timeout >= 0 && HAL_GetTick() - start >= timeout) { return i; // Timeout } __WFI(); // Enter sleep mode, waiting for interrupt } int ret = usb_vcp_write(iface_num, buf + i, len - i); if (ret < 0) return ret; i += ret; } return i; } static void usb_vcp_class_init(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t cfg_idx) { // Open endpoints USBD_LL_OpenEP(dev, state->ep_in, USBD_EP_TYPE_BULK, state->max_packet_len); USBD_LL_OpenEP(dev, state->ep_out, USBD_EP_TYPE_BULK, state->max_packet_len); USBD_LL_OpenEP(dev, state->ep_cmd, USBD_EP_TYPE_INTR, USB_CDC_MAX_CMD_PACKET_LEN); // Reset the state state->rx_ring.read = 0; state->rx_ring.write = 0; state->tx_ring.read = 0; state->tx_ring.write = 0; state->ep_in_is_idle = 1; // Prepare the OUT EP to receive next packet USBD_LL_PrepareReceive(dev, state->ep_out, state->rx_packet, state->max_packet_len); } static void usb_vcp_class_deinit(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t cfg_idx) { // Flush endpoints USBD_LL_FlushEP(dev, state->ep_in); USBD_LL_FlushEP(dev, state->ep_out); USBD_LL_FlushEP(dev, state->ep_cmd); // Close endpoints USBD_LL_CloseEP(dev, state->ep_in); USBD_LL_CloseEP(dev, state->ep_out); USBD_LL_CloseEP(dev, state->ep_cmd); } static int usb_vcp_class_setup(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, USBD_SetupReqTypedef *req) { static const usb_cdc_line_coding_t line_coding = { .dwDTERate = 115200, .bCharFormat = USB_CDC_1_STOP_BITS, .bParityType = USB_CDC_NO_PARITY, .bDataBits = 8, }; if ((req->bmRequest & USB_REQ_TYPE_MASK) != USB_REQ_TYPE_CLASS) { return USBD_OK; } if ((req->bmRequest & USB_REQ_DIR_MASK) == USB_REQ_DIR_D2H) { if (req->bRequest == USB_CDC_GET_LINE_CODING) { USBD_CtlSendData(dev, UNCONST(&line_coding), MIN_8bits(req->wLength, sizeof(line_coding))); } else { USBD_CtlSendData(dev, state->cmd_buffer, MIN_8bits(req->wLength, USB_CDC_MAX_CMD_PACKET_LEN)); } } else { // USB_REQ_DIR_H2D if (req->wLength > 0) { USBD_CtlPrepareRx(dev, state->cmd_buffer, MIN_8bits(req->wLength, USB_CDC_MAX_CMD_PACKET_LEN)); } } return USBD_OK; } static void usb_vcp_class_data_in(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t ep_num) { if ((ep_num | USB_EP_DIR_IN) == state->ep_in) { state->ep_in_is_idle = 1; } } static void usb_vcp_class_data_out(USBD_HandleTypeDef *dev, usb_vcp_state_t *state, uint8_t ep_num) { if (ep_num == state->ep_out) { uint32_t len = USBD_LL_GetRxDataSize(dev, ep_num); // Write into the rx ring buffer usb_rbuf_t *b = &state->rx_ring; size_t mask = b->cap - 1; size_t i; for (i = 0; i < len; i++) { if (state->rx_intr_fn != NULL) { if (state->rx_packet[i] == state->rx_intr_byte) { state->rx_intr_fn(); } } if (!ring_full(b)) { b->buf[b->write & mask] = state->rx_packet[i]; b->write++; } } // Prepare the OUT EP to receive next packet USBD_LL_PrepareReceive(dev, state->ep_out, state->rx_packet, state->max_packet_len); } } static void usb_vcp_class_sof(USBD_HandleTypeDef *dev, usb_vcp_state_t *state) { if (!state->ep_in_is_idle) { return; } // Read from the tx ring buffer usb_rbuf_t *b = &state->tx_ring; uint8_t *buf = state->tx_packet; // We avoid sending full packets as they stall the hosts pipeline, see: // size_t len = state->max_packet_len - 1; size_t mask = b->cap - 1; size_t i; for (i = 0; (i < len) && !ring_empty(b); i++) { buf[i] = b->buf[b->read & mask]; b->read++; } if (i > 0) { state->ep_in_is_idle = 0; USBD_LL_Transmit(&usb_dev_handle, state->ep_in, buf, (uint16_t)i); } }