1
0
mirror of http://galexander.org/git/simplesshd.git synced 2024-12-03 12:48:21 +00:00
simplesshd/dropbear/libtomcrypt/src/hashes/sha3.c
2019-06-09 16:44:26 -04:00

307 lines
9.4 KiB
C

/* LibTomCrypt, modular cryptographic library -- Tom St Denis
*
* LibTomCrypt is a library that provides various cryptographic
* algorithms in a highly modular and flexible manner.
*
* The library is free for all purposes without any express
* guarantee it works.
*/
/* based on https://github.com/brainhub/SHA3IUF (public domain) */
#include "tomcrypt.h"
#ifdef LTC_SHA3
const struct ltc_hash_descriptor sha3_224_desc =
{
"sha3-224", /* name of hash */
17, /* internal ID */
28, /* Size of digest in octets */
144, /* Input block size in octets */
{ 2,16,840,1,101,3,4,2,7 }, /* ASN.1 OID */
9, /* Length OID */
&sha3_224_init,
&sha3_process,
&sha3_done,
&sha3_224_test,
NULL
};
const struct ltc_hash_descriptor sha3_256_desc =
{
"sha3-256", /* name of hash */
18, /* internal ID */
32, /* Size of digest in octets */
136, /* Input block size in octets */
{ 2,16,840,1,101,3,4,2,8 }, /* ASN.1 OID */
9, /* Length OID */
&sha3_256_init,
&sha3_process,
&sha3_done,
&sha3_256_test,
NULL
};
const struct ltc_hash_descriptor sha3_384_desc =
{
"sha3-384", /* name of hash */
19, /* internal ID */
48, /* Size of digest in octets */
104, /* Input block size in octets */
{ 2,16,840,1,101,3,4,2,9 }, /* ASN.1 OID */
9, /* Length OID */
&sha3_384_init,
&sha3_process,
&sha3_done,
&sha3_384_test,
NULL
};
const struct ltc_hash_descriptor sha3_512_desc =
{
"sha3-512", /* name of hash */
20, /* internal ID */
64, /* Size of digest in octets */
72, /* Input block size in octets */
{ 2,16,840,1,101,3,4,2,10 }, /* ASN.1 OID */
9, /* Length OID */
&sha3_512_init,
&sha3_process,
&sha3_done,
&sha3_512_test,
NULL
};
#define SHA3_KECCAK_SPONGE_WORDS 25 /* 1600 bits > 200 bytes > 25 x ulong64 */
#define SHA3_KECCAK_ROUNDS 24
static const ulong64 keccakf_rndc[24] = {
CONST64(0x0000000000000001), CONST64(0x0000000000008082),
CONST64(0x800000000000808a), CONST64(0x8000000080008000),
CONST64(0x000000000000808b), CONST64(0x0000000080000001),
CONST64(0x8000000080008081), CONST64(0x8000000000008009),
CONST64(0x000000000000008a), CONST64(0x0000000000000088),
CONST64(0x0000000080008009), CONST64(0x000000008000000a),
CONST64(0x000000008000808b), CONST64(0x800000000000008b),
CONST64(0x8000000000008089), CONST64(0x8000000000008003),
CONST64(0x8000000000008002), CONST64(0x8000000000000080),
CONST64(0x000000000000800a), CONST64(0x800000008000000a),
CONST64(0x8000000080008081), CONST64(0x8000000000008080),
CONST64(0x0000000080000001), CONST64(0x8000000080008008)
};
static const unsigned keccakf_rotc[24] = {
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14, 27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
static const unsigned keccakf_piln[24] = {
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4, 15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
static void keccakf(ulong64 s[25])
{
int i, j, round;
ulong64 t, bc[5];
for(round = 0; round < SHA3_KECCAK_ROUNDS; round++) {
/* Theta */
for(i = 0; i < 5; i++)
bc[i] = s[i] ^ s[i + 5] ^ s[i + 10] ^ s[i + 15] ^ s[i + 20];
for(i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ ROL64(bc[(i + 1) % 5], 1);
for(j = 0; j < 25; j += 5)
s[j + i] ^= t;
}
/* Rho Pi */
t = s[1];
for(i = 0; i < 24; i++) {
j = keccakf_piln[i];
bc[0] = s[j];
s[j] = ROL64(t, keccakf_rotc[i]);
t = bc[0];
}
/* Chi */
for(j = 0; j < 25; j += 5) {
for(i = 0; i < 5; i++)
bc[i] = s[j + i];
for(i = 0; i < 5; i++)
s[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
/* Iota */
s[0] ^= keccakf_rndc[round];
}
}
/* Public Inteface */
int sha3_224_init(hash_state *md)
{
LTC_ARGCHK(md != NULL);
XMEMSET(&md->sha3, 0, sizeof(md->sha3));
md->sha3.capacity_words = 2 * 224 / (8 * sizeof(ulong64));
return CRYPT_OK;
}
int sha3_256_init(hash_state *md)
{
LTC_ARGCHK(md != NULL);
XMEMSET(&md->sha3, 0, sizeof(md->sha3));
md->sha3.capacity_words = 2 * 256 / (8 * sizeof(ulong64));
return CRYPT_OK;
}
int sha3_384_init(hash_state *md)
{
LTC_ARGCHK(md != NULL);
XMEMSET(&md->sha3, 0, sizeof(md->sha3));
md->sha3.capacity_words = 2 * 384 / (8 * sizeof(ulong64));
return CRYPT_OK;
}
int sha3_512_init(hash_state *md)
{
LTC_ARGCHK(md != NULL);
XMEMSET(&md->sha3, 0, sizeof(md->sha3));
md->sha3.capacity_words = 2 * 512 / (8 * sizeof(ulong64));
return CRYPT_OK;
}
int sha3_shake_init(hash_state *md, int num)
{
LTC_ARGCHK(md != NULL);
if (num != 128 && num != 256) return CRYPT_INVALID_ARG;
XMEMSET(&md->sha3, 0, sizeof(md->sha3));
md->sha3.capacity_words = (unsigned short)(2 * num / (8 * sizeof(ulong64)));
return CRYPT_OK;
}
int sha3_process(hash_state *md, const unsigned char *in, unsigned long inlen)
{
/* 0...7 -- how much is needed to have a word */
unsigned old_tail = (8 - md->sha3.byte_index) & 7;
unsigned long words;
unsigned tail;
unsigned long i;
if (inlen == 0) return CRYPT_OK; /* nothing to do */
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(in != NULL);
if(inlen < old_tail) { /* have no complete word or haven't started the word yet */
while (inlen--) md->sha3.saved |= (ulong64) (*(in++)) << ((md->sha3.byte_index++) * 8);
return CRYPT_OK;
}
if(old_tail) { /* will have one word to process */
inlen -= old_tail;
while (old_tail--) md->sha3.saved |= (ulong64) (*(in++)) << ((md->sha3.byte_index++) * 8);
/* now ready to add saved to the sponge */
md->sha3.s[md->sha3.word_index] ^= md->sha3.saved;
md->sha3.byte_index = 0;
md->sha3.saved = 0;
if(++md->sha3.word_index == (SHA3_KECCAK_SPONGE_WORDS - md->sha3.capacity_words)) {
keccakf(md->sha3.s);
md->sha3.word_index = 0;
}
}
/* now work in full words directly from input */
words = inlen / sizeof(ulong64);
tail = inlen - words * sizeof(ulong64);
for(i = 0; i < words; i++, in += sizeof(ulong64)) {
ulong64 t;
LOAD64L(t, in);
md->sha3.s[md->sha3.word_index] ^= t;
if(++md->sha3.word_index == (SHA3_KECCAK_SPONGE_WORDS - md->sha3.capacity_words)) {
keccakf(md->sha3.s);
md->sha3.word_index = 0;
}
}
/* finally, save the partial word */
while (tail--) {
md->sha3.saved |= (ulong64) (*(in++)) << ((md->sha3.byte_index++) * 8);
}
return CRYPT_OK;
}
int sha3_done(hash_state *md, unsigned char *hash)
{
unsigned i;
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(hash != NULL);
md->sha3.s[md->sha3.word_index] ^= (md->sha3.saved ^ (CONST64(0x06) << (md->sha3.byte_index * 8)));
md->sha3.s[SHA3_KECCAK_SPONGE_WORDS - md->sha3.capacity_words - 1] ^= CONST64(0x8000000000000000);
keccakf(md->sha3.s);
/* store sha3.s[] as little-endian bytes into sha3.sb */
for(i = 0; i < SHA3_KECCAK_SPONGE_WORDS; i++) {
STORE64L(md->sha3.s[i], md->sha3.sb + i * 8);
}
XMEMCPY(hash, md->sha3.sb, md->sha3.capacity_words * 4);
return CRYPT_OK;
}
int sha3_shake_done(hash_state *md, unsigned char *out, unsigned long outlen)
{
/* IMPORTANT NOTE: sha3_shake_done can be called many times */
unsigned long idx;
unsigned i;
if (outlen == 0) return CRYPT_OK; /* nothing to do */
LTC_ARGCHK(md != NULL);
LTC_ARGCHK(out != NULL);
if (!md->sha3.xof_flag) {
/* shake_xof operation must be done only once */
md->sha3.s[md->sha3.word_index] ^= (md->sha3.saved ^ (CONST64(0x1F) << (md->sha3.byte_index * 8)));
md->sha3.s[SHA3_KECCAK_SPONGE_WORDS - md->sha3.capacity_words - 1] ^= CONST64(0x8000000000000000);
keccakf(md->sha3.s);
/* store sha3.s[] as little-endian bytes into sha3.sb */
for(i = 0; i < SHA3_KECCAK_SPONGE_WORDS; i++) {
STORE64L(md->sha3.s[i], md->sha3.sb + i * 8);
}
md->sha3.byte_index = 0;
md->sha3.xof_flag = 1;
}
for (idx = 0; idx < outlen; idx++) {
if(md->sha3.byte_index >= (SHA3_KECCAK_SPONGE_WORDS - md->sha3.capacity_words) * 8) {
keccakf(md->sha3.s);
/* store sha3.s[] as little-endian bytes into sha3.sb */
for(i = 0; i < SHA3_KECCAK_SPONGE_WORDS; i++) {
STORE64L(md->sha3.s[i], md->sha3.sb + i * 8);
}
md->sha3.byte_index = 0;
}
out[idx] = md->sha3.sb[md->sha3.byte_index++];
}
return CRYPT_OK;
}
int sha3_shake_memory(int num, const unsigned char *in, unsigned long inlen, unsigned char *out, unsigned long *outlen)
{
hash_state md;
int err;
LTC_ARGCHK(in != NULL);
LTC_ARGCHK(out != NULL);
LTC_ARGCHK(outlen != NULL);
if ((err = sha3_shake_init(&md, num)) != CRYPT_OK) return err;
if ((err = sha3_shake_process(&md, in, inlen)) != CRYPT_OK) return err;
if ((err = sha3_shake_done(&md, out, *outlen)) != CRYPT_OK) return err;
return CRYPT_OK;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */