/* * This file is part of the TREZOR project. * * Copyright (C) 2014 Pavol Rusnak * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ #include #include "crypto.h" #include "sha2.h" #include "pbkdf2.h" #include "aes.h" #include "hmac.h" #include "bip32.h" #include "layout.h" #include "curves.h" #include "secp256k1.h" #include "address.h" #include "macros.h" #include "coins.h" uint32_t ser_length(uint32_t len, uint8_t *out) { if (len < 253) { out[0] = len & 0xFF; return 1; } if (len < 0x10000) { out[0] = 253; out[1] = len & 0xFF; out[2] = (len >> 8) & 0xFF; return 3; } out[0] = 254; out[1] = len & 0xFF; out[2] = (len >> 8) & 0xFF; out[3] = (len >> 16) & 0xFF; out[4] = (len >> 24) & 0xFF; return 5; } uint32_t ser_length_hash(SHA256_CTX *ctx, uint32_t len) { if (len < 253) { sha256_Update(ctx, (const uint8_t *)&len, 1); return 1; } if (len < 0x10000) { uint8_t d = 253; sha256_Update(ctx, &d, 1); sha256_Update(ctx, (const uint8_t *)&len, 2); return 3; } uint8_t d = 254; sha256_Update(ctx, &d, 1); sha256_Update(ctx, (const uint8_t *)&len, 4); return 5; } uint32_t deser_length(const uint8_t *in, uint32_t *out) { if (in[0] < 253) { *out = in[0]; return 1; } if (in[0] == 253) { *out = in[1] + (in[2] << 8); return 1 + 2; } if (in[0] == 254) { *out = in[1] + (in[2] << 8) + (in[3] << 16) + (in[4] << 24); return 1 + 4; } *out = 0; // ignore 64 bit return 1 + 8; } int sshMessageSign(HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature) { signature[0] = 0; // prefix: pad with zero, so all signatures are 65 bytes return hdnode_sign(node, message, message_len, signature + 1, NULL, NULL); } int gpgMessageSign(HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature) { signature[0] = 0; // prefix: pad with zero, so all signatures are 65 bytes const curve_info *ed25519_curve_info = get_curve_by_name(ED25519_NAME); if (ed25519_curve_info && node->curve == ed25519_curve_info) { // GPG supports variable size digest for Ed25519 signatures return hdnode_sign(node, message, message_len, signature + 1, NULL, NULL); } else { // Ensure 256-bit digest before proceeding if (message_len != 32) { return 1; } return hdnode_sign_digest(node, message, signature + 1, NULL, NULL); } } int cryptoMessageSign(const CoinType *coin, HDNode *node, const uint8_t *message, size_t message_len, uint8_t *signature) { SHA256_CTX ctx; sha256_Init(&ctx); sha256_Update(&ctx, (const uint8_t *)coin->signed_message_header, strlen(coin->signed_message_header)); uint8_t varint[5]; uint32_t l = ser_length(message_len, varint); sha256_Update(&ctx, varint, l); sha256_Update(&ctx, message, message_len); uint8_t hash[32]; sha256_Final(&ctx, hash); sha256_Raw(hash, 32, hash); uint8_t pby; int result = hdnode_sign_digest(node, hash, signature + 1, &pby, NULL); if (result == 0) { signature[0] = 27 + pby + 4; } return result; } int cryptoMessageVerify(const CoinType *coin, const uint8_t *message, size_t message_len, uint32_t address_type, const uint8_t *address_raw, const uint8_t *signature) { SHA256_CTX ctx; uint8_t pubkey[65], addr_raw[MAX_ADDR_RAW_SIZE], hash[32]; // calculate hash sha256_Init(&ctx); sha256_Update(&ctx, (const uint8_t *)coin->signed_message_header, strlen(coin->signed_message_header)); uint8_t varint[5]; uint32_t l = ser_length(message_len, varint); sha256_Update(&ctx, varint, l); sha256_Update(&ctx, message, message_len); sha256_Final(&ctx, hash); sha256_Raw(hash, 32, hash); uint8_t recid = signature[0] - 27; if (recid >= 8) { return 1; } bool compressed = (recid >= 4); recid &= 3; // check if signature verifies the digest and recover the public key if (ecdsa_verify_digest_recover(&secp256k1, pubkey, signature + 1, hash, recid) != 0) { return 3; } // convert public key to compressed pubkey if necessary if (compressed) { pubkey[0] = 0x02 | (pubkey[64] & 1); } // check if the address is correct ecdsa_get_address_raw(pubkey, address_type, addr_raw); if (memcmp(addr_raw, address_raw, address_prefix_bytes_len(address_type) + 20) != 0) { return 2; } return 0; } /* ECIES disabled int cryptoMessageEncrypt(curve_point *pubkey, const uint8_t *msg, size_t msg_size, bool display_only, uint8_t *nonce, size_t *nonce_len, uint8_t *payload, size_t *payload_len, uint8_t *hmac, size_t *hmac_len, const uint8_t *privkey, const uint8_t *address_raw) { if (privkey && address_raw) { // signing == true HDNode node; payload[0] = display_only ? 0x81 : 0x01; uint32_t l = ser_length(msg_size, payload + 1); memcpy(payload + 1 + l, msg, msg_size); memcpy(payload + 1 + l + msg_size, address_raw, 21); hdnode_from_xprv(0, 0, 0, privkey, privkey, SECP256K1_NAME, &node); if (cryptoMessageSign(&node, msg, msg_size, payload + 1 + l + msg_size + 21) != 0) { return 1; } *payload_len = 1 + l + msg_size + 21 + 65; } else { payload[0] = display_only ? 0x80 : 0x00; uint32_t l = ser_length(msg_size, payload + 1); memcpy(payload + 1 + l, msg, msg_size); *payload_len = 1 + l + msg_size; } // generate random nonce curve_point R; bignum256 k; if (generate_k_random(&secp256k1, &k) != 0) { return 2; } // compute k*G scalar_multiply(&secp256k1, &k, &R); nonce[0] = 0x02 | (R.y.val[0] & 0x01); bn_write_be(&R.x, nonce + 1); *nonce_len = 33; // compute shared secret point_multiply(&secp256k1, &k, pubkey, &R); uint8_t shared_secret[33]; shared_secret[0] = 0x02 | (R.y.val[0] & 0x01); bn_write_be(&R.x, shared_secret + 1); // generate keying bytes uint8_t keying_bytes[80]; uint8_t salt[22 + 33]; memcpy(salt, "Bitcoin Secure Message", 22); memcpy(salt + 22, nonce, 33); pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes, 80); // encrypt payload aes_encrypt_ctx ctx; aes_encrypt_key256(keying_bytes, &ctx); aes_cfb_encrypt(payload, payload, *payload_len, keying_bytes + 64, &ctx); // compute hmac uint8_t out[32]; hmac_sha256(keying_bytes + 32, 32, payload, *payload_len, out); memcpy(hmac, out, 8); *hmac_len = 8; return 0; } int cryptoMessageDecrypt(curve_point *nonce, uint8_t *payload, size_t payload_len, const uint8_t *hmac, size_t hmac_len, const uint8_t *privkey, uint8_t *msg, size_t *msg_len, bool *display_only, bool *signing, uint8_t *address_raw) { if (hmac_len != 8) { return 1; } // compute shared secret curve_point R; bignum256 k; bn_read_be(privkey, &k); point_multiply(&secp256k1, &k, nonce, &R); uint8_t shared_secret[33]; shared_secret[0] = 0x02 | (R.y.val[0] & 0x01); bn_write_be(&R.x, shared_secret + 1); // generate keying bytes uint8_t keying_bytes[80]; uint8_t salt[22 + 33]; memcpy(salt, "Bitcoin Secure Message", 22); salt[22] = 0x02 | (nonce->y.val[0] & 0x01); bn_write_be(&(nonce->x), salt + 23); pbkdf2_hmac_sha256(shared_secret, 33, salt, 22 + 33, 2048, keying_bytes, 80); // compute hmac uint8_t out[32]; hmac_sha256(keying_bytes + 32, 32, payload, payload_len, out); if (memcmp(hmac, out, 8) != 0) { return 2; } // decrypt payload aes_encrypt_ctx ctx; aes_encrypt_key256(keying_bytes, &ctx); aes_cfb_decrypt(payload, payload, payload_len, keying_bytes + 64, &ctx); // check first byte if (payload[0] != 0x00 && payload[0] != 0x01 && payload[0] != 0x80 && payload[0] != 0x81) { return 3; } *signing = payload[0] & 0x01; *display_only = payload[0] & 0x80; uint32_t l, o; l = deser_length(payload + 1, &o); if (*signing) { // FIXME: assumes a raw address is 21 bytes (also below). if (1 + l + o + 21 + 65 != payload_len) { return 4; } // FIXME: cryptoMessageVerify changed to take the address_type as a parameter. if (cryptoMessageVerify(payload + 1 + l, o, payload + 1 + l + o, payload + 1 + l + o + 21) != 0) { return 5; } memcpy(address_raw, payload + 1 + l + o, 21); } else { if (1 + l + o != payload_len) { return 4; } } memcpy(msg, payload + 1 + l, o); *msg_len = o; return 0; } */ uint8_t *cryptoHDNodePathToPubkey(const HDNodePathType *hdnodepath) { if (!hdnodepath->node.has_public_key || hdnodepath->node.public_key.size != 33) return 0; static HDNode node; if (hdnode_from_xpub(hdnodepath->node.depth, hdnodepath->node.child_num, hdnodepath->node.chain_code.bytes, hdnodepath->node.public_key.bytes, SECP256K1_NAME, &node) == 0) { return 0; } layoutProgressUpdate(true); for (uint32_t i = 0; i < hdnodepath->address_n_count; i++) { if (hdnode_public_ckd(&node, hdnodepath->address_n[i]) == 0) { return 0; } layoutProgressUpdate(true); } return node.public_key; } int cryptoMultisigPubkeyIndex(const MultisigRedeemScriptType *multisig, const uint8_t *pubkey) { for (size_t i = 0; i < multisig->pubkeys_count; i++) { const uint8_t *node_pubkey = cryptoHDNodePathToPubkey(&(multisig->pubkeys[i])); if (node_pubkey && memcmp(node_pubkey, pubkey, 33) == 0) { return i; } } return -1; } int cryptoMultisigFingerprint(const MultisigRedeemScriptType *multisig, uint8_t *hash) { static const HDNodePathType *ptr[15], *swap; const uint32_t n = multisig->pubkeys_count; if (n > 15) { return 0; } // check sanity if (!multisig->has_m || multisig->m < 1 || multisig->m > 15) return 0; for (uint32_t i = 0; i < n; i++) { ptr[i] = &(multisig->pubkeys[i]); if (!ptr[i]->node.has_public_key || ptr[i]->node.public_key.size != 33) return 0; if (ptr[i]->node.chain_code.size != 32) return 0; } // minsort according to pubkey for (uint32_t i = 0; i < n - 1; i++) { for (uint32_t j = n - 1; j > i; j--) { if (memcmp(ptr[i]->node.public_key.bytes, ptr[j]->node.public_key.bytes, 33) > 0) { swap = ptr[i]; ptr[i] = ptr[j]; ptr[j] = swap; } } } // hash sorted nodes SHA256_CTX ctx; sha256_Init(&ctx); sha256_Update(&ctx, (const uint8_t *)&(multisig->m), sizeof(uint32_t)); for (uint32_t i = 0; i < n; i++) { sha256_Update(&ctx, (const uint8_t *)&(ptr[i]->node.depth), sizeof(uint32_t)); sha256_Update(&ctx, (const uint8_t *)&(ptr[i]->node.fingerprint), sizeof(uint32_t)); sha256_Update(&ctx, (const uint8_t *)&(ptr[i]->node.child_num), sizeof(uint32_t)); sha256_Update(&ctx, ptr[i]->node.chain_code.bytes, 32); sha256_Update(&ctx, ptr[i]->node.public_key.bytes, 33); } sha256_Update(&ctx, (const uint8_t *)&n, sizeof(uint32_t)); sha256_Final(&ctx, hash); layoutProgressUpdate(true); return 1; } int cryptoIdentityFingerprint(const IdentityType *identity, uint8_t *hash) { SHA256_CTX ctx; sha256_Init(&ctx); sha256_Update(&ctx, (const uint8_t *)&(identity->index), sizeof(uint32_t)); if (identity->has_proto && identity->proto[0]) { sha256_Update(&ctx, (const uint8_t *)(identity->proto), strlen(identity->proto)); sha256_Update(&ctx, (const uint8_t *)"://", 3); } if (identity->has_user && identity->user[0]) { sha256_Update(&ctx, (const uint8_t *)(identity->user), strlen(identity->user)); sha256_Update(&ctx, (const uint8_t *)"@", 1); } if (identity->has_host && identity->host[0]) { sha256_Update(&ctx, (const uint8_t *)(identity->host), strlen(identity->host)); } if (identity->has_port && identity->port[0]) { sha256_Update(&ctx, (const uint8_t *)":", 1); sha256_Update(&ctx, (const uint8_t *)(identity->port), strlen(identity->port)); } if (identity->has_path && identity->path[0]) { sha256_Update(&ctx, (const uint8_t *)(identity->path), strlen(identity->path)); } sha256_Final(&ctx, hash); return 1; }