mirror of
http://galexander.org/git/simplesshd.git
synced 2024-12-02 12:18:14 +00:00
973 lines
28 KiB
C
973 lines
28 KiB
C
/*
|
|
* Dropbear SSH
|
|
*
|
|
* Copyright (c) 2002-2004 Matt Johnston
|
|
* Portions Copyright (c) 2004 by Mihnea Stoenescu
|
|
* All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE. */
|
|
|
|
#include "includes.h"
|
|
#include "dbutil.h"
|
|
#include "algo.h"
|
|
#include "buffer.h"
|
|
#include "session.h"
|
|
#include "kex.h"
|
|
#include "dh_groups.h"
|
|
#include "ssh.h"
|
|
#include "packet.h"
|
|
#include "bignum.h"
|
|
#include "dbrandom.h"
|
|
#include "runopts.h"
|
|
#include "ecc.h"
|
|
#include "crypto_desc.h"
|
|
|
|
static void kexinitialise(void);
|
|
static void gen_new_keys(void);
|
|
#ifndef DISABLE_ZLIB
|
|
static void gen_new_zstream_recv(void);
|
|
static void gen_new_zstream_trans(void);
|
|
#endif
|
|
static void read_kex_algos(void);
|
|
/* helper function for gen_new_keys */
|
|
static void hashkeys(unsigned char *out, unsigned int outlen,
|
|
const hash_state * hs, const unsigned char X);
|
|
|
|
|
|
/* Send our list of algorithms we can use */
|
|
void send_msg_kexinit() {
|
|
|
|
CHECKCLEARTOWRITE();
|
|
buf_putbyte(ses.writepayload, SSH_MSG_KEXINIT);
|
|
|
|
/* cookie */
|
|
genrandom(buf_getwriteptr(ses.writepayload, 16), 16);
|
|
buf_incrwritepos(ses.writepayload, 16);
|
|
|
|
/* kex algos */
|
|
buf_put_algolist(ses.writepayload, sshkex);
|
|
|
|
/* server_host_key_algorithms */
|
|
buf_put_algolist(ses.writepayload, sshhostkey);
|
|
|
|
/* encryption_algorithms_client_to_server */
|
|
buf_put_algolist(ses.writepayload, sshciphers);
|
|
|
|
/* encryption_algorithms_server_to_client */
|
|
buf_put_algolist(ses.writepayload, sshciphers);
|
|
|
|
/* mac_algorithms_client_to_server */
|
|
buf_put_algolist(ses.writepayload, sshhashes);
|
|
|
|
/* mac_algorithms_server_to_client */
|
|
buf_put_algolist(ses.writepayload, sshhashes);
|
|
|
|
|
|
/* compression_algorithms_client_to_server */
|
|
buf_put_algolist(ses.writepayload, ses.compress_algos);
|
|
|
|
/* compression_algorithms_server_to_client */
|
|
buf_put_algolist(ses.writepayload, ses.compress_algos);
|
|
|
|
/* languages_client_to_server */
|
|
buf_putstring(ses.writepayload, "", 0);
|
|
|
|
/* languages_server_to_client */
|
|
buf_putstring(ses.writepayload, "", 0);
|
|
|
|
/* first_kex_packet_follows */
|
|
buf_putbyte(ses.writepayload, (ses.send_kex_first_guess != NULL));
|
|
|
|
/* reserved unit32 */
|
|
buf_putint(ses.writepayload, 0);
|
|
|
|
/* set up transmitted kex packet buffer for hashing.
|
|
* This is freed after the end of the kex */
|
|
ses.transkexinit = buf_newcopy(ses.writepayload);
|
|
|
|
encrypt_packet();
|
|
ses.dataallowed = 0; /* don't send other packets during kex */
|
|
|
|
ses.kexstate.sentkexinit = 1;
|
|
|
|
ses.newkeys = (struct key_context*)m_malloc(sizeof(struct key_context));
|
|
|
|
if (ses.send_kex_first_guess) {
|
|
ses.newkeys->algo_kex = sshkex[0].data;
|
|
ses.newkeys->algo_hostkey = sshhostkey[0].val;
|
|
ses.send_kex_first_guess();
|
|
}
|
|
|
|
TRACE(("DATAALLOWED=0"))
|
|
TRACE(("-> KEXINIT"))
|
|
|
|
}
|
|
|
|
static void switch_keys() {
|
|
TRACE2(("enter switch_keys"))
|
|
if (!(ses.kexstate.sentkexinit && ses.kexstate.recvkexinit)) {
|
|
dropbear_exit("Unexpected newkeys message");
|
|
}
|
|
|
|
if (!ses.keys) {
|
|
ses.keys = m_malloc(sizeof(*ses.newkeys));
|
|
}
|
|
if (ses.kexstate.recvnewkeys && ses.newkeys->recv.valid) {
|
|
TRACE(("switch_keys recv"))
|
|
#ifndef DISABLE_ZLIB
|
|
gen_new_zstream_recv();
|
|
#endif
|
|
ses.keys->recv = ses.newkeys->recv;
|
|
m_burn(&ses.newkeys->recv, sizeof(ses.newkeys->recv));
|
|
ses.newkeys->recv.valid = 0;
|
|
}
|
|
if (ses.kexstate.sentnewkeys && ses.newkeys->trans.valid) {
|
|
TRACE(("switch_keys trans"))
|
|
#ifndef DISABLE_ZLIB
|
|
gen_new_zstream_trans();
|
|
#endif
|
|
ses.keys->trans = ses.newkeys->trans;
|
|
m_burn(&ses.newkeys->trans, sizeof(ses.newkeys->trans));
|
|
ses.newkeys->trans.valid = 0;
|
|
}
|
|
if (ses.kexstate.sentnewkeys && ses.kexstate.recvnewkeys)
|
|
{
|
|
TRACE(("switch_keys done"))
|
|
ses.keys->algo_kex = ses.newkeys->algo_kex;
|
|
ses.keys->algo_hostkey = ses.newkeys->algo_hostkey;
|
|
ses.keys->allow_compress = 0;
|
|
m_free(ses.newkeys);
|
|
ses.newkeys = NULL;
|
|
kexinitialise();
|
|
}
|
|
TRACE2(("leave switch_keys"))
|
|
}
|
|
|
|
/* Bring new keys into use after a key exchange, and let the client know*/
|
|
void send_msg_newkeys() {
|
|
|
|
TRACE(("enter send_msg_newkeys"))
|
|
|
|
/* generate the kexinit request */
|
|
CHECKCLEARTOWRITE();
|
|
buf_putbyte(ses.writepayload, SSH_MSG_NEWKEYS);
|
|
encrypt_packet();
|
|
|
|
|
|
/* set up our state */
|
|
ses.kexstate.sentnewkeys = 1;
|
|
ses.kexstate.donefirstkex = 1;
|
|
ses.dataallowed = 1; /* we can send other packets again now */
|
|
gen_new_keys();
|
|
switch_keys();
|
|
|
|
TRACE(("leave send_msg_newkeys"))
|
|
}
|
|
|
|
/* Bring the new keys into use after a key exchange */
|
|
void recv_msg_newkeys() {
|
|
|
|
TRACE(("enter recv_msg_newkeys"))
|
|
|
|
ses.kexstate.recvnewkeys = 1;
|
|
switch_keys();
|
|
|
|
TRACE(("leave recv_msg_newkeys"))
|
|
}
|
|
|
|
|
|
/* Set up the kex for the first time */
|
|
void kexfirstinitialise() {
|
|
ses.kexstate.donefirstkex = 0;
|
|
|
|
#ifdef DISABLE_ZLIB
|
|
ses.compress_algos = ssh_nocompress;
|
|
#else
|
|
switch (opts.compress_mode)
|
|
{
|
|
case DROPBEAR_COMPRESS_DELAYED:
|
|
ses.compress_algos = ssh_delaycompress;
|
|
break;
|
|
|
|
case DROPBEAR_COMPRESS_ON:
|
|
ses.compress_algos = ssh_compress;
|
|
break;
|
|
|
|
case DROPBEAR_COMPRESS_OFF:
|
|
ses.compress_algos = ssh_nocompress;
|
|
break;
|
|
}
|
|
#endif
|
|
kexinitialise();
|
|
}
|
|
|
|
/* Reset the kex state, ready for a new negotiation */
|
|
static void kexinitialise() {
|
|
|
|
TRACE(("kexinitialise()"))
|
|
|
|
/* sent/recv'd MSG_KEXINIT */
|
|
ses.kexstate.sentkexinit = 0;
|
|
ses.kexstate.recvkexinit = 0;
|
|
|
|
/* sent/recv'd MSG_NEWKEYS */
|
|
ses.kexstate.recvnewkeys = 0;
|
|
ses.kexstate.sentnewkeys = 0;
|
|
|
|
/* first_packet_follows */
|
|
ses.kexstate.them_firstfollows = 0;
|
|
|
|
ses.kexstate.datatrans = 0;
|
|
ses.kexstate.datarecv = 0;
|
|
|
|
ses.kexstate.our_first_follows_matches = 0;
|
|
|
|
ses.kexstate.lastkextime = monotonic_now();
|
|
|
|
}
|
|
|
|
/* Helper function for gen_new_keys, creates a hash. It makes a copy of the
|
|
* already initialised hash_state hs, which should already have processed
|
|
* the dh_K and hash, since these are common. X is the letter 'A', 'B' etc.
|
|
* out must have at least min(SHA1_HASH_SIZE, outlen) bytes allocated.
|
|
*
|
|
* See Section 7.2 of rfc4253 (ssh transport) for details */
|
|
static void hashkeys(unsigned char *out, unsigned int outlen,
|
|
const hash_state * hs, const unsigned char X) {
|
|
|
|
const struct ltc_hash_descriptor *hash_desc = ses.newkeys->algo_kex->hash_desc;
|
|
hash_state hs2;
|
|
unsigned int offset;
|
|
unsigned char tmpout[MAX_HASH_SIZE];
|
|
|
|
memcpy(&hs2, hs, sizeof(hash_state));
|
|
hash_desc->process(&hs2, &X, 1);
|
|
hash_desc->process(&hs2, ses.session_id->data, ses.session_id->len);
|
|
hash_desc->done(&hs2, tmpout);
|
|
memcpy(out, tmpout, MIN(hash_desc->hashsize, outlen));
|
|
for (offset = hash_desc->hashsize;
|
|
offset < outlen;
|
|
offset += hash_desc->hashsize)
|
|
{
|
|
/* need to extend */
|
|
memcpy(&hs2, hs, sizeof(hash_state));
|
|
hash_desc->process(&hs2, out, offset);
|
|
hash_desc->done(&hs2, tmpout);
|
|
memcpy(&out[offset], tmpout, MIN(outlen - offset, hash_desc->hashsize));
|
|
}
|
|
m_burn(&hs2, sizeof(hash_state));
|
|
}
|
|
|
|
/* Generate the actual encryption/integrity keys, using the results of the
|
|
* key exchange, as specified in section 7.2 of the transport rfc 4253.
|
|
* This occurs after the DH key-exchange.
|
|
*
|
|
* ses.newkeys is the new set of keys which are generated, these are only
|
|
* taken into use after both sides have sent a newkeys message */
|
|
|
|
static void gen_new_keys() {
|
|
|
|
unsigned char C2S_IV[MAX_IV_LEN];
|
|
unsigned char C2S_key[MAX_KEY_LEN];
|
|
unsigned char S2C_IV[MAX_IV_LEN];
|
|
unsigned char S2C_key[MAX_KEY_LEN];
|
|
/* unsigned char key[MAX_KEY_LEN]; */
|
|
unsigned char *trans_IV, *trans_key, *recv_IV, *recv_key;
|
|
|
|
hash_state hs;
|
|
const struct ltc_hash_descriptor *hash_desc = ses.newkeys->algo_kex->hash_desc;
|
|
char mactransletter, macrecvletter; /* Client or server specific */
|
|
|
|
TRACE(("enter gen_new_keys"))
|
|
/* the dh_K and hash are the start of all hashes, we make use of that */
|
|
|
|
hash_desc->init(&hs);
|
|
hash_process_mp(hash_desc, &hs, ses.dh_K);
|
|
mp_clear(ses.dh_K);
|
|
m_free(ses.dh_K);
|
|
hash_desc->process(&hs, ses.hash->data, ses.hash->len);
|
|
buf_burn(ses.hash);
|
|
buf_free(ses.hash);
|
|
ses.hash = NULL;
|
|
|
|
if (IS_DROPBEAR_CLIENT) {
|
|
trans_IV = C2S_IV;
|
|
recv_IV = S2C_IV;
|
|
trans_key = C2S_key;
|
|
recv_key = S2C_key;
|
|
mactransletter = 'E';
|
|
macrecvletter = 'F';
|
|
} else {
|
|
trans_IV = S2C_IV;
|
|
recv_IV = C2S_IV;
|
|
trans_key = S2C_key;
|
|
recv_key = C2S_key;
|
|
mactransletter = 'F';
|
|
macrecvletter = 'E';
|
|
}
|
|
|
|
hashkeys(C2S_IV, sizeof(C2S_IV), &hs, 'A');
|
|
hashkeys(S2C_IV, sizeof(S2C_IV), &hs, 'B');
|
|
hashkeys(C2S_key, sizeof(C2S_key), &hs, 'C');
|
|
hashkeys(S2C_key, sizeof(S2C_key), &hs, 'D');
|
|
|
|
if (ses.newkeys->recv.algo_crypt->cipherdesc != NULL) {
|
|
int recv_cipher = find_cipher(ses.newkeys->recv.algo_crypt->cipherdesc->name);
|
|
if (recv_cipher < 0)
|
|
dropbear_exit("Crypto error");
|
|
if (ses.newkeys->recv.crypt_mode->start(recv_cipher,
|
|
recv_IV, recv_key,
|
|
ses.newkeys->recv.algo_crypt->keysize, 0,
|
|
&ses.newkeys->recv.cipher_state) != CRYPT_OK) {
|
|
dropbear_exit("Crypto error");
|
|
}
|
|
}
|
|
|
|
if (ses.newkeys->trans.algo_crypt->cipherdesc != NULL) {
|
|
int trans_cipher = find_cipher(ses.newkeys->trans.algo_crypt->cipherdesc->name);
|
|
if (trans_cipher < 0)
|
|
dropbear_exit("Crypto error");
|
|
if (ses.newkeys->trans.crypt_mode->start(trans_cipher,
|
|
trans_IV, trans_key,
|
|
ses.newkeys->trans.algo_crypt->keysize, 0,
|
|
&ses.newkeys->trans.cipher_state) != CRYPT_OK) {
|
|
dropbear_exit("Crypto error");
|
|
}
|
|
}
|
|
|
|
if (ses.newkeys->trans.algo_mac->hash_desc != NULL) {
|
|
hashkeys(ses.newkeys->trans.mackey,
|
|
ses.newkeys->trans.algo_mac->keysize, &hs, mactransletter);
|
|
ses.newkeys->trans.hash_index = find_hash(ses.newkeys->trans.algo_mac->hash_desc->name);
|
|
}
|
|
|
|
if (ses.newkeys->recv.algo_mac->hash_desc != NULL) {
|
|
hashkeys(ses.newkeys->recv.mackey,
|
|
ses.newkeys->recv.algo_mac->keysize, &hs, macrecvletter);
|
|
ses.newkeys->recv.hash_index = find_hash(ses.newkeys->recv.algo_mac->hash_desc->name);
|
|
}
|
|
|
|
/* Ready to switch over */
|
|
ses.newkeys->trans.valid = 1;
|
|
ses.newkeys->recv.valid = 1;
|
|
|
|
m_burn(C2S_IV, sizeof(C2S_IV));
|
|
m_burn(C2S_key, sizeof(C2S_key));
|
|
m_burn(S2C_IV, sizeof(S2C_IV));
|
|
m_burn(S2C_key, sizeof(S2C_key));
|
|
m_burn(&hs, sizeof(hash_state));
|
|
|
|
TRACE(("leave gen_new_keys"))
|
|
}
|
|
|
|
#ifndef DISABLE_ZLIB
|
|
|
|
int is_compress_trans() {
|
|
return ses.keys->trans.algo_comp == DROPBEAR_COMP_ZLIB
|
|
|| (ses.authstate.authdone
|
|
&& ses.keys->trans.algo_comp == DROPBEAR_COMP_ZLIB_DELAY);
|
|
}
|
|
|
|
int is_compress_recv() {
|
|
return ses.keys->recv.algo_comp == DROPBEAR_COMP_ZLIB
|
|
|| (ses.authstate.authdone
|
|
&& ses.keys->recv.algo_comp == DROPBEAR_COMP_ZLIB_DELAY);
|
|
}
|
|
|
|
static void* dropbear_zalloc(void* UNUSED(opaque), uInt items, uInt size) {
|
|
return m_calloc(items, size);
|
|
}
|
|
|
|
static void dropbear_zfree(void* UNUSED(opaque), void* ptr) {
|
|
m_free(ptr);
|
|
}
|
|
|
|
/* Set up new zlib compression streams, close the old ones. Only
|
|
* called from gen_new_keys() */
|
|
static void gen_new_zstream_recv() {
|
|
|
|
/* create new zstreams */
|
|
if (ses.newkeys->recv.algo_comp == DROPBEAR_COMP_ZLIB
|
|
|| ses.newkeys->recv.algo_comp == DROPBEAR_COMP_ZLIB_DELAY) {
|
|
ses.newkeys->recv.zstream = (z_streamp)m_malloc(sizeof(z_stream));
|
|
ses.newkeys->recv.zstream->zalloc = dropbear_zalloc;
|
|
ses.newkeys->recv.zstream->zfree = dropbear_zfree;
|
|
|
|
if (inflateInit(ses.newkeys->recv.zstream) != Z_OK) {
|
|
dropbear_exit("zlib error");
|
|
}
|
|
} else {
|
|
ses.newkeys->recv.zstream = NULL;
|
|
}
|
|
/* clean up old keys */
|
|
if (ses.keys->recv.zstream != NULL) {
|
|
if (inflateEnd(ses.keys->recv.zstream) == Z_STREAM_ERROR) {
|
|
/* Z_DATA_ERROR is ok, just means that stream isn't ended */
|
|
dropbear_exit("Crypto error");
|
|
}
|
|
m_free(ses.keys->recv.zstream);
|
|
}
|
|
}
|
|
|
|
static void gen_new_zstream_trans() {
|
|
|
|
if (ses.newkeys->trans.algo_comp == DROPBEAR_COMP_ZLIB
|
|
|| ses.newkeys->trans.algo_comp == DROPBEAR_COMP_ZLIB_DELAY) {
|
|
ses.newkeys->trans.zstream = (z_streamp)m_malloc(sizeof(z_stream));
|
|
ses.newkeys->trans.zstream->zalloc = dropbear_zalloc;
|
|
ses.newkeys->trans.zstream->zfree = dropbear_zfree;
|
|
|
|
if (deflateInit2(ses.newkeys->trans.zstream, Z_DEFAULT_COMPRESSION,
|
|
Z_DEFLATED, DROPBEAR_ZLIB_WINDOW_BITS,
|
|
DROPBEAR_ZLIB_MEM_LEVEL, Z_DEFAULT_STRATEGY)
|
|
!= Z_OK) {
|
|
dropbear_exit("zlib error");
|
|
}
|
|
} else {
|
|
ses.newkeys->trans.zstream = NULL;
|
|
}
|
|
|
|
if (ses.keys->trans.zstream != NULL) {
|
|
if (deflateEnd(ses.keys->trans.zstream) == Z_STREAM_ERROR) {
|
|
/* Z_DATA_ERROR is ok, just means that stream isn't ended */
|
|
dropbear_exit("Crypto error");
|
|
}
|
|
m_free(ses.keys->trans.zstream);
|
|
}
|
|
}
|
|
#endif /* DISABLE_ZLIB */
|
|
|
|
|
|
/* Executed upon receiving a kexinit message from the client to initiate
|
|
* key exchange. If we haven't already done so, we send the list of our
|
|
* preferred algorithms. The client's requested algorithms are processed,
|
|
* and we calculate the first portion of the key-exchange-hash for used
|
|
* later in the key exchange. No response is sent, as the client should
|
|
* initiate the diffie-hellman key exchange */
|
|
void recv_msg_kexinit() {
|
|
|
|
unsigned int kexhashbuf_len = 0;
|
|
unsigned int remote_ident_len = 0;
|
|
unsigned int local_ident_len = 0;
|
|
|
|
TRACE(("<- KEXINIT"))
|
|
TRACE(("enter recv_msg_kexinit"))
|
|
|
|
if (!ses.kexstate.sentkexinit) {
|
|
/* we need to send a kex packet */
|
|
send_msg_kexinit();
|
|
TRACE(("continue recv_msg_kexinit: sent kexinit"))
|
|
}
|
|
|
|
/* start the kex hash */
|
|
local_ident_len = strlen(LOCAL_IDENT);
|
|
remote_ident_len = strlen(ses.remoteident);
|
|
|
|
kexhashbuf_len = local_ident_len + remote_ident_len
|
|
+ ses.transkexinit->len + ses.payload->len
|
|
+ KEXHASHBUF_MAX_INTS;
|
|
|
|
ses.kexhashbuf = buf_new(kexhashbuf_len);
|
|
|
|
if (IS_DROPBEAR_CLIENT) {
|
|
|
|
/* read the peer's choice of algos */
|
|
read_kex_algos();
|
|
|
|
/* V_C, the client's version string (CR and NL excluded) */
|
|
buf_putstring(ses.kexhashbuf, LOCAL_IDENT, local_ident_len);
|
|
/* V_S, the server's version string (CR and NL excluded) */
|
|
buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len);
|
|
|
|
/* I_C, the payload of the client's SSH_MSG_KEXINIT */
|
|
buf_putstring(ses.kexhashbuf,
|
|
(const char*)ses.transkexinit->data, ses.transkexinit->len);
|
|
/* I_S, the payload of the server's SSH_MSG_KEXINIT */
|
|
buf_setpos(ses.payload, ses.payload_beginning);
|
|
buf_putstring(ses.kexhashbuf,
|
|
(const char*)buf_getptr(ses.payload, ses.payload->len-ses.payload->pos),
|
|
ses.payload->len-ses.payload->pos);
|
|
ses.requirenext = SSH_MSG_KEXDH_REPLY;
|
|
} else {
|
|
/* SERVER */
|
|
|
|
/* read the peer's choice of algos */
|
|
read_kex_algos();
|
|
/* V_C, the client's version string (CR and NL excluded) */
|
|
buf_putstring(ses.kexhashbuf, ses.remoteident, remote_ident_len);
|
|
/* V_S, the server's version string (CR and NL excluded) */
|
|
buf_putstring(ses.kexhashbuf, LOCAL_IDENT, local_ident_len);
|
|
|
|
/* I_C, the payload of the client's SSH_MSG_KEXINIT */
|
|
buf_setpos(ses.payload, ses.payload_beginning);
|
|
buf_putstring(ses.kexhashbuf,
|
|
(const char*)buf_getptr(ses.payload, ses.payload->len-ses.payload->pos),
|
|
ses.payload->len-ses.payload->pos);
|
|
|
|
/* I_S, the payload of the server's SSH_MSG_KEXINIT */
|
|
buf_putstring(ses.kexhashbuf,
|
|
(const char*)ses.transkexinit->data, ses.transkexinit->len);
|
|
|
|
ses.requirenext = SSH_MSG_KEXDH_INIT;
|
|
}
|
|
|
|
buf_free(ses.transkexinit);
|
|
ses.transkexinit = NULL;
|
|
/* the rest of ses.kexhashbuf will be done after DH exchange */
|
|
|
|
ses.kexstate.recvkexinit = 1;
|
|
|
|
TRACE(("leave recv_msg_kexinit"))
|
|
}
|
|
|
|
static void load_dh_p(mp_int * dh_p)
|
|
{
|
|
bytes_to_mp(dh_p, ses.newkeys->algo_kex->dh_p_bytes,
|
|
ses.newkeys->algo_kex->dh_p_len);
|
|
}
|
|
|
|
/* Initialises and generate one side of the diffie-hellman key exchange values.
|
|
* See the transport rfc 4253 section 8 for details */
|
|
/* dh_pub and dh_priv MUST be already initialised */
|
|
struct kex_dh_param *gen_kexdh_param() {
|
|
struct kex_dh_param *param = NULL;
|
|
|
|
DEF_MP_INT(dh_p);
|
|
DEF_MP_INT(dh_q);
|
|
DEF_MP_INT(dh_g);
|
|
|
|
TRACE(("enter gen_kexdh_vals"))
|
|
|
|
param = m_malloc(sizeof(*param));
|
|
m_mp_init_multi(¶m->pub, ¶m->priv, &dh_g, &dh_p, &dh_q, NULL);
|
|
|
|
/* read the prime and generator*/
|
|
load_dh_p(&dh_p);
|
|
|
|
if (mp_set_int(&dh_g, DH_G_VAL) != MP_OKAY) {
|
|
dropbear_exit("Diffie-Hellman error");
|
|
}
|
|
|
|
/* calculate q = (p-1)/2 */
|
|
/* dh_priv is just a temp var here */
|
|
if (mp_sub_d(&dh_p, 1, ¶m->priv) != MP_OKAY) {
|
|
dropbear_exit("Diffie-Hellman error");
|
|
}
|
|
if (mp_div_2(¶m->priv, &dh_q) != MP_OKAY) {
|
|
dropbear_exit("Diffie-Hellman error");
|
|
}
|
|
|
|
/* Generate a private portion 0 < dh_priv < dh_q */
|
|
gen_random_mpint(&dh_q, ¶m->priv);
|
|
|
|
/* f = g^y mod p */
|
|
if (mp_exptmod(&dh_g, ¶m->priv, &dh_p, ¶m->pub) != MP_OKAY) {
|
|
dropbear_exit("Diffie-Hellman error");
|
|
}
|
|
mp_clear_multi(&dh_g, &dh_p, &dh_q, NULL);
|
|
return param;
|
|
}
|
|
|
|
void free_kexdh_param(struct kex_dh_param *param)
|
|
{
|
|
mp_clear_multi(¶m->pub, ¶m->priv, NULL);
|
|
m_free(param);
|
|
}
|
|
|
|
/* This function is fairly common between client/server, with some substitution
|
|
* of dh_e/dh_f etc. Hence these arguments:
|
|
* dh_pub_us is 'e' for the client, 'f' for the server. dh_pub_them is
|
|
* vice-versa. dh_priv is the x/y value corresponding to dh_pub_us */
|
|
void kexdh_comb_key(struct kex_dh_param *param, mp_int *dh_pub_them,
|
|
sign_key *hostkey) {
|
|
|
|
DEF_MP_INT(dh_p);
|
|
DEF_MP_INT(dh_p_min1);
|
|
mp_int *dh_e = NULL, *dh_f = NULL;
|
|
|
|
m_mp_init_multi(&dh_p, &dh_p_min1, NULL);
|
|
load_dh_p(&dh_p);
|
|
|
|
if (mp_sub_d(&dh_p, 1, &dh_p_min1) != MP_OKAY) {
|
|
dropbear_exit("Diffie-Hellman error");
|
|
}
|
|
|
|
/* Check that dh_pub_them (dh_e or dh_f) is in the range [2, p-2] */
|
|
if (mp_cmp(dh_pub_them, &dh_p_min1) != MP_LT
|
|
|| mp_cmp_d(dh_pub_them, 1) != MP_GT) {
|
|
dropbear_exit("Diffie-Hellman error");
|
|
}
|
|
|
|
/* K = e^y mod p = f^x mod p */
|
|
m_mp_alloc_init_multi(&ses.dh_K, NULL);
|
|
if (mp_exptmod(dh_pub_them, ¶m->priv, &dh_p, ses.dh_K) != MP_OKAY) {
|
|
dropbear_exit("Diffie-Hellman error");
|
|
}
|
|
|
|
/* clear no longer needed vars */
|
|
mp_clear_multi(&dh_p, &dh_p_min1, NULL);
|
|
|
|
/* From here on, the code needs to work with the _same_ vars on each side,
|
|
* not vice-versaing for client/server */
|
|
if (IS_DROPBEAR_CLIENT) {
|
|
dh_e = ¶m->pub;
|
|
dh_f = dh_pub_them;
|
|
} else {
|
|
dh_e = dh_pub_them;
|
|
dh_f = ¶m->pub;
|
|
}
|
|
|
|
/* Create the remainder of the hash buffer, to generate the exchange hash */
|
|
/* K_S, the host key */
|
|
buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey);
|
|
/* e, exchange value sent by the client */
|
|
buf_putmpint(ses.kexhashbuf, dh_e);
|
|
/* f, exchange value sent by the server */
|
|
buf_putmpint(ses.kexhashbuf, dh_f);
|
|
/* K, the shared secret */
|
|
buf_putmpint(ses.kexhashbuf, ses.dh_K);
|
|
|
|
/* calculate the hash H to sign */
|
|
finish_kexhashbuf();
|
|
}
|
|
|
|
#if DROPBEAR_ECDH
|
|
struct kex_ecdh_param *gen_kexecdh_param() {
|
|
struct kex_ecdh_param *param = m_malloc(sizeof(*param));
|
|
if (ecc_make_key_ex(NULL, dropbear_ltc_prng,
|
|
¶m->key, ses.newkeys->algo_kex->ecc_curve->dp) != CRYPT_OK) {
|
|
dropbear_exit("ECC error");
|
|
}
|
|
return param;
|
|
}
|
|
|
|
void free_kexecdh_param(struct kex_ecdh_param *param) {
|
|
ecc_free(¶m->key);
|
|
m_free(param);
|
|
|
|
}
|
|
void kexecdh_comb_key(struct kex_ecdh_param *param, buffer *pub_them,
|
|
sign_key *hostkey) {
|
|
const struct dropbear_kex *algo_kex = ses.newkeys->algo_kex;
|
|
/* public keys from client and server */
|
|
ecc_key *Q_C, *Q_S, *Q_them;
|
|
|
|
Q_them = buf_get_ecc_raw_pubkey(pub_them, algo_kex->ecc_curve);
|
|
if (Q_them == NULL) {
|
|
dropbear_exit("ECC error");
|
|
}
|
|
|
|
ses.dh_K = dropbear_ecc_shared_secret(Q_them, ¶m->key);
|
|
|
|
/* Create the remainder of the hash buffer, to generate the exchange hash
|
|
See RFC5656 section 4 page 7 */
|
|
if (IS_DROPBEAR_CLIENT) {
|
|
Q_C = ¶m->key;
|
|
Q_S = Q_them;
|
|
} else {
|
|
Q_C = Q_them;
|
|
Q_S = ¶m->key;
|
|
}
|
|
|
|
/* K_S, the host key */
|
|
buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey);
|
|
/* Q_C, client's ephemeral public key octet string */
|
|
buf_put_ecc_raw_pubkey_string(ses.kexhashbuf, Q_C);
|
|
/* Q_S, server's ephemeral public key octet string */
|
|
buf_put_ecc_raw_pubkey_string(ses.kexhashbuf, Q_S);
|
|
/* K, the shared secret */
|
|
buf_putmpint(ses.kexhashbuf, ses.dh_K);
|
|
|
|
ecc_free(Q_them);
|
|
m_free(Q_them);
|
|
|
|
/* calculate the hash H to sign */
|
|
finish_kexhashbuf();
|
|
}
|
|
#endif /* DROPBEAR_ECDH */
|
|
|
|
#if DROPBEAR_CURVE25519
|
|
struct kex_curve25519_param *gen_kexcurve25519_param () {
|
|
/* Per http://cr.yp.to/ecdh.html */
|
|
struct kex_curve25519_param *param = m_malloc(sizeof(*param));
|
|
const unsigned char basepoint[32] = {9};
|
|
|
|
genrandom(param->priv, CURVE25519_LEN);
|
|
param->priv[0] &= 248;
|
|
param->priv[31] &= 127;
|
|
param->priv[31] |= 64;
|
|
|
|
curve25519_donna(param->pub, param->priv, basepoint);
|
|
|
|
return param;
|
|
}
|
|
|
|
void free_kexcurve25519_param(struct kex_curve25519_param *param)
|
|
{
|
|
m_burn(param->priv, CURVE25519_LEN);
|
|
m_free(param);
|
|
}
|
|
|
|
void kexcurve25519_comb_key(const struct kex_curve25519_param *param, const buffer *buf_pub_them,
|
|
sign_key *hostkey) {
|
|
unsigned char out[CURVE25519_LEN];
|
|
const unsigned char* Q_C = NULL;
|
|
const unsigned char* Q_S = NULL;
|
|
char zeroes[CURVE25519_LEN] = {0};
|
|
|
|
if (buf_pub_them->len != CURVE25519_LEN)
|
|
{
|
|
dropbear_exit("Bad curve25519");
|
|
}
|
|
|
|
curve25519_donna(out, param->priv, buf_pub_them->data);
|
|
|
|
if (constant_time_memcmp(zeroes, out, CURVE25519_LEN) == 0) {
|
|
dropbear_exit("Bad curve25519");
|
|
}
|
|
|
|
m_mp_alloc_init_multi(&ses.dh_K, NULL);
|
|
bytes_to_mp(ses.dh_K, out, CURVE25519_LEN);
|
|
m_burn(out, sizeof(out));
|
|
|
|
/* Create the remainder of the hash buffer, to generate the exchange hash.
|
|
See RFC5656 section 4 page 7 */
|
|
if (IS_DROPBEAR_CLIENT) {
|
|
Q_C = param->pub;
|
|
Q_S = buf_pub_them->data;
|
|
} else {
|
|
Q_S = param->pub;
|
|
Q_C = buf_pub_them->data;
|
|
}
|
|
|
|
/* K_S, the host key */
|
|
buf_put_pub_key(ses.kexhashbuf, hostkey, ses.newkeys->algo_hostkey);
|
|
/* Q_C, client's ephemeral public key octet string */
|
|
buf_putstring(ses.kexhashbuf, (const char*)Q_C, CURVE25519_LEN);
|
|
/* Q_S, server's ephemeral public key octet string */
|
|
buf_putstring(ses.kexhashbuf, (const char*)Q_S, CURVE25519_LEN);
|
|
/* K, the shared secret */
|
|
buf_putmpint(ses.kexhashbuf, ses.dh_K);
|
|
|
|
/* calculate the hash H to sign */
|
|
finish_kexhashbuf();
|
|
}
|
|
#endif /* DROPBEAR_CURVE25519 */
|
|
|
|
|
|
void finish_kexhashbuf(void) {
|
|
hash_state hs;
|
|
const struct ltc_hash_descriptor *hash_desc = ses.newkeys->algo_kex->hash_desc;
|
|
|
|
hash_desc->init(&hs);
|
|
buf_setpos(ses.kexhashbuf, 0);
|
|
hash_desc->process(&hs, buf_getptr(ses.kexhashbuf, ses.kexhashbuf->len),
|
|
ses.kexhashbuf->len);
|
|
ses.hash = buf_new(hash_desc->hashsize);
|
|
hash_desc->done(&hs, buf_getwriteptr(ses.hash, hash_desc->hashsize));
|
|
buf_setlen(ses.hash, hash_desc->hashsize);
|
|
|
|
#if defined(DEBUG_KEXHASH) && DEBUG_TRACE
|
|
if (!debug_trace) {
|
|
printhex("kexhashbuf", ses.kexhashbuf->data, ses.kexhashbuf->len);
|
|
printhex("kexhash", ses.hash->data, ses.hash->len);
|
|
}
|
|
#endif
|
|
|
|
buf_burn(ses.kexhashbuf);
|
|
buf_free(ses.kexhashbuf);
|
|
m_burn(&hs, sizeof(hash_state));
|
|
ses.kexhashbuf = NULL;
|
|
|
|
/* first time around, we set the session_id to H */
|
|
if (ses.session_id == NULL) {
|
|
/* create the session_id, this never needs freeing */
|
|
ses.session_id = buf_newcopy(ses.hash);
|
|
}
|
|
}
|
|
|
|
/* read the other side's algo list. buf_match_algo is a callback to match
|
|
* algos for the client or server. */
|
|
static void read_kex_algos() {
|
|
|
|
/* for asymmetry */
|
|
algo_type * c2s_hash_algo = NULL;
|
|
algo_type * s2c_hash_algo = NULL;
|
|
algo_type * c2s_cipher_algo = NULL;
|
|
algo_type * s2c_cipher_algo = NULL;
|
|
algo_type * c2s_comp_algo = NULL;
|
|
algo_type * s2c_comp_algo = NULL;
|
|
/* the generic one */
|
|
algo_type * algo = NULL;
|
|
|
|
/* which algo couldn't match */
|
|
char * erralgo = NULL;
|
|
|
|
int goodguess = 0;
|
|
int allgood = 1; /* we AND this with each goodguess and see if its still
|
|
true after */
|
|
|
|
#if DROPBEAR_KEXGUESS2
|
|
enum kexguess2_used kexguess2 = KEXGUESS2_LOOK;
|
|
#else
|
|
enum kexguess2_used kexguess2 = KEXGUESS2_NO;
|
|
#endif
|
|
|
|
buf_incrpos(ses.payload, 16); /* start after the cookie */
|
|
|
|
memset(ses.newkeys, 0x0, sizeof(*ses.newkeys));
|
|
|
|
/* kex_algorithms */
|
|
algo = buf_match_algo(ses.payload, sshkex, &kexguess2, &goodguess);
|
|
allgood &= goodguess;
|
|
if (algo == NULL || algo->val == KEXGUESS2_ALGO_ID) {
|
|
erralgo = "kex";
|
|
goto error;
|
|
}
|
|
TRACE(("kexguess2 %d", kexguess2))
|
|
TRACE(("kex algo %s", algo->name))
|
|
ses.newkeys->algo_kex = algo->data;
|
|
|
|
/* server_host_key_algorithms */
|
|
algo = buf_match_algo(ses.payload, sshhostkey, &kexguess2, &goodguess);
|
|
allgood &= goodguess;
|
|
if (algo == NULL) {
|
|
erralgo = "hostkey";
|
|
goto error;
|
|
}
|
|
TRACE(("hostkey algo %s", algo->name))
|
|
ses.newkeys->algo_hostkey = algo->val;
|
|
|
|
/* encryption_algorithms_client_to_server */
|
|
c2s_cipher_algo = buf_match_algo(ses.payload, sshciphers, NULL, NULL);
|
|
if (c2s_cipher_algo == NULL) {
|
|
erralgo = "enc c->s";
|
|
goto error;
|
|
}
|
|
TRACE(("enc c2s is %s", c2s_cipher_algo->name))
|
|
|
|
/* encryption_algorithms_server_to_client */
|
|
s2c_cipher_algo = buf_match_algo(ses.payload, sshciphers, NULL, NULL);
|
|
if (s2c_cipher_algo == NULL) {
|
|
erralgo = "enc s->c";
|
|
goto error;
|
|
}
|
|
TRACE(("enc s2c is %s", s2c_cipher_algo->name))
|
|
|
|
/* mac_algorithms_client_to_server */
|
|
c2s_hash_algo = buf_match_algo(ses.payload, sshhashes, NULL, NULL);
|
|
if (c2s_hash_algo == NULL) {
|
|
erralgo = "mac c->s";
|
|
goto error;
|
|
}
|
|
TRACE(("hash c2s is %s", c2s_hash_algo->name))
|
|
|
|
/* mac_algorithms_server_to_client */
|
|
s2c_hash_algo = buf_match_algo(ses.payload, sshhashes, NULL, NULL);
|
|
if (s2c_hash_algo == NULL) {
|
|
erralgo = "mac s->c";
|
|
goto error;
|
|
}
|
|
TRACE(("hash s2c is %s", s2c_hash_algo->name))
|
|
|
|
/* compression_algorithms_client_to_server */
|
|
c2s_comp_algo = buf_match_algo(ses.payload, ses.compress_algos, NULL, NULL);
|
|
if (c2s_comp_algo == NULL) {
|
|
erralgo = "comp c->s";
|
|
goto error;
|
|
}
|
|
TRACE(("hash c2s is %s", c2s_comp_algo->name))
|
|
|
|
/* compression_algorithms_server_to_client */
|
|
s2c_comp_algo = buf_match_algo(ses.payload, ses.compress_algos, NULL, NULL);
|
|
if (s2c_comp_algo == NULL) {
|
|
erralgo = "comp s->c";
|
|
goto error;
|
|
}
|
|
TRACE(("hash s2c is %s", s2c_comp_algo->name))
|
|
|
|
/* languages_client_to_server */
|
|
buf_eatstring(ses.payload);
|
|
|
|
/* languages_server_to_client */
|
|
buf_eatstring(ses.payload);
|
|
|
|
/* their first_kex_packet_follows */
|
|
if (buf_getbool(ses.payload)) {
|
|
TRACE(("them kex firstfollows. allgood %d", allgood))
|
|
ses.kexstate.them_firstfollows = 1;
|
|
/* if the guess wasn't good, we ignore the packet sent */
|
|
if (!allgood) {
|
|
ses.ignorenext = 1;
|
|
}
|
|
}
|
|
|
|
/* Handle the asymmetry */
|
|
if (IS_DROPBEAR_CLIENT) {
|
|
ses.newkeys->recv.algo_crypt =
|
|
(struct dropbear_cipher*)s2c_cipher_algo->data;
|
|
ses.newkeys->trans.algo_crypt =
|
|
(struct dropbear_cipher*)c2s_cipher_algo->data;
|
|
ses.newkeys->recv.crypt_mode =
|
|
(struct dropbear_cipher_mode*)s2c_cipher_algo->mode;
|
|
ses.newkeys->trans.crypt_mode =
|
|
(struct dropbear_cipher_mode*)c2s_cipher_algo->mode;
|
|
ses.newkeys->recv.algo_mac =
|
|
(struct dropbear_hash*)s2c_hash_algo->data;
|
|
ses.newkeys->trans.algo_mac =
|
|
(struct dropbear_hash*)c2s_hash_algo->data;
|
|
ses.newkeys->recv.algo_comp = s2c_comp_algo->val;
|
|
ses.newkeys->trans.algo_comp = c2s_comp_algo->val;
|
|
} else {
|
|
/* SERVER */
|
|
ses.newkeys->recv.algo_crypt =
|
|
(struct dropbear_cipher*)c2s_cipher_algo->data;
|
|
ses.newkeys->trans.algo_crypt =
|
|
(struct dropbear_cipher*)s2c_cipher_algo->data;
|
|
ses.newkeys->recv.crypt_mode =
|
|
(struct dropbear_cipher_mode*)c2s_cipher_algo->mode;
|
|
ses.newkeys->trans.crypt_mode =
|
|
(struct dropbear_cipher_mode*)s2c_cipher_algo->mode;
|
|
ses.newkeys->recv.algo_mac =
|
|
(struct dropbear_hash*)c2s_hash_algo->data;
|
|
ses.newkeys->trans.algo_mac =
|
|
(struct dropbear_hash*)s2c_hash_algo->data;
|
|
ses.newkeys->recv.algo_comp = c2s_comp_algo->val;
|
|
ses.newkeys->trans.algo_comp = s2c_comp_algo->val;
|
|
}
|
|
|
|
#if DROPBEAR_FUZZ
|
|
if (fuzz.fuzzing) {
|
|
fuzz_kex_fakealgos();
|
|
}
|
|
#endif
|
|
|
|
/* reserved for future extensions */
|
|
buf_getint(ses.payload);
|
|
|
|
if (ses.send_kex_first_guess && allgood) {
|
|
TRACE(("our_first_follows_matches 1"))
|
|
ses.kexstate.our_first_follows_matches = 1;
|
|
}
|
|
return;
|
|
|
|
error:
|
|
dropbear_exit("No matching algo %s", erralgo);
|
|
}
|