/* * Copyright (c) Pavol Rusnak, SatoshiLabs * * Licensed under TREZOR License * see LICENSE file for details */ #include "inflate.h" #include "font_bitmap.h" #include "font_robotomono_regular_20.h" #include "font_roboto_regular_20.h" #include "font_roboto_bold_20.h" #include "trezor-qrenc/qr_encode.h" #include "display.h" #include static int DISPLAY_BACKLIGHT = 0; static int DISPLAY_ORIENTATION = 0; static int DISPLAY_OFFSET[2] = {0, 0}; #if defined TREZOR_STM32 #include "display-stm32.h" #elif defined TREZOR_UNIX #include "display-unix.h" #else #error Unsupported TREZOR port. Only STM32 and UNIX ports are supported. #endif // common display functions static void set_color_table(uint16_t colortable[16], uint16_t fgcolor, uint16_t bgcolor) { uint8_t cr, cg, cb; for (int i = 0; i < 16; i++) { cr = (((fgcolor & 0xF800) >> 11) * i + ((bgcolor & 0xF800) >> 11) * (15 - i)) / 15; cg = (((fgcolor & 0x07E0) >> 5) * i + ((bgcolor & 0x07E0) >> 5) * (15 - i)) / 15; cb = ((fgcolor & 0x001F) * i + (bgcolor & 0x001F) * (15 - i)) / 15; colortable[i] = (cr << 11) | (cg << 5) | cb; } } static inline void clamp_coords(int x, int y, int w, int h, int *x0, int *y0, int *x1, int *y1) { #define MIN(a,b) (((a)<(b))?(a):(b)) #define MAX(a,b) (((a)>(b))?(a):(b)) *x0 = MAX(x, 0); *y0 = MAX(y, 0); *x1 = MIN(x + w - 1, DISPLAY_RESX - 1); *y1 = MIN(y + h - 1, DISPLAY_RESY - 1); } void display_clear(void) { display_set_window(0, 0, DISPLAY_RESX - 1, DISPLAY_RESY - 1); for (int i = 0; i < DISPLAY_RESX * DISPLAY_RESY * 2; i++) { DATA(0x00); } } void display_bar(int x, int y, int w, int h, uint16_t c) { x += DISPLAY_OFFSET[0]; y += DISPLAY_OFFSET[1]; int x0, y0, x1, y1; clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); for (int i = 0; i < (x1 - x0 + 1) * (y1 - y0 + 1); i++) { DATA(c >> 8); DATA(c & 0xFF); } } #define CORNER_RADIUS 16 static const uint8_t cornertable[CORNER_RADIUS * CORNER_RADIUS] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 12, 14, 15, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 0, 0, 8, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 0, 3, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 0, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 3, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 0, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 0, 8, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 0, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 1, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 5, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 9, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 12, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, }; void display_bar_radius(int x, int y, int w, int h, uint16_t c, uint16_t b, uint8_t r) { if (r != 2 && r != 4 && r != 8 && r != 16) { return; } else { r = 16 / r; } uint16_t colortable[16]; set_color_table(colortable, c, b); x += DISPLAY_OFFSET[0]; y += DISPLAY_OFFSET[1]; int x0, y0, x1, y1; clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); for (int j = y0; j <= y1; j++) { for (int i = x0; i <= x1; i++) { int rx = i - x; int ry = j - y; if (rx < CORNER_RADIUS / r && ry < CORNER_RADIUS / r) { uint8_t c = cornertable[rx * r + ry * r * CORNER_RADIUS]; DATA(colortable[c] >> 8); DATA(colortable[c] & 0xFF); } else if (rx < CORNER_RADIUS / r && ry >= h - CORNER_RADIUS / r) { uint8_t c = cornertable[rx * r + (h - 1 - ry) * r * CORNER_RADIUS]; DATA(colortable[c] >> 8); DATA(colortable[c] & 0xFF); } else if (rx >= w - CORNER_RADIUS / r && ry < CORNER_RADIUS / r) { uint8_t c = cornertable[(w - 1 - rx) * r + ry * r * CORNER_RADIUS]; DATA(colortable[c] >> 8); DATA(colortable[c] & 0xFF); } else if (rx >= w - CORNER_RADIUS / r && ry >= h - CORNER_RADIUS / r) { uint8_t c = cornertable[(w - 1 - rx) * r + (h - 1 - ry) * r * CORNER_RADIUS]; DATA(colortable[c] >> 8); DATA(colortable[c] & 0xFF); } else { DATA(c >> 8); DATA(c & 0xFF); } } } } static void inflate_callback_image(uint8_t byte, uint32_t pos, void *userdata) { int w = ((int *)userdata)[0]; int x0 = ((int *)userdata)[1]; int x1 = ((int *)userdata)[2]; int y0 = ((int *)userdata)[3]; int y1 = ((int *)userdata)[4]; int px = (pos / 2) % w; int py = (pos / 2) / w; if (px >= x0 && px <= x1 && py >= y0 && py <= y1) { DATA(byte); } } void display_image(int x, int y, int w, int h, const void *data, int datalen) { x += DISPLAY_OFFSET[0]; y += DISPLAY_OFFSET[1]; int x0, y0, x1, y1; clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); int userdata[5]; userdata[0] = w; userdata[1] = x0 - x; userdata[2] = x1 - x; userdata[3] = y0 - y; userdata[4] = y1 - y; sinf_inflate(data, datalen, inflate_callback_image, userdata); } static void inflate_callback_icon(uint8_t byte, uint32_t pos, void *userdata) { uint16_t *colortable = (uint16_t *)(((int *)userdata) + 5); int w = ((int *)userdata)[0]; int x0 = ((int *)userdata)[1]; int x1 = ((int *)userdata)[2]; int y0 = ((int *)userdata)[3]; int y1 = ((int *)userdata)[4]; int px = (pos * 2) % w; int py = (pos * 2) / w; if (px >= x0 && px <= x1 && py >= y0 && py <= y1) { DATA(colortable[byte >> 4] >> 8); DATA(colortable[byte >> 4] & 0xFF); DATA(colortable[byte & 0x0F] >> 8); DATA(colortable[byte & 0x0F] & 0xFF); } } void display_icon(int x, int y, int w, int h, const void *data, int datalen, uint16_t fgcolor, uint16_t bgcolor) { x += DISPLAY_OFFSET[0]; y += DISPLAY_OFFSET[1]; x &= ~1; // cannot draw at odd coordinate int x0, y0, x1, y1; clamp_coords(x, y, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); int userdata[5 + 16 * sizeof(uint16_t) / sizeof(int)]; userdata[0] = w; userdata[1] = x0 - x; userdata[2] = x1 - x; userdata[3] = y0 - y; userdata[4] = y1 - y; set_color_table((uint16_t *)(userdata + 5), fgcolor, bgcolor); sinf_inflate(data, datalen, inflate_callback_icon, userdata); } static const uint8_t *get_glyph(uint8_t font, uint8_t c) { if (c >= ' ' && c <= '~') { // do nothing - valid ASCII } else // UTF-8 handling: https://en.wikipedia.org/wiki/UTF-8#Description if (c >= 0xC0) { // bytes 11xxxxxx are first byte of UTF-8 characters c = '_'; } else { // bytes 10xxxxxx are successive UTF-8 characters return 0; } switch (font) { case FONT_MONO: return Font_RobotoMono_Regular_20[c - ' ']; case FONT_NORMAL: return Font_Roboto_Regular_20[c - ' ']; case FONT_BOLD: return Font_Roboto_Bold_20[c - ' ']; } return 0; } #define DISPLAY_PRINT_COLS (DISPLAY_RESX / 6) #define DISPLAY_PRINT_ROWS (DISPLAY_RESY / 8) static char display_print_buf[DISPLAY_PRINT_ROWS][DISPLAY_PRINT_COLS]; // display text using bitmap font - print to internal buffer void display_print(const char *text, int textlen) { static uint8_t row = 0, col = 0; // determine text length if not provided if (textlen < 0) { textlen = strlen(text); } for (int i = 0; i < textlen; i++) { switch (text[i]) { case '\r': break; case '\n': row++; col = 0; break; default: display_print_buf[row][col] = text[i]; col++; break; } if (col >= DISPLAY_PRINT_COLS) { col = 0; row++; } if (row >= DISPLAY_PRINT_ROWS) { for (int j = 0; j < DISPLAY_PRINT_ROWS - 1; j++) { memcpy(display_print_buf[j], display_print_buf[j + 1], DISPLAY_PRINT_COLS); } memset(display_print_buf[DISPLAY_PRINT_ROWS - 1], 0x00, DISPLAY_PRINT_COLS); row = DISPLAY_PRINT_ROWS - 1; } } } // display text using bitmap font - send internal buffer to display void display_print_out(uint16_t fgcolor, uint16_t bgcolor) { display_set_window(0, 0, DISPLAY_RESX - 1, DISPLAY_RESY - 1); for (int i = 0; i < DISPLAY_RESX * DISPLAY_RESY; i++) { int x = (i % DISPLAY_RESX); int y = (i / DISPLAY_RESX); int j = y % 8; y /= 8; int k = x % 6; x /= 6; char c = display_print_buf[y][x] & 0x7F; // char invert = display_print_buf[y][x] & 0x80; if (c < ' ') c = ' '; const uint8_t *g = Font_Bitmap + (5 * (c - ' ')); if (k < 5 && (g[k] & (1 << j))) { DATA(fgcolor >> 8); DATA(fgcolor & 0xFF); } else { DATA(bgcolor >> 8); DATA(bgcolor & 0xFF); } } } // first two bytes are width and height of the glyph // third, fourth and fifth bytes are advance, bearingX and bearingY of the horizontal metrics of the glyph // rest is packed 4-bit glyph data void display_text(int x, int y, const char *text, int textlen, uint8_t font, uint16_t fgcolor, uint16_t bgcolor) { uint16_t colortable[16]; set_color_table(colortable, fgcolor, bgcolor); // determine text length if not provided if (textlen < 0) { textlen = strlen(text); } int px = x + DISPLAY_OFFSET[0]; y += DISPLAY_OFFSET[1]; // render glyphs for (int i = 0; i < textlen; i++) { const uint8_t *g = get_glyph(font, (uint8_t)text[i]); if (!g) continue; // g[0], g[1] = width, height // g[2] = advance // g[3], g[4] = bearingX, bearingY if (g[0] && g[1]) { int sx = px + (int8_t)(g[3]); int sy = y - (int8_t)(g[4]); int w = g[0]; int h = g[1]; int x0, y0, x1, y1; clamp_coords(sx, sy, w, h, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); for (int j = y0; j <= y1; j++) { for (int i = x0; i <= x1; i++) { int rx = i - sx; int ry = j - sy; int a = rx + ry * w; uint8_t c; if (a % 2 == 0) { c = g[5 + a/2] >> 4; } else { c = g[5 + a/2] & 0x0F; } DATA(colortable[c] >> 8); DATA(colortable[c] & 0xFF); } } } px += g[2]; } } void display_text_center(int x, int y, const char *text, int textlen, uint8_t font, uint16_t fgcolor, uint16_t bgcolor) { int w = display_text_width(text, textlen, font); display_text(x - w / 2, y, text, textlen, font, fgcolor, bgcolor); } void display_text_right(int x, int y, const char *text, int textlen, uint8_t font, uint16_t fgcolor, uint16_t bgcolor) { int w = display_text_width(text, textlen, font); display_text(x - w, y, text, textlen, font, fgcolor, bgcolor); } // compute the width of the text (in pixels) int display_text_width(const char *text, int textlen, uint8_t font) { int w = 0; // determine text length if not provided if (textlen < 0) { textlen = strlen(text); } for (int i = 0; i < textlen; i++) { const uint8_t *g = get_glyph(font, (uint8_t)text[i]); if (!g) continue; w += g[2]; } return w; } void display_qrcode(int x, int y, const char *data, int datalen, uint8_t scale) { if (scale < 1 || scale > 10) return; uint8_t bitdata[QR_MAX_BITDATA]; int side = qr_encode(QR_LEVEL_M, 0, data, datalen, bitdata); x += DISPLAY_OFFSET[0] - (side + 2) * scale / 2; y += DISPLAY_OFFSET[1] - (side + 2) * scale / 2; int x0, y0, x1, y1; clamp_coords(x, y, (side + 2) * scale, (side + 2) * scale, &x0, &y0, &x1, &y1); display_set_window(x0, y0, x1, y1); for (int j = y0; j <= y1; j++) { for (int i = x0; i <= x1; i++) { int rx = (i - x) / scale - 1; int ry = (j - y) / scale - 1; // 1px border if (rx < 0 || ry < 0 || rx >= side || ry >= side) { DATA(0xFF); DATA(0xFF); continue; } int a = rx * side + ry; if (bitdata[a / 8] & (1 << (7 - a % 8))) { DATA(0x00); DATA(0x00); } else { DATA(0xFF); DATA(0xFF); } } } } #include "loader.h" static void inflate_callback_loader(uint8_t byte, uint32_t pos, void *userdata) { uint8_t *out = (uint8_t *)userdata; out[pos] = byte; } void display_loader(uint16_t progress, int yoffset, uint16_t fgcolor, uint16_t bgcolor, const uint8_t *icon, uint32_t iconlen, uint16_t iconfgcolor) { uint16_t colortable[16], iconcolortable[16]; set_color_table(colortable, fgcolor, bgcolor); if (icon) { set_color_table(iconcolortable, iconfgcolor, bgcolor); } if ((DISPLAY_RESY / 2 - img_loader_size + yoffset < 0) || (DISPLAY_RESY / 2 + img_loader_size - 1 + yoffset >= DISPLAY_RESY)) { return; } display_set_window(DISPLAY_RESX / 2 - img_loader_size, DISPLAY_RESY / 2 - img_loader_size + yoffset, DISPLAY_RESX / 2 + img_loader_size - 1, DISPLAY_RESY / 2 + img_loader_size - 1 + yoffset); if (icon && memcmp(icon, "TOIg", 4) == 0 && LOADER_ICON_SIZE == *(uint16_t *)(icon + 4) && LOADER_ICON_SIZE == *(uint16_t *)(icon + 6) && iconlen == 12 + *(uint32_t *)(icon + 8)) { uint8_t icondata[LOADER_ICON_SIZE * LOADER_ICON_SIZE / 2]; sinf_inflate(icon + 12, iconlen - 12, inflate_callback_loader, icondata); icon = icondata; } else { icon = NULL; } for (int y = 0; y < img_loader_size * 2; y++) { for (int x = 0; x < img_loader_size * 2; x++) { int mx = x, my = y; uint16_t a; if ((mx >= img_loader_size) && (my >= img_loader_size)) { mx = img_loader_size * 2 - 1 - x; my = img_loader_size * 2 - 1 - y; a = 499 - (img_loader[my][mx] >> 8); } else if (mx >= img_loader_size) { mx = img_loader_size * 2 - 1 - x; a = img_loader[my][mx] >> 8; } else if (my >= img_loader_size) { my = img_loader_size * 2 - 1 - y; a = 500 + (img_loader[my][mx] >> 8); } else { a = 999 - (img_loader[my][mx] >> 8); } // inside of circle - draw glyph #define LOADER_ICON_CORNER_CUT 2 if (icon && mx + my > (((LOADER_ICON_SIZE / 2) + LOADER_ICON_CORNER_CUT) * 2) && mx >= img_loader_size - (LOADER_ICON_SIZE / 2) && my >= img_loader_size - (LOADER_ICON_SIZE / 2)) { int i = (x - (img_loader_size - (LOADER_ICON_SIZE / 2))) + (y - (img_loader_size - (LOADER_ICON_SIZE / 2))) * LOADER_ICON_SIZE; uint8_t c; if (i % 2) { c = icon[i / 2] & 0x0F; } else { c = (icon[i / 2] & 0xF0) >> 4; } DATA(iconcolortable[c] >> 8); DATA(iconcolortable[c] & 0xFF); } else { uint8_t c; if (progress > a) { c = (img_loader[my][mx] & 0x00F0) >> 4; } else { c = img_loader[my][mx] & 0x000F; } DATA(colortable[c] >> 8); DATA(colortable[c] & 0xFF); } } } } int *display_offset(int xy[2]) { if (xy) { DISPLAY_OFFSET[0] = xy[0]; DISPLAY_OFFSET[1] = xy[1]; } return DISPLAY_OFFSET; } int display_orientation(int degrees) { if (degrees != DISPLAY_ORIENTATION) { if (degrees == 0 || degrees == 90 || degrees == 180 || degrees == 270) { DISPLAY_ORIENTATION = degrees; display_set_orientation(degrees); } } return DISPLAY_ORIENTATION; } int display_backlight(int val) { if (DISPLAY_BACKLIGHT != val && val >= 0 && val <= 255) { DISPLAY_BACKLIGHT = val; display_set_backlight(val); } return DISPLAY_BACKLIGHT; }