1
0
mirror of http://galexander.org/git/simplesshd.git synced 2024-11-30 19:28:10 +00:00
simplesshd/dropbear/libtomcrypt/testprof/x86_prof.c
2019-06-09 16:44:26 -04:00

1440 lines
38 KiB
C

#include <tomcrypt_test.h>
prng_state yarrow_prng;
struct list results[100];
int no_results;
int sorter(const void *a, const void *b)
{
const struct list *A, *B;
A = a;
B = b;
if (A->avg < B->avg) return -1;
if (A->avg > B->avg) return 1;
return 0;
}
void tally_results(int type)
{
int x;
/* qsort the results */
qsort(results, no_results, sizeof(struct list), &sorter);
fprintf(stderr, "\n");
if (type == 0) {
for (x = 0; x < no_results; x++) {
fprintf(stderr, "%-20s: Schedule at %6lu\n", cipher_descriptor[results[x].id].name, (unsigned long)results[x].spd1);
}
} else if (type == 1) {
for (x = 0; x < no_results; x++) {
printf
("%-20s[%3d]: Encrypt at %5lu, Decrypt at %5lu\n", cipher_descriptor[results[x].id].name, cipher_descriptor[results[x].id].ID, results[x].spd1, results[x].spd2);
}
} else {
for (x = 0; x < no_results; x++) {
printf
("%-20s: Process at %5lu\n", hash_descriptor[results[x].id].name, results[x].spd1 / 1000);
}
}
}
/* RDTSC from Scott Duplichan */
ulong64 rdtsc (void)
{
#if defined __GNUC__ && !defined(LTC_NO_ASM)
#ifdef INTEL_CC
ulong64 a;
asm ( " rdtsc ":"=A"(a));
return a;
#elif defined(__i386__) || defined(__x86_64__)
ulong64 a;
asm __volatile__ ("rdtsc\nmovl %%eax,(%0)\nmovl %%edx,4(%0)\n"::"r"(&a):"%eax","%edx");
return a;
#elif defined(LTC_PPC32) || defined(TFM_PPC32)
unsigned long a, b;
__asm__ __volatile__ ("mftbu %1 \nmftb %0\n":"=r"(a), "=r"(b));
return (((ulong64)b) << 32ULL) | ((ulong64)a);
#elif defined(__ia64__) /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
while (__builtin_expect ((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
return result;
#elif defined(__sparc__)
#if defined(__arch64__)
ulong64 a;
asm volatile("rd %%tick,%0" : "=r" (a));
return a;
#else
register unsigned long x, y;
__asm__ __volatile__ ("rd %%tick, %0; clruw %0, %1; srlx %0, 32, %0" : "=r" (x), "=r" (y) : "0" (x), "1" (y));
return ((unsigned long long) x << 32) | y;
#endif
#else
return XCLOCK();
#endif
/* Microsoft and Intel Windows compilers */
#elif defined _M_IX86 && !defined(LTC_NO_ASM)
__asm rdtsc
#elif defined _M_AMD64 && !defined(LTC_NO_ASM)
return __rdtsc ();
#elif defined _M_IA64 && !defined(LTC_NO_ASM)
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg (3116);
#else
return XCLOCK();
#endif
}
static ulong64 timer, skew = 0;
void t_start(void)
{
timer = rdtsc();
}
ulong64 t_read(void)
{
return rdtsc() - timer;
}
void init_timer(void)
{
ulong64 c1, c2, t1, t2, t3;
unsigned long y1;
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < TIMES*100; y1++) {
t_start();
t1 = t_read();
t3 = t_read();
t2 = (t_read() - t1)>>1;
c1 = (t1 > c1) ? t1 : c1;
c2 = (t2 > c2) ? t2 : c2;
}
skew = c2 - c1;
fprintf(stderr, "Clock Skew: %lu\n", (unsigned long)skew);
}
void reg_algs(void)
{
int err;
#ifdef LTC_RIJNDAEL
register_cipher (&aes_desc);
#endif
#ifdef LTC_BLOWFISH
register_cipher (&blowfish_desc);
#endif
#ifdef LTC_XTEA
register_cipher (&xtea_desc);
#endif
#ifdef LTC_RC5
register_cipher (&rc5_desc);
#endif
#ifdef LTC_RC6
register_cipher (&rc6_desc);
#endif
#ifdef LTC_SAFERP
register_cipher (&saferp_desc);
#endif
#ifdef LTC_TWOFISH
register_cipher (&twofish_desc);
#endif
#ifdef LTC_SAFER
register_cipher (&safer_k64_desc);
register_cipher (&safer_sk64_desc);
register_cipher (&safer_k128_desc);
register_cipher (&safer_sk128_desc);
#endif
#ifdef LTC_RC2
register_cipher (&rc2_desc);
#endif
#ifdef LTC_DES
register_cipher (&des_desc);
register_cipher (&des3_desc);
#endif
#ifdef LTC_CAST5
register_cipher (&cast5_desc);
#endif
#ifdef LTC_NOEKEON
register_cipher (&noekeon_desc);
#endif
#ifdef LTC_SKIPJACK
register_cipher (&skipjack_desc);
#endif
#ifdef LTC_KHAZAD
register_cipher (&khazad_desc);
#endif
#ifdef LTC_ANUBIS
register_cipher (&anubis_desc);
#endif
#ifdef LTC_KSEED
register_cipher (&kseed_desc);
#endif
#ifdef LTC_KASUMI
register_cipher (&kasumi_desc);
#endif
#ifdef LTC_MULTI2
register_cipher (&multi2_desc);
#endif
#ifdef LTC_TIGER
register_hash (&tiger_desc);
#endif
#ifdef LTC_MD2
register_hash (&md2_desc);
#endif
#ifdef LTC_MD4
register_hash (&md4_desc);
#endif
#ifdef LTC_MD5
register_hash (&md5_desc);
#endif
#ifdef LTC_SHA1
register_hash (&sha1_desc);
#endif
#ifdef LTC_SHA224
register_hash (&sha224_desc);
#endif
#ifdef LTC_SHA256
register_hash (&sha256_desc);
#endif
#ifdef LTC_SHA384
register_hash (&sha384_desc);
#endif
#ifdef LTC_SHA512
register_hash (&sha512_desc);
#endif
#ifdef LTC_RIPEMD128
register_hash (&rmd128_desc);
#endif
#ifdef LTC_RIPEMD160
register_hash (&rmd160_desc);
#endif
#ifdef LTC_RIPEMD256
register_hash (&rmd256_desc);
#endif
#ifdef LTC_RIPEMD320
register_hash (&rmd320_desc);
#endif
#ifdef LTC_WHIRLPOOL
register_hash (&whirlpool_desc);
#endif
#ifdef LTC_CHC_HASH
register_hash(&chc_desc);
if ((err = chc_register(register_cipher(&aes_desc))) != CRYPT_OK) {
fprintf(stderr, "chc_register error: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
#endif
#ifndef LTC_YARROW
#error This demo requires Yarrow.
#endif
register_prng(&yarrow_desc);
#ifdef LTC_FORTUNA
register_prng(&fortuna_desc);
#endif
#ifdef LTC_RC4
register_prng(&rc4_desc);
#endif
#ifdef LTC_SOBER128
register_prng(&sober128_desc);
#endif
if ((err = rng_make_prng(128, find_prng("yarrow"), &yarrow_prng, NULL)) != CRYPT_OK) {
fprintf(stderr, "rng_make_prng failed: %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
}
int time_keysched(void)
{
unsigned long x, y1;
ulong64 t1, c1;
symmetric_key skey;
int kl;
int (*func) (const unsigned char *, int , int , symmetric_key *);
unsigned char key[MAXBLOCKSIZE];
fprintf(stderr, "\n\nKey Schedule Time Trials for the Symmetric Ciphers:\n(Times are cycles per key)\n");
no_results = 0;
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
#define DO1(k) func(k, kl, 0, &skey);
func = cipher_descriptor[x].setup;
kl = cipher_descriptor[x].min_key_length;
c1 = (ulong64)-1;
for (y1 = 0; y1 < KTIMES; y1++) {
yarrow_read(key, kl, &yarrow_prng);
t_start();
DO1(key);
t1 = t_read();
c1 = (t1 > c1) ? c1 : t1;
}
t1 = c1 - skew;
results[no_results].spd1 = results[no_results].avg = t1;
results[no_results++].id = x;
fprintf(stderr, "."); fflush(stdout);
#undef DO1
}
tally_results(0);
return 0;
}
int time_cipher(void)
{
unsigned long x, y1;
ulong64 t1, t2, c1, c2, a1, a2;
symmetric_ECB ecb;
unsigned char key[MAXBLOCKSIZE], pt[4096];
int err;
fprintf(stderr, "\n\nECB Time Trials for the Symmetric Ciphers:\n");
no_results = 0;
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
ecb_start(x, key, cipher_descriptor[x].min_key_length, 0, &ecb);
/* sanity check on cipher */
if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
#define DO1 ecb_encrypt(pt, pt, sizeof(pt), &ecb);
#define DO2 DO1 DO1
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < 100; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a1 = c2 - c1 - skew;
#undef DO1
#undef DO2
#define DO1 ecb_decrypt(pt, pt, sizeof(pt), &ecb);
#define DO2 DO1 DO1
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < 100; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a2 = c2 - c1 - skew;
ecb_done(&ecb);
results[no_results].id = x;
results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
++no_results;
fprintf(stderr, "."); fflush(stdout);
#undef DO2
#undef DO1
}
tally_results(1);
return 0;
}
#ifdef LTC_CBC_MODE
int time_cipher2(void)
{
unsigned long x, y1;
ulong64 t1, t2, c1, c2, a1, a2;
symmetric_CBC cbc;
unsigned char key[MAXBLOCKSIZE], pt[4096];
int err;
fprintf(stderr, "\n\nCBC Time Trials for the Symmetric Ciphers:\n");
no_results = 0;
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
cbc_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, &cbc);
/* sanity check on cipher */
if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
#define DO1 cbc_encrypt(pt, pt, sizeof(pt), &cbc);
#define DO2 DO1 DO1
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < 100; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a1 = c2 - c1 - skew;
#undef DO1
#undef DO2
#define DO1 cbc_decrypt(pt, pt, sizeof(pt), &cbc);
#define DO2 DO1 DO1
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < 100; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a2 = c2 - c1 - skew;
cbc_done(&cbc);
results[no_results].id = x;
results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
++no_results;
fprintf(stderr, "."); fflush(stdout);
#undef DO2
#undef DO1
}
tally_results(1);
return 0;
}
#else
int time_cipher2(void) { fprintf(stderr, "NO CBC\n"); return 0; }
#endif
#ifdef LTC_CTR_MODE
int time_cipher3(void)
{
unsigned long x, y1;
ulong64 t1, t2, c1, c2, a1, a2;
symmetric_CTR ctr;
unsigned char key[MAXBLOCKSIZE], pt[4096];
int err;
fprintf(stderr, "\n\nCTR Time Trials for the Symmetric Ciphers:\n");
no_results = 0;
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
ctr_start(x, pt, key, cipher_descriptor[x].min_key_length, 0, CTR_COUNTER_LITTLE_ENDIAN, &ctr);
/* sanity check on cipher */
if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
#define DO1 ctr_encrypt(pt, pt, sizeof(pt), &ctr);
#define DO2 DO1 DO1
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < 100; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a1 = c2 - c1 - skew;
#undef DO1
#undef DO2
#define DO1 ctr_decrypt(pt, pt, sizeof(pt), &ctr);
#define DO2 DO1 DO1
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < 100; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a2 = c2 - c1 - skew;
ctr_done(&ctr);
results[no_results].id = x;
results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
++no_results;
fprintf(stderr, "."); fflush(stdout);
#undef DO2
#undef DO1
}
tally_results(1);
return 0;
}
#else
int time_cipher3(void) { fprintf(stderr, "NO CTR\n"); return 0; }
#endif
#ifdef LTC_LRW_MODE
int time_cipher4(void)
{
unsigned long x, y1;
ulong64 t1, t2, c1, c2, a1, a2;
symmetric_LRW lrw;
unsigned char key[MAXBLOCKSIZE], pt[4096];
int err;
fprintf(stderr, "\n\nLRW Time Trials for the Symmetric Ciphers:\n");
no_results = 0;
for (x = 0; cipher_descriptor[x].name != NULL; x++) {
if (cipher_descriptor[x].block_length != 16) continue;
lrw_start(x, pt, key, cipher_descriptor[x].min_key_length, key, 0, &lrw);
/* sanity check on cipher */
if ((err = cipher_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: Cipher %s failed self-test %s\n", cipher_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
#define DO1 lrw_encrypt(pt, pt, sizeof(pt), &lrw);
#define DO2 DO1 DO1
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < 100; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a1 = c2 - c1 - skew;
#undef DO1
#undef DO2
#define DO1 lrw_decrypt(pt, pt, sizeof(pt), &lrw);
#define DO2 DO1 DO1
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < 100; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read();
t2 -= t1;
c1 = (t1 > c1 ? c1 : t1);
c2 = (t2 > c2 ? c2 : t2);
}
a2 = c2 - c1 - skew;
lrw_done(&lrw);
results[no_results].id = x;
results[no_results].spd1 = a1/(sizeof(pt)/cipher_descriptor[x].block_length);
results[no_results].spd2 = a2/(sizeof(pt)/cipher_descriptor[x].block_length);
results[no_results].avg = (results[no_results].spd1 + results[no_results].spd2+1)/2;
++no_results;
fprintf(stderr, "."); fflush(stdout);
#undef DO2
#undef DO1
}
tally_results(1);
return 0;
}
#else
int time_cipher4(void) { fprintf(stderr, "NO LRW\n"); return 0; }
#endif
int time_hash(void)
{
unsigned long x, y1, len;
ulong64 t1, t2, c1, c2;
hash_state md;
int (*func)(hash_state *, const unsigned char *, unsigned long), err;
unsigned char pt[MAXBLOCKSIZE];
fprintf(stderr, "\n\nHASH Time Trials for:\n");
no_results = 0;
for (x = 0; hash_descriptor[x].name != NULL; x++) {
/* sanity check on hash */
if ((err = hash_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: Hash %s failed self-test %s\n", hash_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
hash_descriptor[x].init(&md);
#define DO1 func(&md,pt,len);
#define DO2 DO1 DO1
func = hash_descriptor[x].process;
len = hash_descriptor[x].blocksize;
c1 = c2 = (ulong64)-1;
for (y1 = 0; y1 < TIMES; y1++) {
t_start();
DO1;
t1 = t_read();
DO2;
t2 = t_read() - t1;
c1 = (t1 > c1) ? c1 : t1;
c2 = (t2 > c2) ? c2 : t2;
}
t1 = c2 - c1 - skew;
t1 = ((t1 * CONST64(1000))) / ((ulong64)hash_descriptor[x].blocksize);
results[no_results].id = x;
results[no_results].spd1 = results[no_results].avg = t1;
++no_results;
fprintf(stderr, "."); fflush(stdout);
#undef DO2
#undef DO1
}
tally_results(2);
return 0;
}
#undef MPI
/*#warning you need an mp_rand!!!*/
#ifdef MPI
void time_mult(void)
{
ulong64 t1, t2;
unsigned long x, y;
void *a, *b, *c;
fprintf(stderr, "Timing Multiplying:\n");
mp_init_multi(&a,&b,&c,NULL);
for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) {
mp_rand(&a, x);
mp_rand(&b, x);
#define DO1 mp_mul(&a, &b, &c);
#define DO2 DO1; DO1;
t2 = -1;
for (y = 0; y < TIMES; y++) {
t_start();
t1 = t_read();
DO2;
t1 = (t_read() - t1)>>1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2);
}
mp_clear_multi(&a,&b,&c,NULL);
#undef DO1
#undef DO2
}
void time_sqr(void)
{
ulong64 t1, t2;
unsigned long x, y;
mp_int a, b;
fprintf(stderr, "Timing Squaring:\n");
mp_init_multi(&a,&b,NULL);
for (x = 128/DIGIT_BIT; x <= 1536/DIGIT_BIT; x += 128/DIGIT_BIT) {
mp_rand(&a, x);
#define DO1 mp_sqr(&a, &b);
#define DO2 DO1; DO1;
t2 = -1;
for (y = 0; y < TIMES; y++) {
t_start();
t1 = t_read();
DO2;
t1 = (t_read() - t1)>>1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "%4lu bits: %9llu cycles\n", x*DIGIT_BIT, t2);
}
mp_clear_multi(&a,&b,NULL);
#undef DO1
#undef DO2
}
#else
void time_mult(void) { fprintf(stderr, "NO MULT\n"); }
void time_sqr(void) { fprintf(stderr, "NO SQR\n"); }
#endif
void time_prng(void)
{
ulong64 t1, t2;
unsigned char buf[4096];
prng_state tprng;
unsigned long x, y;
int err;
fprintf(stderr, "Timing PRNGs (cycles/byte output, cycles add_entropy (32 bytes) :\n");
for (x = 0; prng_descriptor[x].name != NULL; x++) {
/* sanity check on prng */
if ((err = prng_descriptor[x].test()) != CRYPT_OK) {
fprintf(stderr, "\n\nERROR: PRNG %s failed self-test %s\n", prng_descriptor[x].name, error_to_string(err));
exit(EXIT_FAILURE);
}
prng_descriptor[x].start(&tprng);
zeromem(buf, 256);
prng_descriptor[x].add_entropy(buf, 256, &tprng);
prng_descriptor[x].ready(&tprng);
t2 = -1;
#define DO1 if (prng_descriptor[x].read(buf, 4096, &tprng) != 4096) { fprintf(stderr, "\n\nERROR READ != 4096\n\n"); exit(EXIT_FAILURE); }
#define DO2 DO1 DO1
for (y = 0; y < 10000; y++) {
t_start();
t1 = t_read();
DO2;
t1 = (t_read() - t1)>>1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "%20s: %5llu ", prng_descriptor[x].name, t2>>12);
#undef DO2
#undef DO1
#define DO1 prng_descriptor[x].start(&tprng); prng_descriptor[x].add_entropy(buf, 32, &tprng); prng_descriptor[x].ready(&tprng); prng_descriptor[x].done(&tprng);
#define DO2 DO1 DO1
for (y = 0; y < 10000; y++) {
t_start();
t1 = t_read();
DO2;
t1 = (t_read() - t1)>>1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "%5llu\n", t2);
#undef DO2
#undef DO1
}
}
#ifdef LTC_MDSA
/* time various DSA operations */
void time_dsa(void)
{
dsa_key key;
ulong64 t1, t2;
unsigned long x, y;
int err;
static const struct {
int group, modulus;
} groups[] = {
{ 20, 96 },
{ 20, 128 },
{ 24, 192 },
{ 28, 256 },
{ 32, 512 }
};
for (x = 0; x < (sizeof(groups)/sizeof(groups[0])); x++) {
t2 = 0;
for (y = 0; y < 4; y++) {
t_start();
t1 = t_read();
if ((err = dsa_make_key(&yarrow_prng, find_prng("yarrow"), groups[x].group, groups[x].modulus, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\ndsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 2;
break;
#endif
if (y < 3) {
dsa_free(&key);
}
}
t2 >>= 2;
fprintf(stderr, "DSA-(%lu, %lu) make_key took %15llu cycles\n", (unsigned long)groups[x].group*8, (unsigned long)groups[x].modulus*8, t2);
}
}
#endif
#ifdef LTC_MRSA
/* time various RSA operations */
void time_rsa(void)
{
rsa_key key;
ulong64 t1, t2;
unsigned char buf[2][2048];
unsigned long x, y, z, zzz;
int err, zz, stat;
for (x = 1024; x <= 2048; x += 256) {
t2 = 0;
for (y = 0; y < 4; y++) {
t_start();
t1 = t_read();
if ((err = rsa_make_key(&yarrow_prng, find_prng("yarrow"), x/8, 65537, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\nrsa_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 2;
break;
#endif
if (y < 3) {
rsa_free(&key);
}
}
t2 >>= 2;
fprintf(stderr, "RSA-%lu make_key took %15llu cycles\n", x, t2);
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
z = sizeof(buf[1]);
if ((err = rsa_encrypt_key(buf[0], 32, buf[1], &z, (const unsigned char *)"testprog", 8, &yarrow_prng,
find_prng("yarrow"), find_hash("sha1"),
&key)) != CRYPT_OK) {
fprintf(stderr, "\n\nrsa_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 4;
break;
#endif
}
t2 >>= 4;
fprintf(stderr, "RSA-%lu encrypt_key took %15llu cycles\n", x, t2);
t2 = 0;
for (y = 0; y < 2048; y++) {
t_start();
t1 = t_read();
zzz = sizeof(buf[0]);
if ((err = rsa_decrypt_key(buf[1], z, buf[0], &zzz, (const unsigned char *)"testprog", 8, find_hash("sha1"),
&zz, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\nrsa_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 11;
break;
#endif
}
t2 >>= 11;
fprintf(stderr, "RSA-%lu decrypt_key took %15llu cycles\n", x, t2);
t2 = 0;
for (y = 0; y < 256; y++) {
t_start();
t1 = t_read();
z = sizeof(buf[1]);
if ((err = rsa_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng,
find_prng("yarrow"), find_hash("sha1"), 8, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\nrsa_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 8;
break;
#endif
}
t2 >>= 8;
fprintf(stderr, "RSA-%lu sign_hash took %15llu cycles\n", x, t2);
t2 = 0;
for (y = 0; y < 2048; y++) {
t_start();
t1 = t_read();
if ((err = rsa_verify_hash(buf[1], z, buf[0], 20, find_hash("sha1"), 8, &stat, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\nrsa_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
if (stat == 0) {
fprintf(stderr, "\n\nrsa_verify_hash for RSA-%lu failed to verify signature(%lu)\n", x, y);
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 11;
break;
#endif
}
t2 >>= 11;
fprintf(stderr, "RSA-%lu verify_hash took %15llu cycles\n", x, t2);
fprintf(stderr, "\n\n");
rsa_free(&key);
}
}
#else
void time_rsa(void) { fprintf(stderr, "NO RSA\n"); }
#endif
#ifdef MKAT
/* time various KAT operations */
void time_katja(void)
{
katja_key key;
ulong64 t1, t2;
unsigned char buf[2][4096];
unsigned long x, y, z, zzz;
int err, zz;
for (x = 1024; x <= 2048; x += 256) {
t2 = 0;
for (y = 0; y < 4; y++) {
t_start();
t1 = t_read();
if ((err = katja_make_key(&yarrow_prng, find_prng("yarrow"), x/8, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\nkatja_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
if (y < 3) {
katja_free(&key);
}
}
t2 >>= 2;
fprintf(stderr, "Katja-%lu make_key took %15llu cycles\n", x, t2);
t2 = 0;
for (y = 0; y < 16; y++) {
t_start();
t1 = t_read();
z = sizeof(buf[1]);
if ((err = katja_encrypt_key(buf[0], 32, buf[1], &z, "testprog", 8, &yarrow_prng,
find_prng("yarrow"), find_hash("sha1"),
&key)) != CRYPT_OK) {
fprintf(stderr, "\n\nkatja_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
}
t2 >>= 4;
fprintf(stderr, "Katja-%lu encrypt_key took %15llu cycles\n", x, t2);
t2 = 0;
for (y = 0; y < 2048; y++) {
t_start();
t1 = t_read();
zzz = sizeof(buf[0]);
if ((err = katja_decrypt_key(buf[1], z, buf[0], &zzz, "testprog", 8, find_hash("sha1"),
&zz, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\nkatja_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
}
t2 >>= 11;
fprintf(stderr, "Katja-%lu decrypt_key took %15llu cycles\n", x, t2);
katja_free(&key);
}
}
#else
void time_katja(void) { fprintf(stderr, "NO Katja\n"); }
#endif
#ifdef LTC_MECC
/* time various ECC operations */
void time_ecc(void)
{
ecc_key key;
ulong64 t1, t2;
unsigned char buf[2][256];
unsigned long i, w, x, y, z;
int err, stat;
static unsigned long sizes[] = {
#ifdef ECC112
112/8,
#endif
#ifdef ECC128
128/8,
#endif
#ifdef ECC160
160/8,
#endif
#ifdef ECC192
192/8,
#endif
#ifdef ECC224
224/8,
#endif
#ifdef ECC256
256/8,
#endif
#ifdef ECC384
384/8,
#endif
#ifdef ECC521
521/8,
#endif
100000};
for (x = sizes[i=0]; x < 100000; x = sizes[++i]) {
t2 = 0;
for (y = 0; y < 256; y++) {
t_start();
t1 = t_read();
if ((err = ecc_make_key(&yarrow_prng, find_prng("yarrow"), x, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\necc_make_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 8;
break;
#endif
if (y < 255) {
ecc_free(&key);
}
}
t2 >>= 8;
fprintf(stderr, "ECC-%lu make_key took %15llu cycles\n", x*8, t2);
t2 = 0;
for (y = 0; y < 256; y++) {
t_start();
t1 = t_read();
z = sizeof(buf[1]);
if ((err = ecc_encrypt_key(buf[0], 20, buf[1], &z, &yarrow_prng, find_prng("yarrow"), find_hash("sha1"),
&key)) != CRYPT_OK) {
fprintf(stderr, "\n\necc_encrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 8;
break;
#endif
}
t2 >>= 8;
fprintf(stderr, "ECC-%lu encrypt_key took %15llu cycles\n", x*8, t2);
t2 = 0;
for (y = 0; y < 256; y++) {
t_start();
t1 = t_read();
w = 20;
if ((err = ecc_decrypt_key(buf[1], z, buf[0], &w, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\necc_decrypt_key says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 8;
break;
#endif
}
t2 >>= 8;
fprintf(stderr, "ECC-%lu decrypt_key took %15llu cycles\n", x*8, t2);
t2 = 0;
for (y = 0; y < 256; y++) {
t_start();
t1 = t_read();
z = sizeof(buf[1]);
if ((err = ecc_sign_hash(buf[0], 20, buf[1], &z, &yarrow_prng,
find_prng("yarrow"), &key)) != CRYPT_OK) {
fprintf(stderr, "\n\necc_sign_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 8;
break;
#endif
}
t2 >>= 8;
fprintf(stderr, "ECC-%lu sign_hash took %15llu cycles\n", x*8, t2);
t2 = 0;
for (y = 0; y < 256; y++) {
t_start();
t1 = t_read();
if ((err = ecc_verify_hash(buf[1], z, buf[0], 20, &stat, &key)) != CRYPT_OK) {
fprintf(stderr, "\n\necc_verify_hash says %s, wait...no it should say %s...damn you!\n", error_to_string(err), error_to_string(CRYPT_OK));
exit(EXIT_FAILURE);
}
if (stat == 0) {
fprintf(stderr, "\n\necc_verify_hash for ECC-%lu failed to verify signature(%lu)\n", x*8, y);
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
t2 += t1;
#ifdef LTC_PROFILE
t2 <<= 8;
break;
#endif
}
t2 >>= 8;
fprintf(stderr, "ECC-%lu verify_hash took %15llu cycles\n", x*8, t2);
fprintf(stderr, "\n\n");
ecc_free(&key);
}
}
#else
void time_ecc(void) { fprintf(stderr, "NO ECC\n"); }
#endif
void time_macs_(unsigned long MAC_SIZE)
{
unsigned char *buf, key[16], tag[16];
ulong64 t1, t2;
unsigned long x, z;
int err, cipher_idx, hash_idx;
fprintf(stderr, "\nMAC Timings (cycles/byte on %luKB blocks):\n", MAC_SIZE);
buf = XMALLOC(MAC_SIZE*1024);
if (buf == NULL) {
fprintf(stderr, "\n\nout of heap yo\n\n");
exit(EXIT_FAILURE);
}
cipher_idx = find_cipher("aes");
hash_idx = find_hash("sha1");
if (cipher_idx == -1 || hash_idx == -1) {
fprintf(stderr, "Warning the MAC tests requires AES and LTC_SHA1 to operate... so sorry\n");
return;
}
yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng);
yarrow_read(key, 16, &yarrow_prng);
#ifdef LTC_OMAC
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = omac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\n\nomac error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "LTC_OMAC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
#endif
#ifdef LTC_XCBC
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = xcbc_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\n\nxcbc error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "XCBC-%s\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
#endif
#ifdef LTC_F9_MODE
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = f9_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\n\nF9 error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "F9-%s\t\t\t%9llu\n", cipher_descriptor[cipher_idx].name, t2/(ulong64)(MAC_SIZE*1024));
#endif
#ifdef LTC_PMAC
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = pmac_memory(cipher_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\n\npmac error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "PMAC-AES\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
#endif
#ifdef LTC_PELICAN
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = pelican_memory(key, 16, buf, MAC_SIZE*1024, tag)) != CRYPT_OK) {
fprintf(stderr, "\n\npelican error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "LTC_PELICAN \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
#endif
#ifdef LTC_HMAC
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = hmac_memory(hash_idx, key, 16, buf, MAC_SIZE*1024, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\n\nhmac error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "LTC_HMAC-%s\t\t%9llu\n", hash_descriptor[hash_idx].name, t2/(ulong64)(MAC_SIZE*1024));
#endif
XFREE(buf);
}
void time_macs(void)
{
time_macs_(1);
time_macs_(4);
time_macs_(32);
}
void time_encmacs_(unsigned long MAC_SIZE)
{
unsigned char *buf, IV[16], key[16], tag[16];
ulong64 t1, t2;
unsigned long x, z;
int err, cipher_idx;
symmetric_key skey;
fprintf(stderr, "\nENC+MAC Timings (zero byte AAD, 16 byte IV, cycles/byte on %luKB blocks):\n", MAC_SIZE);
buf = XMALLOC(MAC_SIZE*1024);
if (buf == NULL) {
fprintf(stderr, "\n\nout of heap yo\n\n");
exit(EXIT_FAILURE);
}
cipher_idx = find_cipher("aes");
yarrow_read(buf, MAC_SIZE*1024, &yarrow_prng);
yarrow_read(key, 16, &yarrow_prng);
yarrow_read(IV, 16, &yarrow_prng);
#ifdef LTC_EAX_MODE
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = eax_encrypt_authenticate_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\nEAX error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "EAX \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
#endif
#ifdef LTC_OCB_MODE
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = ocb_encrypt_authenticate_memory(cipher_idx, key, 16, IV, buf, MAC_SIZE*1024, buf, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\nOCB error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "OCB \t\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
#endif
#ifdef LTC_CCM_MODE
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = ccm_memory(cipher_idx, key, 16, NULL, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) {
fprintf(stderr, "\nCCM error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "CCM (no-precomp) \t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
cipher_descriptor[cipher_idx].setup(key, 16, 0, &skey);
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = ccm_memory(cipher_idx, key, 16, &skey, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, CCM_ENCRYPT)) != CRYPT_OK) {
fprintf(stderr, "\nCCM error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "CCM (precomp) \t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
cipher_descriptor[cipher_idx].done(&skey);
#endif
#ifdef LTC_GCM_MODE
t2 = -1;
for (x = 0; x < 100; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = gcm_memory(cipher_idx, key, 16, IV, 16, NULL, 0, buf, MAC_SIZE*1024, buf, tag, &z, GCM_ENCRYPT)) != CRYPT_OK) {
fprintf(stderr, "\nGCM error... %s\n", error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "GCM (no-precomp)\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
{
gcm_state gcm
#ifdef LTC_GCM_TABLES_SSE2
__attribute__ ((aligned (16)))
#endif
;
if ((err = gcm_init(&gcm, cipher_idx, key, 16)) != CRYPT_OK) { fprintf(stderr, "gcm_init: %s\n", error_to_string(err)); exit(EXIT_FAILURE); }
t2 = -1;
for (x = 0; x < 10000; x++) {
t_start();
t1 = t_read();
z = 16;
if ((err = gcm_reset(&gcm)) != CRYPT_OK) {
fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
exit(EXIT_FAILURE);
}
if ((err = gcm_add_iv(&gcm, IV, 16)) != CRYPT_OK) {
fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
exit(EXIT_FAILURE);
}
if ((err = gcm_add_aad(&gcm, NULL, 0)) != CRYPT_OK) {
fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
exit(EXIT_FAILURE);
}
if ((err = gcm_process(&gcm, buf, MAC_SIZE*1024, buf, GCM_ENCRYPT)) != CRYPT_OK) {
fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
exit(EXIT_FAILURE);
}
if ((err = gcm_done(&gcm, tag, &z)) != CRYPT_OK) {
fprintf(stderr, "\nGCM error[%d]... %s\n", __LINE__, error_to_string(err));
exit(EXIT_FAILURE);
}
t1 = t_read() - t1;
if (t1 < t2) t2 = t1;
}
fprintf(stderr, "GCM (precomp)\t\t%9llu\n", t2/(ulong64)(MAC_SIZE*1024));
}
#endif
}
void time_encmacs(void)
{
time_encmacs_(1);
time_encmacs_(4);
time_encmacs_(32);
}
/* $Source$ */
/* $Revision$ */
/* $Date$ */