/* * This file is part of the TREZOR project, https://trezor.io/ * * Copyright (c) SatoshiLabs * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "inflate.h" #include "font_bitmap.h" #ifdef TREZOR_FONT_NORMAL_ENABLE #include "font_roboto_regular_20.h" #endif #ifdef TREZOR_FONT_BOLD_ENABLE #include "font_roboto_bold_20.h" #endif #ifdef TREZOR_FONT_MONO_ENABLE #include "font_robotomono_regular_20.h" #endif #ifdef TREZOR_FONT_MONO_BOLD_ENABLE #include "font_robotomono_bold_20.h" #endif #include "trezor-qrenc/qr_encode.h" #include "common.h" #include "display.h" #include #include static int DISPLAY_BACKLIGHT = -1; static int DISPLAY_ORIENTATION = -1; static struct { int x, y; } DISPLAY_OFFSET; #ifdef TREZOR_EMULATOR #include "display-unix.h" #else #include "display-stm32.h" #endif // common display functions static inline uint16_t interpolate_color(uint16_t color0, uint16_t color1, uint8_t step) { uint8_t cr, cg, cb; cr = (((color0 & 0xF800) >> 11) * step + ((color1 & 0xF800) >> 11) * (15 - step)) / 15; cg = (((color0 & 0x07E0) >> 5) * step + ((color1 & 0x07E0) >> 5) * (15 - step)) / 15; cb = ((color0 & 0x001F) * step + (color1 & 0x001F) * (15 - step)) / 15; return (cr << 11) | (cg << 5) | cb; } static inline void set_color_table(uint16_t colortable[16], uint16_t fgcolor, uint16_t bgcolor) { for (int i = 0; i < 16; i++) { colortable[i] = interpolate_color(fgcolor, bgcolor, i); } } static inline void clamp_coords(int x, int y, int w, int h, int *x0, int *y0, int *x1, int *y1) { *x0 = MAX(x, 0); *y0 = MAX(y, 0); *x1 = MIN(x + w - 1, DISPLAY_RESX - 1); *y1 = MIN(y + h - 1, DISPLAY_RESY - 1); } void display_clear(void) { const int saved_orientation = DISPLAY_ORIENTATION; display_orientation(0); // set MADCTL first so that we can set the window correctly next display_set_window(0, 0, MAX_DISPLAY_RESX - 1, MAX_DISPLAY_RESY - 1); // address the complete frame memory for (uint32_t i = 0; i < MAX_DISPLAY_RESX * MAX_DISPLAY_RESY; i++) { PIXELDATA(0x0000); // 2 bytes per pixel because we're using RGB 5-6-5 format } display_set_window(0, 0, DISPLAY_RESX - 1, DISPLAY_RESY - 1); // go back to restricted window display_orientation(saved_orientation); // if valid, go back to the saved orientation } void display_bar(int x, int y, int w, int h, uint16_t c) { x += DISPLAY_OFFSET.x; y += DISPLAY_OFFSET.y; int x0, y0, x1, y1; clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); for (int i = 0; i < (x1 - x0 + 1) * (y1 - y0 + 1); i++) { PIXELDATA(c); } } #define CORNER_RADIUS 16 static const uint8_t cornertable[CORNER_RADIUS * CORNER_RADIUS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 12, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 8, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 3, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 8, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 1, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 5, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, }; void display_bar_radius(int x, int y, int w, int h, uint16_t c, uint16_t b, uint8_t r) { if (r != 2 && r != 4 && r != 8 && r != 16) { return; } else { r = 16 / r; } uint16_t colortable[16]; set_color_table(colortable, c, b); x += DISPLAY_OFFSET.x; y += DISPLAY_OFFSET.y; int x0, y0, x1, y1; clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); for (int j = y0; j <= y1; j++) { for (int i = x0; i <= x1; i++) { int rx = i - x; int ry = j - y; if (rx < CORNER_RADIUS / r && ry < CORNER_RADIUS / r) { uint8_t c = cornertable[rx * r + ry * r * CORNER_RADIUS]; PIXELDATA(colortable[c]); } else if (rx < CORNER_RADIUS / r && ry >= h - CORNER_RADIUS / r) { uint8_t c = cornertable[rx * r + (h - 1 - ry) * r * CORNER_RADIUS]; PIXELDATA(colortable[c]); } else if (rx >= w - CORNER_RADIUS / r && ry < CORNER_RADIUS / r) { uint8_t c = cornertable[(w - 1 - rx) * r + ry * r * CORNER_RADIUS]; PIXELDATA(colortable[c]); } else if (rx >= w - CORNER_RADIUS / r && ry >= h - CORNER_RADIUS / r) { uint8_t c = cornertable[(w - 1 - rx) * r + (h - 1 - ry) * r * CORNER_RADIUS]; PIXELDATA(colortable[c]); } else { PIXELDATA(c); } } } } static void inflate_callback_image(uint8_t byte1, uint32_t pos, void *userdata) { static uint8_t byte0; if (pos % 2 == 0) { byte0 = byte1; return; } const int w = ((const int *)userdata)[0]; const int x0 = ((const int *)userdata)[1]; const int x1 = ((const int *)userdata)[2]; const int y0 = ((const int *)userdata)[3]; const int y1 = ((const int *)userdata)[4]; const int px = (pos / 2) % w; const int py = (pos / 2) / w; if (px >= x0 && px <= x1 && py >= y0 && py <= y1) { PIXELDATA((byte0 << 8) | byte1); } } void display_image(int x, int y, int w, int h, const void *data, int datalen) { x += DISPLAY_OFFSET.x; y += DISPLAY_OFFSET.y; int x0, y0, x1, y1; clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); int userdata[5] = {w, x0 - x, x1 - x, y0 - y, y1 - y}; sinf_inflate(data, datalen, inflate_callback_image, userdata); } static void inflate_callback_avatar(uint8_t byte1, uint32_t pos, void *userdata) { #define AVATAR_BORDER_SIZE 4 #define AVATAR_BORDER_LOW (AVATAR_IMAGE_SIZE / 2 - AVATAR_BORDER_SIZE) * (AVATAR_IMAGE_SIZE / 2 - AVATAR_BORDER_SIZE) #define AVATAR_BORDER_HIGH (AVATAR_IMAGE_SIZE / 2) * (AVATAR_IMAGE_SIZE / 2) #define AVATAR_ANTIALIAS 1 static uint8_t byte0; if (pos % 2 == 0) { byte0 = byte1; return; } const int w = ((const int *)userdata)[0]; const int x0 = ((const int *)userdata)[1]; const int x1 = ((const int *)userdata)[2]; const int y0 = ((const int *)userdata)[3]; const int y1 = ((const int *)userdata)[4]; const int fgcolor = ((const int *)userdata)[5]; const int bgcolor = ((const int *)userdata)[6]; const int px = (pos / 2) % w; const int py = (pos / 2) / w; if (px >= x0 && px <= x1 && py >= y0 && py <= y1) { int d = (px - w / 2) * (px - w / 2) + (py - w / 2) * (py - w / 2); // inside border area if (d < AVATAR_BORDER_LOW) { PIXELDATA((byte0 << 8) | byte1); } else // outside border area if (d > AVATAR_BORDER_HIGH) { PIXELDATA(bgcolor); // border area } else { #if AVATAR_ANTIALIAS d = 31 * (d - AVATAR_BORDER_LOW) / (AVATAR_BORDER_HIGH - AVATAR_BORDER_LOW); uint16_t c; if (d >= 16) { c = interpolate_color(bgcolor, fgcolor, d - 16); } else { c = interpolate_color(fgcolor, (byte0 << 8) | byte1 , d); } PIXELDATA(c); #else PIXELDATA(fgcolor); #endif } } } void display_avatar(int x, int y, const void *data, int datalen, uint16_t fgcolor, uint16_t bgcolor) { x += DISPLAY_OFFSET.x; y += DISPLAY_OFFSET.y; int x0, y0, x1, y1; clamp_coords(x, y, AVATAR_IMAGE_SIZE, AVATAR_IMAGE_SIZE, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); int userdata[7] = {AVATAR_IMAGE_SIZE, x0 - x, x1 - x, y0 - y, y1 - y, fgcolor, bgcolor}; sinf_inflate(data, datalen, inflate_callback_avatar, userdata); } static void inflate_callback_icon(uint8_t byte, uint32_t pos, void *userdata) { const uint16_t *colortable = (const uint16_t *)(((const int *)userdata) + 5); const int w = ((const int *)userdata)[0]; const int x0 = ((const int *)userdata)[1]; const int x1 = ((const int *)userdata)[2]; const int y0 = ((const int *)userdata)[3]; const int y1 = ((const int *)userdata)[4]; const int px = (pos * 2) % w; const int py = (pos * 2) / w; if (px >= x0 && px <= x1 && py >= y0 && py <= y1) { PIXELDATA(colortable[byte >> 4]); PIXELDATA(colortable[byte & 0x0F]); } } void display_icon(int x, int y, int w, int h, const void *data, int datalen, uint16_t fgcolor, uint16_t bgcolor) { x += DISPLAY_OFFSET.x; y += DISPLAY_OFFSET.y; x &= ~1; // cannot draw at odd coordinate int x0, y0, x1, y1; clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); int userdata[5 + 16 * sizeof(uint16_t) / sizeof(int)] = {w, x0 - x, x1 - x, y0 - y, y1 - y}; set_color_table((uint16_t *)(userdata + 5), fgcolor, bgcolor); sinf_inflate(data, datalen, inflate_callback_icon, userdata); } #include "loader.h" static void inflate_callback_loader(uint8_t byte, uint32_t pos, void *userdata) { uint8_t *out = (uint8_t *)userdata; out[pos] = byte; } void display_loader(uint16_t progress, int yoffset, uint16_t fgcolor, uint16_t bgcolor, const uint8_t *icon, uint32_t iconlen, uint16_t iconfgcolor) { uint16_t colortable[16], iconcolortable[16]; set_color_table(colortable, fgcolor, bgcolor); if (icon) { set_color_table(iconcolortable, iconfgcolor, bgcolor); } if ((DISPLAY_RESY / 2 - img_loader_size + yoffset < 0) || (DISPLAY_RESY / 2 + img_loader_size - 1 + yoffset >= DISPLAY_RESY)) { return; } display_set_window(DISPLAY_RESX / 2 - img_loader_size, DISPLAY_RESY / 2 - img_loader_size + yoffset, DISPLAY_RESX / 2 + img_loader_size - 1, DISPLAY_RESY / 2 + img_loader_size - 1 + yoffset); if (icon && memcmp(icon, "TOIg", 4) == 0 && LOADER_ICON_SIZE == *(uint16_t *)(icon + 4) && LOADER_ICON_SIZE == *(uint16_t *)(icon + 6) && iconlen == 12 + *(uint32_t *)(icon + 8)) { uint8_t icondata[LOADER_ICON_SIZE * LOADER_ICON_SIZE / 2]; sinf_inflate(icon + 12, iconlen - 12, inflate_callback_loader, icondata); icon = icondata; } else { icon = NULL; } for (int y = 0; y < img_loader_size * 2; y++) { for (int x = 0; x < img_loader_size * 2; x++) { int mx = x, my = y; uint16_t a; if ((mx >= img_loader_size) && (my >= img_loader_size)) { mx = img_loader_size * 2 - 1 - x; my = img_loader_size * 2 - 1 - y; a = 499 - (img_loader[my][mx] >> 8); } else if (mx >= img_loader_size) { mx = img_loader_size * 2 - 1 - x; a = img_loader[my][mx] >> 8; } else if (my >= img_loader_size) { my = img_loader_size * 2 - 1 - y; a = 500 + (img_loader[my][mx] >> 8); } else { a = 999 - (img_loader[my][mx] >> 8); } // inside of circle - draw glyph #define LOADER_ICON_CORNER_CUT 2 if (icon && mx + my > (((LOADER_ICON_SIZE / 2) + LOADER_ICON_CORNER_CUT) * 2) && mx >= img_loader_size - (LOADER_ICON_SIZE / 2) && my >= img_loader_size - (LOADER_ICON_SIZE / 2)) { int i = (x - (img_loader_size - (LOADER_ICON_SIZE / 2))) + (y - (img_loader_size - (LOADER_ICON_SIZE / 2))) * LOADER_ICON_SIZE; uint8_t c; if (i % 2) { c = icon[i / 2] & 0x0F; } else { c = (icon[i / 2] & 0xF0) >> 4; } PIXELDATA(iconcolortable[c]); } else { uint8_t c; if (progress > a) { c = (img_loader[my][mx] & 0x00F0) >> 4; } else { c = img_loader[my][mx] & 0x000F; } PIXELDATA(colortable[c]); } } } } static const uint8_t *get_glyph(int font, uint8_t c) { if (c >= ' ' && c <= '~') { // do nothing - valid ASCII } else // UTF-8 handling: https://en.wikipedia.org/wiki/UTF-8#Description if (c >= 0xC0) { // bytes 11xxxxxx are first byte of UTF-8 characters c = '_'; } else { // bytes 10xxxxxx are successive UTF-8 characters return 0; } switch (font) { #ifdef TREZOR_FONT_NORMAL_ENABLE case FONT_NORMAL: return Font_Roboto_Regular_20[c - ' ']; #endif #ifdef TREZOR_FONT_BOLD_ENABLE case FONT_BOLD: return Font_Roboto_Bold_20[c - ' ']; #endif #ifdef TREZOR_FONT_MONO_ENABLE case FONT_MONO: return Font_RobotoMono_Regular_20[c - ' ']; #endif #ifdef TREZOR_FONT_MONO_BOLD_ENABLE case FONT_MONO_BOLD: return Font_RobotoMono_Bold_20[c - ' ']; #endif } return 0; } #ifndef TREZOR_PRINT_DISABLE #define DISPLAY_PRINT_COLS (DISPLAY_RESX / 6) #define DISPLAY_PRINT_ROWS (DISPLAY_RESY / 8) static char display_print_buf[DISPLAY_PRINT_ROWS][DISPLAY_PRINT_COLS]; static uint16_t display_print_fgcolor = COLOR_WHITE, display_print_bgcolor = COLOR_BLACK; // set colors for display_print function void display_print_color(uint16_t fgcolor, uint16_t bgcolor) { display_print_fgcolor = fgcolor; display_print_bgcolor = bgcolor; } // display text using bitmap font void display_print(const char *text, int textlen) { static uint8_t row = 0, col = 0; // determine text length if not provided if (textlen < 0) { textlen = strlen(text); } // print characters to internal buffer (display_print_buf) for (int i = 0; i < textlen; i++) { switch (text[i]) { case '\r': break; case '\n': row++; col = 0; break; default: display_print_buf[row][col] = text[i]; col++; break; } if (col >= DISPLAY_PRINT_COLS) { col = 0; row++; } if (row >= DISPLAY_PRINT_ROWS) { for (int j = 0; j < DISPLAY_PRINT_ROWS - 1; j++) { memcpy(display_print_buf[j], display_print_buf[j + 1], DISPLAY_PRINT_COLS); } memset(display_print_buf[DISPLAY_PRINT_ROWS - 1], 0x00, DISPLAY_PRINT_COLS); row = DISPLAY_PRINT_ROWS - 1; } } // render buffer to display display_set_window(0, 0, DISPLAY_RESX - 1, DISPLAY_RESY - 1); for (int i = 0; i < DISPLAY_RESX * DISPLAY_RESY; i++) { int x = (i % DISPLAY_RESX); int y = (i / DISPLAY_RESX); int j = y % 8; y /= 8; int k = x % 6; x /= 6; char c = display_print_buf[y][x] & 0x7F; // char invert = display_print_buf[y][x] & 0x80; if (c < ' ') c = ' '; const uint8_t *g = Font_Bitmap + (5 * (c - ' ')); if (k < 5 && (g[k] & (1 << j))) { PIXELDATA(display_print_fgcolor); } else { PIXELDATA(display_print_bgcolor); } } display_refresh(); } #ifdef TREZOR_EMULATOR #define mini_vsnprintf vsnprintf #include #else #include "mini_printf.h" #endif // variadic display_print void display_printf(const char *fmt, ...) { if (!strchr(fmt, '%')) { display_print(fmt, strlen(fmt)); } else { va_list va; va_start(va, fmt); char buf[256]; int len = mini_vsnprintf(buf, sizeof(buf), fmt, va); display_print(buf, len); va_end(va); } } #endif // TREZOR_PRINT_DISABLE static void display_text_render(int x, int y, const char *text, int textlen, int font, uint16_t fgcolor, uint16_t bgcolor) { // determine text length if not provided if (textlen < 0) { textlen = strlen(text); } uint16_t colortable[16]; set_color_table(colortable, fgcolor, bgcolor); // render glyphs for (int i = 0; i < textlen; i++) { const uint8_t *g = get_glyph(font, (uint8_t)text[i]); if (!g) continue; const uint8_t w = g[0]; // width const uint8_t h = g[1]; // height const uint8_t adv = g[2]; // advance const uint8_t bearX = g[3]; // bearingX const uint8_t bearY = g[4]; // bearingY if (w && h) { const int sx = x + bearX; const int sy = y - bearY; int x0, y0, x1, y1; clamp_coords(sx, sy, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); for (int j = y0; j <= y1; j++) { for (int i = x0; i <= x1; i++) { const int rx = i - sx; const int ry = j - sy; const int a = rx + ry * w; #if FONT_BPP == 2 const uint8_t c = ((g[5 + a / 4] >> (6 - (a % 4) * 2)) & 0x03) * 5; #elif FONT_BPP == 4 const uint8_t c = (g[5 + a / 2] >> (4 - (a % 2) * 4)) & 0x0F; #else #error Unsupported FONT_BPP value #endif PIXELDATA(colortable[c]); } } } x += adv; } } void display_text(int x, int y, const char *text, int textlen, int font, uint16_t fgcolor, uint16_t bgcolor) { x += DISPLAY_OFFSET.x; y += DISPLAY_OFFSET.y; display_text_render(x, y, text, textlen, font, fgcolor, bgcolor); } void display_text_center(int x, int y, const char *text, int textlen, int font, uint16_t fgcolor, uint16_t bgcolor) { x += DISPLAY_OFFSET.x; y += DISPLAY_OFFSET.y; int w = display_text_width(text, textlen, font); display_text_render(x - w / 2, y, text, textlen, font, fgcolor, bgcolor); } void display_text_right(int x, int y, const char *text, int textlen, int font, uint16_t fgcolor, uint16_t bgcolor) { x += DISPLAY_OFFSET.x; y += DISPLAY_OFFSET.y; int w = display_text_width(text, textlen, font); display_text_render(x - w, y, text, textlen, font, fgcolor, bgcolor); } // compute the width of the text (in pixels) int display_text_width(const char *text, int textlen, int font) { int width = 0; // determine text length if not provided if (textlen < 0) { textlen = strlen(text); } for (int i = 0; i < textlen; i++) { const uint8_t *g = get_glyph(font, (uint8_t)text[i]); if (!g) continue; const uint8_t adv = g[2]; // advance width += adv; /* if (i != textlen - 1) { const uint8_t adv = g[2]; // advance width += adv; } else { // last character const uint8_t w = g[0]; // width const uint8_t bearX = g[3]; // bearingX width += (bearX + w); } */ } return width; } void display_qrcode(int x, int y, const char *data, int datalen, uint8_t scale) { if (scale < 1 || scale > 10) return; uint8_t bitdata[QR_MAX_BITDATA]; int side = qr_encode(QR_LEVEL_M, 0, data, datalen, bitdata); x += DISPLAY_OFFSET.x - (side + 2) * scale / 2; y += DISPLAY_OFFSET.y - (side + 2) * scale / 2; int x0, y0, x1, y1; clamp_coords(x, y, (side + 2) * scale, (side + 2) * scale, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); for (int j = y0; j <= y1; j++) { for (int i = x0; i <= x1; i++) { int rx = (i - x) / scale - 1; int ry = (j - y) / scale - 1; // 1px border if (rx < 0 || ry < 0 || rx >= side || ry >= side) { PIXELDATA(0xFFFF); continue; } int a = ry * side + rx; if (bitdata[a / 8] & (1 << (7 - a % 8))) { PIXELDATA(0x0000); } else { PIXELDATA(0xFFFF); } } } } void display_offset(int set_xy[2], int *get_x, int *get_y) { if (set_xy) { DISPLAY_OFFSET.x = set_xy[0]; DISPLAY_OFFSET.y = set_xy[1]; } *get_x = DISPLAY_OFFSET.x; *get_y = DISPLAY_OFFSET.y; } int display_orientation(int degrees) { if (degrees != DISPLAY_ORIENTATION) { #if TREZOR_MODEL == T if (degrees == 0 || degrees == 90 || degrees == 180 || degrees == 270) { #elif TREZOR_MODEL == 1 if (degrees == 0 || degrees == 180) { #else #error Unknown TREZOR model #endif DISPLAY_ORIENTATION = degrees; display_set_orientation(degrees); } } return DISPLAY_ORIENTATION; } int display_backlight(int val) { #if TREZOR_MODEL == 1 val = 255; #endif if (DISPLAY_BACKLIGHT != val && val >= 0 && val <= 255) { DISPLAY_BACKLIGHT = val; display_set_backlight(val); } return DISPLAY_BACKLIGHT; } void display_fade(int start, int end, int delay) { for (int i = 0; i < 100; i++) { display_backlight(start + i * (end - start) / 100); hal_delay(delay / 100); } display_backlight(end); }