/* * This file is part of the TREZOR project, https://trezor.io/ * * Copyright (c) SatoshiLabs * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include STM32_HAL_H // FSMC/FMC Bank 1 - NOR/PSRAM 1 #define DISPLAY_MEMORY_BASE 0x60000000 #define DISPLAY_MEMORY_PIN 16 #define CMD(X) (*((__IO uint8_t *)((uint32_t)(DISPLAY_MEMORY_BASE))) = (X)) #define ADDR (*((__IO uint8_t *)((uint32_t)(DISPLAY_MEMORY_BASE | (1 << DISPLAY_MEMORY_PIN))))) #define DATA(X) (ADDR) = (X) #define PIXELDATA(X) DATA((X) >> 8); DATA((X) & 0xFF) #define LED_PWM_TIM_PERIOD (10000) #define DISPLAY_ID_ST7789V 0x858552U // section "9.1.3 RDDID (04h): Read Display ID" of ST7789V datasheet #define DISPLAY_ID_GC9307 0x009307U // section "6.2.1. Read display identification information (04h)" of GC9307 datasheet #define DISPLAY_ID_ILI9341V 0x009341U // section "8.3.23 Read ID4 (D3h)" of ILI9341V datasheet static uint32_t read_display_id(uint8_t command) { volatile uint8_t c; uint32_t id = 0; CMD(command); c = ADDR; // first returned value is a dummy value and should be discarded c = ADDR; id |= (c << 16); c = ADDR; id |= (c << 8); c = ADDR; id |= c; return id; } static uint32_t display_identify(void) { static uint32_t id = 0x000000U; static char id_set = 0; if (id_set) return id; // return if id has been already set id = read_display_id(0x04); // RDDID: Read Display ID // the default RDDID for ILI9341 should be 0x8000. // some display modules return 0x0. // the ILI9341 has an extra id, let's check it here. if ((id != DISPLAY_ID_ST7789V) && (id != DISPLAY_ID_GC9307)) { // if not ST7789V and not GC9307 uint32_t id4 = read_display_id(0xD3); // Read ID4 if (id4 == DISPLAY_ID_ILI9341V) { // definitely found a ILI9341 id = id4; } } id_set = 1; return id; } static void __attribute__((unused)) display_sleep(void) { uint32_t id = display_identify(); if ((id == DISPLAY_ID_ILI9341V) || (id == DISPLAY_ID_GC9307) || (id == DISPLAY_ID_ST7789V)) { CMD(0x28); // DISPOFF: Display Off CMD(0x10); // SLPIN: Sleep in HAL_Delay(5); // need to wait 5 milliseconds after "sleep in" before sending any new commands } } static void display_unsleep(void) { uint32_t id = display_identify(); if ((id == DISPLAY_ID_ILI9341V) || (id == DISPLAY_ID_GC9307) || (id == DISPLAY_ID_ST7789V)) { CMD(0x11); // SLPOUT: Sleep Out HAL_Delay(5); // need to wait 5 milliseconds after "sleep out" before sending any new commands CMD(0x29); // DISPON: Display On } } static struct { uint16_t x, y; } BUFFER_OFFSET; static void display_set_window(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) { x0 += BUFFER_OFFSET.x; x1 += BUFFER_OFFSET.x; y0 += BUFFER_OFFSET.y; y1 += BUFFER_OFFSET.y; uint32_t id = display_identify(); if ((id == DISPLAY_ID_ILI9341V) || (id == DISPLAY_ID_GC9307) || (id == DISPLAY_ID_ST7789V)) { CMD(0x2A); DATA(x0 >> 8); DATA(x0 & 0xFF); DATA(x1 >> 8); DATA(x1 & 0xFF); // column addr set CMD(0x2B); DATA(y0 >> 8); DATA(y0 & 0xFF); DATA(y1 >> 8); DATA(y1 & 0xFF); // row addr set CMD(0x2C); } } static void display_set_orientation(int degrees) { char BX = 0, BY = 0; uint32_t id = display_identify(); if ((id == DISPLAY_ID_ILI9341V) || (id == DISPLAY_ID_GC9307) || (id == DISPLAY_ID_ST7789V)) { #define RGB (1 << 3) #define MV (1 << 5) #define MX (1 << 6) #define MY (1 << 7) // MADCTL: Memory Data Access Control - reference: // section 9.3 in the ILI9341 manual // section 6.2.18 in the GC9307 manual // section 8.12 in the ST7789V manual uint8_t display_command_parameter = 0; switch (degrees) { case 0: display_command_parameter = 0; BY = (id == DISPLAY_ID_GC9307); break; case 90: display_command_parameter = MV | MX; BX = (id == DISPLAY_ID_GC9307); break; case 180: display_command_parameter = MX | MY; BY = (id != DISPLAY_ID_GC9307); break; case 270: display_command_parameter = MV | MY; BX = (id != DISPLAY_ID_GC9307); break; } if (id == DISPLAY_ID_GC9307) { display_command_parameter ^= RGB | MY; // XOR RGB and MY settings } CMD(0x36); DATA(display_command_parameter); display_set_window(0, 0, DISPLAY_RESX - 1, DISPLAY_RESY - 1); // reset the column and page extents } BUFFER_OFFSET.x = BX ? (MAX_DISPLAY_RESY - DISPLAY_RESY) : 0; BUFFER_OFFSET.y = BY ? (MAX_DISPLAY_RESY - DISPLAY_RESY) : 0; } static void display_set_backlight(int val) { TIM1->CCR1 = LED_PWM_TIM_PERIOD * val / 255; } static void display_hardware_reset(void) { HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_RESET); // LCD_RST/PC14 // wait 10 milliseconds. only needs to be low for 10 microseconds. // my dev display module ties display reset and touch panel reset together. // keeping this low for max(display_reset_time, ctpm_reset_time) aids development and does not hurt. HAL_Delay(10); HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_SET); // LCD_RST/PC14 HAL_Delay(120); // max wait time for hardware reset is 120 milliseconds (experienced display flakiness using only 5ms wait before sending commands) // identify the controller we will communicate with } void display_init(void) { // init peripherials __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_TIM1_CLK_ENABLE(); __HAL_RCC_FMC_CLK_ENABLE(); GPIO_InitTypeDef GPIO_InitStructure; // LCD_PWM/PA7 (backlight control) GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStructure.Alternate = GPIO_AF1_TIM1; GPIO_InitStructure.Pin = GPIO_PIN_7; HAL_GPIO_Init(GPIOA, &GPIO_InitStructure); // enable PWM timer TIM_HandleTypeDef TIM1_Handle; TIM1_Handle.Instance = TIM1; TIM1_Handle.Init.Period = LED_PWM_TIM_PERIOD - 1; // TIM1/APB2 source frequency equals to SystemCoreClock in our configuration, we want 1 MHz TIM1_Handle.Init.Prescaler = SystemCoreClock / 1000000 - 1; TIM1_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; TIM1_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; TIM1_Handle.Init.RepetitionCounter = 0; HAL_TIM_PWM_Init(&TIM1_Handle); TIM_OC_InitTypeDef TIM_OC_InitStructure; TIM_OC_InitStructure.Pulse = 0; TIM_OC_InitStructure.OCMode = TIM_OCMODE_PWM2; TIM_OC_InitStructure.OCPolarity = TIM_OCPOLARITY_HIGH; TIM_OC_InitStructure.OCFastMode = TIM_OCFAST_DISABLE; TIM_OC_InitStructure.OCNPolarity = TIM_OCNPOLARITY_HIGH; TIM_OC_InitStructure.OCIdleState = TIM_OCIDLESTATE_SET; TIM_OC_InitStructure.OCNIdleState = TIM_OCNIDLESTATE_SET; HAL_TIM_PWM_ConfigChannel(&TIM1_Handle, &TIM_OC_InitStructure, TIM_CHANNEL_1); display_backlight(0); HAL_TIM_PWM_Start(&TIM1_Handle, TIM_CHANNEL_1); HAL_TIMEx_PWMN_Start(&TIM1_Handle, TIM_CHANNEL_1); // LCD_RST/PC14 GPIO_InitStructure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_LOW; GPIO_InitStructure.Alternate = 0; GPIO_InitStructure.Pin = GPIO_PIN_14; HAL_GPIO_WritePin(GPIOC, GPIO_PIN_14, GPIO_PIN_RESET); // default to keeping display in reset HAL_GPIO_Init(GPIOC, &GPIO_InitStructure); // LCD_FMARK/PD12 (tearing effect) GPIO_InitStructure.Mode = GPIO_MODE_INPUT; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStructure.Alternate = 0; GPIO_InitStructure.Pin = GPIO_PIN_12; HAL_GPIO_Init(GPIOD, &GPIO_InitStructure); GPIO_InitStructure.Mode = GPIO_MODE_AF_PP; GPIO_InitStructure.Pull = GPIO_NOPULL; GPIO_InitStructure.Speed = GPIO_SPEED_FREQ_VERY_HIGH; GPIO_InitStructure.Alternate = GPIO_AF12_FMC; // LCD_CS/PD7 LCD_RS/PD11 LCD_RD/PD4 LCD_WR/PD5 GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_11 | GPIO_PIN_4 | GPIO_PIN_5; HAL_GPIO_Init(GPIOD, &GPIO_InitStructure); // LCD_D0/PD14 LCD_D1/PD15 LCD_D2/PD0 LCD_D3/PD1 GPIO_InitStructure.Pin = GPIO_PIN_14 | GPIO_PIN_15 | GPIO_PIN_0 | GPIO_PIN_1; HAL_GPIO_Init(GPIOD, &GPIO_InitStructure); // LCD_D4/PE7 LCD_D5/PE8 LCD_D6/PE9 LCD_D7/PE10 GPIO_InitStructure.Pin = GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10; HAL_GPIO_Init(GPIOE, &GPIO_InitStructure); // Reference UM1725 "Description of STM32F4 HAL and LL drivers", section 64.2.1 "How to use this driver" SRAM_HandleTypeDef external_display_data_sram; external_display_data_sram.Instance = FMC_NORSRAM_DEVICE; external_display_data_sram.Init.NSBank = FMC_NORSRAM_BANK1; external_display_data_sram.Init.DataAddressMux = FMC_DATA_ADDRESS_MUX_DISABLE; external_display_data_sram.Init.MemoryType = FMC_MEMORY_TYPE_SRAM; external_display_data_sram.Init.MemoryDataWidth = FMC_NORSRAM_MEM_BUS_WIDTH_8; external_display_data_sram.Init.BurstAccessMode = FMC_BURST_ACCESS_MODE_DISABLE; external_display_data_sram.Init.WaitSignalPolarity = FMC_WAIT_SIGNAL_POLARITY_LOW; external_display_data_sram.Init.WrapMode = FMC_WRAP_MODE_DISABLE; external_display_data_sram.Init.WaitSignalActive = FMC_WAIT_TIMING_BEFORE_WS; external_display_data_sram.Init.WriteOperation = FMC_WRITE_OPERATION_ENABLE; external_display_data_sram.Init.WaitSignal = FMC_WAIT_SIGNAL_DISABLE; external_display_data_sram.Init.ExtendedMode = FMC_EXTENDED_MODE_DISABLE; external_display_data_sram.Init.AsynchronousWait = FMC_ASYNCHRONOUS_WAIT_DISABLE; external_display_data_sram.Init.WriteBurst = FMC_WRITE_BURST_DISABLE; external_display_data_sram.Init.ContinuousClock = FMC_CONTINUOUS_CLOCK_SYNC_ONLY; external_display_data_sram.Init.PageSize = FMC_PAGE_SIZE_NONE; // reference RM0090 section 37.5 Table 259, 37.5.4, Mode 1 SRAM, and 37.5.6 FMC_NORSRAM_TimingTypeDef normal_mode_timing; normal_mode_timing.AddressSetupTime = 4; normal_mode_timing.AddressHoldTime = 1; normal_mode_timing.DataSetupTime = 4; normal_mode_timing.BusTurnAroundDuration = 0; normal_mode_timing.CLKDivision = 2; normal_mode_timing.DataLatency = 2; normal_mode_timing.AccessMode = FMC_ACCESS_MODE_A; HAL_SRAM_Init(&external_display_data_sram, &normal_mode_timing, NULL); display_hardware_reset(); uint32_t id = display_identify(); if (id == DISPLAY_ID_GC9307) { CMD(0xFE); // Inter Register Enable1 CMD(0xEF); // Inter Register Enable2 CMD(0x35); DATA(0x00); // TEON: Tearing Effect Line On; V-blanking only CMD(0x3A); DATA(0x55); // COLMOD: Interface Pixel format; 65K color: 16-bit/pixel (RGB 5-6-5 bits input) // CMD(0xE8); DATA(0x12); DATA(0x00); // Frame Rate CMD(0xC3); DATA(0x27); // Power Control 2 CMD(0xC4); DATA(0x18); // Power Control 3 CMD(0xC9); DATA(0x1F); // Power Control 4 CMD(0xC5); DATA(0x0F); CMD(0xC6); DATA(0x00); CMD(0xC7); DATA(0x10); CMD(0xC8); DATA(0x01); CMD(0xFF); DATA(0x62); CMD(0x99); DATA(0x3E); CMD(0x9D); DATA(0x4B); CMD(0x8E); DATA(0x0F); // SET_GAMMA1 CMD(0xF0); DATA(0x8F); DATA(0x1B); DATA(0x05); DATA(0x06); DATA(0x07); DATA(0x42); // SET_GAMMA3 CMD(0xF2); DATA(0x5C); DATA(0x1F); DATA(0x12); DATA(0x10); DATA(0x07); DATA(0x43); // SET_GAMMA2 CMD(0xF1); DATA(0x59); DATA(0xCF); DATA(0xCF); DATA(0x35); DATA(0x37); DATA(0x8F); // SET_GAMMA4 CMD(0xF3); DATA(0x58); DATA(0xCF); DATA(0xCF); DATA(0x35); DATA(0x37); DATA(0x8F); } else if (id == DISPLAY_ID_ST7789V) { CMD(0x35); DATA(0x00); // TEON: Tearing Effect Line On; V-blanking only CMD(0x3A); DATA(0x55); // COLMOD: Interface Pixel format; 65K color: 16-bit/pixel (RGB 5-6-5 bits input) CMD(0xDF); DATA(0x5A); DATA(0x69); DATA(0x02); DATA(0x01); // CMD2EN: Commands in command table 2 can be executed when EXTC level is Low CMD(0xC0); DATA(0x20); // LCMCTRL: LCM Control: XOR RGB setting CMD(0xE4); DATA(0x1D); DATA(0x0A); DATA(0x11); // GATECTRL: Gate Control; NL = 240 gate lines, first scan line is gate 80.; gate scan direction 319 -> 0 // the above config is the most important and definitely necessary CMD(0xD0); DATA(0xA4); DATA(0xA1); // PWCTRL1: Power Control 1 // gamma curve 1 // CMD(0xE0); DATA(0x70); DATA(0x2C); DATA(0x2E); DATA(0x15); DATA(0x10); DATA(0x09); DATA(0x48); DATA(0x33); DATA(0x53); DATA(0x0B); DATA(0x19); DATA(0x18); DATA(0x20); DATA(0x25); // gamma curve 2 // CMD(0xE1); DATA(0x70); DATA(0x2C); DATA(0x2E); DATA(0x15); DATA(0x10); DATA(0x09); DATA(0x48); DATA(0x33); DATA(0x53); DATA(0x0B); DATA(0x19); DATA(0x18); DATA(0x20); DATA(0x25); } else if (id == DISPLAY_ID_ILI9341V) { // most recent manual: https://www.newhavendisplay.com/app_notes/ILI9341.pdf CMD(0x35); DATA(0x00); // TEON: Tearing Effect Line On; V-blanking only CMD(0x3A); DATA(0x55); // COLMOD: Interface Pixel format; 65K color: 16-bit/pixel (RGB 5-6-5 bits input) CMD(0xB6); DATA(0x0A); DATA(0xC2); DATA(0x27); DATA(0x00); // Display Function Control: gate scan direction 319 -> 0 CMD(0xF6); DATA(0x09); DATA(0x30); DATA(0x00); // Interface Control: XOR BGR as ST7789V does // the above config is the most important and definitely necessary CMD(0xCF); DATA(0x00); DATA(0xC1); DATA(0x30); CMD(0xED); DATA(0x64); DATA(0x03); DATA(0x12); DATA(0x81); CMD(0xE8); DATA(0x85); DATA(0x10); DATA(0x7A); CMD(0xF7); DATA(0x20); CMD(0xEA); DATA(0x00); DATA(0x00); CMD(0xC0); DATA(0x23); // power control VRH[5:0] CMD(0xC1); DATA(0x12); // power control SAP[2:0] BT[3:0] CMD(0xC5); DATA(0x60); DATA(0x44); // vcm control 1 CMD(0xC7); DATA(0x8A); // vcm control 2 CMD(0xB1); DATA(0x00); DATA(0x18); // framerate CMD(0xF2); DATA(0x00); // 3 gamma func disable // gamma curve 1 CMD(0xE0); DATA(0x0F); DATA(0x2F); DATA(0x2C); DATA(0x0B); DATA(0x0F); DATA(0x09); DATA(0x56); DATA(0xD9); DATA(0x4A); DATA(0x0B); DATA(0x14); DATA(0x05); DATA(0x0C); DATA(0x06); DATA(0x00); // gamma curve 2 CMD(0xE1); DATA(0x00); DATA(0x10); DATA(0x13); DATA(0x04); DATA(0x10); DATA(0x06); DATA(0x25); DATA(0x26); DATA(0x3B); DATA(0x04); DATA(0x0B); DATA(0x0A); DATA(0x33); DATA(0x39); DATA(0x0F); } display_clear(); display_unsleep(); } void display_refresh(void) { uint32_t id = display_identify(); if (id && (id != DISPLAY_ID_GC9307)) { // synchronize with the panel synchronization signal in order to avoid visual tearing effects while (GPIO_PIN_RESET == HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_12)) { } while (GPIO_PIN_SET == HAL_GPIO_ReadPin(GPIOD, GPIO_PIN_12)) { } } } void display_save(const char *prefix) { }