1
0
mirror of http://galexander.org/git/simplesshd.git synced 2025-01-04 04:00:55 +00:00

Merge branch 'dropbear'

This time, to remove files that should have gone away (they are still
referenced in the build scripts, probably).
This commit is contained in:
Greg Alexander 2020-12-28 21:28:06 -05:00
commit 903bfa7ca2
111 changed files with 0 additions and 38967 deletions

View File

@ -1,860 +0,0 @@
/* Copyright 2008, Google Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* curve25519-donna: Curve25519 elliptic curve, public key function
*
* http://code.google.com/p/curve25519-donna/
*
* Adam Langley <agl@imperialviolet.org>
*
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
*
* More information about curve25519 can be found here
* http://cr.yp.to/ecdh.html
*
* djb's sample implementation of curve25519 is written in a special assembly
* language called qhasm and uses the floating point registers.
*
* This is, almost, a clean room reimplementation from the curve25519 paper. It
* uses many of the tricks described therein. Only the crecip function is taken
* from the sample implementation. */
#include <string.h>
#include <stdint.h>
#ifdef _MSC_VER
#define inline __inline
#endif
typedef uint8_t u8;
typedef int32_t s32;
typedef int64_t limb;
/* Field element representation:
*
* Field elements are written as an array of signed, 64-bit limbs, least
* significant first. The value of the field element is:
* x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
*
* i.e. the limbs are 26, 25, 26, 25, ... bits wide. */
/* Sum two numbers: output += in */
static void fsum(limb *output, const limb *in) {
unsigned i;
for (i = 0; i < 10; i += 2) {
output[0+i] = output[0+i] + in[0+i];
output[1+i] = output[1+i] + in[1+i];
}
}
/* Find the difference of two numbers: output = in - output
* (note the order of the arguments!). */
static void fdifference(limb *output, const limb *in) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = in[i] - output[i];
}
}
/* Multiply a number by a scalar: output = in * scalar */
static void fscalar_product(limb *output, const limb *in, const limb scalar) {
unsigned i;
for (i = 0; i < 10; ++i) {
output[i] = in[i] * scalar;
}
}
/* Multiply two numbers: output = in2 * in
*
* output must be distinct to both inputs. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs. */
static void fproduct(limb *output, const limb *in2, const limb *in) {
output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
((limb) ((s32) in2[1])) * ((s32) in[0]);
output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[0]);
output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
((limb) ((s32) in2[2])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[0]);
output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[1])) +
((limb) ((s32) in2[0])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[0]);
output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
((limb) ((s32) in2[3])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[0]);
output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[0]);
output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
((limb) ((s32) in2[4])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[0]);
output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[1])) +
((limb) ((s32) in2[2])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[2]) +
((limb) ((s32) in2[0])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[0]);
output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
((limb) ((s32) in2[5])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[2]) +
((limb) ((s32) in2[1])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[1]) +
((limb) ((s32) in2[0])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[0]);
output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[3]) +
((limb) ((s32) in2[1])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[1])) +
((limb) ((s32) in2[4])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[4]) +
((limb) ((s32) in2[2])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[2]);
output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
((limb) ((s32) in2[6])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[4]) +
((limb) ((s32) in2[3])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[3]) +
((limb) ((s32) in2[2])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[2]);
output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[5]) +
((limb) ((s32) in2[3])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[3])) +
((limb) ((s32) in2[4])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[4]);
output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
((limb) ((s32) in2[7])) * ((s32) in[6]) +
((limb) ((s32) in2[5])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[5]) +
((limb) ((s32) in2[4])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[4]);
output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
((limb) ((s32) in2[5])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[5])) +
((limb) ((s32) in2[6])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[6]);
output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
((limb) ((s32) in2[8])) * ((s32) in[7]) +
((limb) ((s32) in2[6])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[6]);
output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[7]));
output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
((limb) ((s32) in2[9])) * ((s32) in[8]);
output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
}
/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
*
* On entry: |output[i]| < 14*2^54
* On exit: |output[0..8]| < 280*2^54 */
static void freduce_degree(limb *output) {
/* Each of these shifts and adds ends up multiplying the value by 19.
*
* For output[0..8], the absolute entry value is < 14*2^54 and we add, at
* most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
output[8] += output[18] << 4;
output[8] += output[18] << 1;
output[8] += output[18];
output[7] += output[17] << 4;
output[7] += output[17] << 1;
output[7] += output[17];
output[6] += output[16] << 4;
output[6] += output[16] << 1;
output[6] += output[16];
output[5] += output[15] << 4;
output[5] += output[15] << 1;
output[5] += output[15];
output[4] += output[14] << 4;
output[4] += output[14] << 1;
output[4] += output[14];
output[3] += output[13] << 4;
output[3] += output[13] << 1;
output[3] += output[13];
output[2] += output[12] << 4;
output[2] += output[12] << 1;
output[2] += output[12];
output[1] += output[11] << 4;
output[1] += output[11] << 1;
output[1] += output[11];
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
}
#if (-1 & 3) != 3
#error "This code only works on a two's complement system"
#endif
/* return v / 2^26, using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb
div_by_2_26(const limb v)
{
/* High word of v; no shift needed. */
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31;
/* Set to 0x3ffffff if v was negative; else set to 0. */
const int32_t roundoff = ((uint32_t) sign) >> 6;
/* Should return v / (1<<26) */
return (v + roundoff) >> 26;
}
/* return v / (2^25), using only shifts and adds.
*
* On entry: v can take any value. */
static inline limb
div_by_2_25(const limb v)
{
/* High word of v; no shift needed*/
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
/* Set to all 1s if v was negative; else set to 0s. */
const int32_t sign = ((int32_t) highword) >> 31;
/* Set to 0x1ffffff if v was negative; else set to 0. */
const int32_t roundoff = ((uint32_t) sign) >> 7;
/* Should return v / (1<<25) */
return (v + roundoff) >> 25;
}
/* Reduce all coefficients of the short form input so that |x| < 2^26.
*
* On entry: |output[i]| < 280*2^54 */
static void freduce_coefficients(limb *output) {
unsigned i;
output[10] = 0;
for (i = 0; i < 10; i += 2) {
limb over = div_by_2_26(output[i]);
/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
* most, 280*2^28 in the first iteration of this loop. This is added to the
* next limb and we can approximate the resulting bound of that limb by
* 281*2^54. */
output[i] -= over << 26;
output[i+1] += over;
/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
* 281*2^29. When this is added to the next limb, the resulting bound can
* be approximated as 281*2^54.
*
* For subsequent iterations of the loop, 281*2^54 remains a conservative
* bound and no overflow occurs. */
over = div_by_2_25(output[i+1]);
output[i+1] -= over << 25;
output[i+2] += over;
}
/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
output[10] = 0;
/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
* So |over| will be no more than 2^16. */
{
limb over = div_by_2_26(output[0]);
output[0] -= over << 26;
output[1] += over;
}
/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
* bound on |output[1]| is sufficient to meet our needs. */
}
/* A helpful wrapper around fproduct: output = in * in2.
*
* On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
*
* output must be distinct to both inputs. The output is reduced degree
* (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */
static void
fmul(limb *output, const limb *in, const limb *in2) {
limb t[19];
fproduct(t, in, in2);
/* |t[i]| < 14*2^54 */
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
/* Square a number: output = in**2
*
* output must be distinct from the input. The inputs are reduced coefficient
* form, the output is not.
*
* output[x] <= 14 * the largest product of the input limbs. */
static void fsquare_inner(limb *output, const limb *in) {
output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
((limb) ((s32) in[0])) * ((s32) in[2]));
output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
((limb) ((s32) in[0])) * ((s32) in[3]));
output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
((limb) ((s32) in[1])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[5]));
output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
((limb) ((s32) in[2])) * ((s32) in[4]) +
((limb) ((s32) in[0])) * ((s32) in[6]) +
2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
((limb) ((s32) in[2])) * ((s32) in[5]) +
((limb) ((s32) in[1])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[7]));
output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
((limb) ((s32) in[0])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[5])));
output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
((limb) ((s32) in[3])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[8]) +
((limb) ((s32) in[0])) * ((s32) in[9]));
output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
((limb) ((s32) in[4])) * ((s32) in[6]) +
((limb) ((s32) in[2])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
((limb) ((s32) in[1])) * ((s32) in[9])));
output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
((limb) ((s32) in[4])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[8]) +
((limb) ((s32) in[2])) * ((s32) in[9]));
output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
((limb) ((s32) in[3])) * ((s32) in[9])));
output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
((limb) ((s32) in[5])) * ((s32) in[8]) +
((limb) ((s32) in[4])) * ((s32) in[9]));
output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
((limb) ((s32) in[6])) * ((s32) in[8]) +
2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
((limb) ((s32) in[6])) * ((s32) in[9]));
output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
}
/* fsquare sets output = in^2.
*
* On entry: The |in| argument is in reduced coefficients form and |in[i]| <
* 2^27.
*
* On exit: The |output| argument is in reduced coefficients form (indeed, one
* need only provide storage for 10 limbs) and |out[i]| < 2^26. */
static void
fsquare(limb *output, const limb *in) {
limb t[19];
fsquare_inner(t, in);
/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
* 2^(27+27) and fsquare_inner adds together, at most, 14 of those
* products. */
freduce_degree(t);
freduce_coefficients(t);
/* |t[i]| < 2^26 */
memcpy(output, t, sizeof(limb) * 10);
}
/* Take a little-endian, 32-byte number and expand it into polynomial form */
static void
fexpand(limb *output, const u8 *input) {
#define F(n,start,shift,mask) \
output[n] = ((((limb) input[start + 0]) | \
((limb) input[start + 1]) << 8 | \
((limb) input[start + 2]) << 16 | \
((limb) input[start + 3]) << 24) >> shift) & mask;
F(0, 0, 0, 0x3ffffff);
F(1, 3, 2, 0x1ffffff);
F(2, 6, 3, 0x3ffffff);
F(3, 9, 5, 0x1ffffff);
F(4, 12, 6, 0x3ffffff);
F(5, 16, 0, 0x1ffffff);
F(6, 19, 1, 0x3ffffff);
F(7, 22, 3, 0x1ffffff);
F(8, 25, 4, 0x3ffffff);
F(9, 28, 6, 0x1ffffff);
#undef F
}
#if (-32 >> 1) != -16
#error "This code only works when >> does sign-extension on negative numbers"
#endif
/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
static s32 s32_eq(s32 a, s32 b) {
a = ~(a ^ b);
a &= a << 16;
a &= a << 8;
a &= a << 4;
a &= a << 2;
a &= a << 1;
return a >> 31;
}
/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
* both non-negative. */
static s32 s32_gte(s32 a, s32 b) {
a -= b;
/* a >= 0 iff a >= b. */
return ~(a >> 31);
}
/* Take a fully reduced polynomial form number and contract it into a
* little-endian, 32-byte array.
*
* On entry: |input_limbs[i]| < 2^26 */
static void
fcontract(u8 *output, limb *input_limbs) {
int i;
int j;
s32 input[10];
s32 mask;
/* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
for (i = 0; i < 10; i++) {
input[i] = input_limbs[i];
}
for (j = 0; j < 2; ++j) {
for (i = 0; i < 9; ++i) {
if ((i & 1) == 1) {
/* This calculation is a time-invariant way to make input[i]
* non-negative by borrowing from the next-larger limb. */
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 25);
input[i] = input[i] + (carry << 25);
input[i+1] = input[i+1] - carry;
} else {
const s32 mask = input[i] >> 31;
const s32 carry = -((input[i] & mask) >> 26);
input[i] = input[i] + (carry << 26);
input[i+1] = input[i+1] - carry;
}
}
/* There's no greater limb for input[9] to borrow from, but we can multiply
* by 19 and borrow from input[0], which is valid mod 2^255-19. */
{
const s32 mask = input[9] >> 31;
const s32 carry = -((input[9] & mask) >> 25);
input[9] = input[9] + (carry << 25);
input[0] = input[0] - (carry * 19);
}
/* After the first iteration, input[1..9] are non-negative and fit within
* 25 or 26 bits, depending on position. However, input[0] may be
* negative. */
}
/* The first borrow-propagation pass above ended with every limb
except (possibly) input[0] non-negative.
If input[0] was negative after the first pass, then it was because of a
carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
In the second pass, each limb is decreased by at most one. Thus the second
borrow-propagation pass could only have wrapped around to decrease
input[0] again if the first pass left input[0] negative *and* input[1]
through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
and this last borrow-propagation step will leave input[1] non-negative. */
{
const s32 mask = input[0] >> 31;
const s32 carry = -((input[0] & mask) >> 26);
input[0] = input[0] + (carry << 26);
input[1] = input[1] - carry;
}
/* All input[i] are now non-negative. However, there might be values between
* 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
for (j = 0; j < 2; j++) {
for (i = 0; i < 9; i++) {
if ((i & 1) == 1) {
const s32 carry = input[i] >> 25;
input[i] &= 0x1ffffff;
input[i+1] += carry;
} else {
const s32 carry = input[i] >> 26;
input[i] &= 0x3ffffff;
input[i+1] += carry;
}
}
{
const s32 carry = input[9] >> 25;
input[9] &= 0x1ffffff;
input[0] += 19*carry;
}
}
/* If the first carry-chain pass, just above, ended up with a carry from
* input[9], and that caused input[0] to be out-of-bounds, then input[0] was
* < 2^26 + 2*19, because the carry was, at most, two.
*
* If the second pass carried from input[9] again then input[0] is < 2*19 and
* the input[9] -> input[0] carry didn't push input[0] out of bounds. */
/* It still remains the case that input might be between 2^255-19 and 2^255.
* In this case, input[1..9] must take their maximum value and input[0] must
* be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
mask = s32_gte(input[0], 0x3ffffed);
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
mask &= s32_eq(input[i], 0x1ffffff);
} else {
mask &= s32_eq(input[i], 0x3ffffff);
}
}
/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
* this conditionally subtracts 2^255-19. */
input[0] -= mask & 0x3ffffed;
for (i = 1; i < 10; i++) {
if ((i & 1) == 1) {
input[i] -= mask & 0x1ffffff;
} else {
input[i] -= mask & 0x3ffffff;
}
}
input[1] <<= 2;
input[2] <<= 3;
input[3] <<= 5;
input[4] <<= 6;
input[6] <<= 1;
input[7] <<= 3;
input[8] <<= 4;
input[9] <<= 6;
#define F(i, s) \
output[s+0] |= input[i] & 0xff; \
output[s+1] = (input[i] >> 8) & 0xff; \
output[s+2] = (input[i] >> 16) & 0xff; \
output[s+3] = (input[i] >> 24) & 0xff;
output[0] = 0;
output[16] = 0;
F(0,0);
F(1,3);
F(2,6);
F(3,9);
F(4,12);
F(5,16);
F(6,19);
F(7,22);
F(8,25);
F(9,28);
#undef F
}
/* Input: Q, Q', Q-Q'
* Output: 2Q, Q+Q'
*
* x2 z3: long form
* x3 z3: long form
* x z: short form, destroyed
* xprime zprime: short form, destroyed
* qmqp: short form, preserved
*
* On entry and exit, the absolute value of the limbs of all inputs and outputs
* are < 2^26. */
static void fmonty(limb *x2, limb *z2, /* output 2Q */
limb *x3, limb *z3, /* output Q + Q' */
limb *x, limb *z, /* input Q */
limb *xprime, limb *zprime, /* input Q' */
const limb *qmqp /* input Q - Q' */) {
limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
zzprime[19], zzzprime[19], xxxprime[19];
memcpy(origx, x, 10 * sizeof(limb));
fsum(x, z);
/* |x[i]| < 2^27 */
fdifference(z, origx); /* does x - z */
/* |z[i]| < 2^27 */
memcpy(origxprime, xprime, sizeof(limb) * 10);
fsum(xprime, zprime);
/* |xprime[i]| < 2^27 */
fdifference(zprime, origxprime);
/* |zprime[i]| < 2^27 */
fproduct(xxprime, xprime, z);
/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
* 2^(27+27) and fproduct adds together, at most, 14 of those products.
* (Approximating that to 2^58 doesn't work out.) */
fproduct(zzprime, x, zprime);
/* |zzprime[i]| < 14*2^54 */
freduce_degree(xxprime);
freduce_coefficients(xxprime);
/* |xxprime[i]| < 2^26 */
freduce_degree(zzprime);
freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(origxprime, xxprime, sizeof(limb) * 10);
fsum(xxprime, zzprime);
/* |xxprime[i]| < 2^27 */
fdifference(zzprime, origxprime);
/* |zzprime[i]| < 2^27 */
fsquare(xxxprime, xxprime);
/* |xxxprime[i]| < 2^26 */
fsquare(zzzprime, zzprime);
/* |zzzprime[i]| < 2^26 */
fproduct(zzprime, zzzprime, qmqp);
/* |zzprime[i]| < 14*2^52 */
freduce_degree(zzprime);
freduce_coefficients(zzprime);
/* |zzprime[i]| < 2^26 */
memcpy(x3, xxxprime, sizeof(limb) * 10);
memcpy(z3, zzprime, sizeof(limb) * 10);
fsquare(xx, x);
/* |xx[i]| < 2^26 */
fsquare(zz, z);
/* |zz[i]| < 2^26 */
fproduct(x2, xx, zz);
/* |x2[i]| < 14*2^52 */
freduce_degree(x2);
freduce_coefficients(x2);
/* |x2[i]| < 2^26 */
fdifference(zz, xx); /* does zz = xx - zz */
/* |zz[i]| < 2^27 */
memset(zzz + 10, 0, sizeof(limb) * 9);
fscalar_product(zzz, zz, 121665);
/* |zzz[i]| < 2^(27+17) */
/* No need to call freduce_degree here:
fscalar_product doesn't increase the degree of its input. */
freduce_coefficients(zzz);
/* |zzz[i]| < 2^26 */
fsum(zzz, xx);
/* |zzz[i]| < 2^27 */
fproduct(z2, zz, zzz);
/* |z2[i]| < 14*2^(26+27) */
freduce_degree(z2);
freduce_coefficients(z2);
/* |z2|i| < 2^26 */
}
/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
* them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
* side-channel attacks.
*
* NOTE that this function requires that 'iswap' be 1 or 0; other values give
* wrong results. Also, the two limb arrays must be in reduced-coefficient,
* reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
* and all all values in a[0..9],b[0..9] must have magnitude less than
* INT32_MAX. */
static void
swap_conditional(limb a[19], limb b[19], limb iswap) {
unsigned i;
const s32 swap = (s32) -iswap;
for (i = 0; i < 10; ++i) {
const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
a[i] = ((s32)a[i]) ^ x;
b[i] = ((s32)b[i]) ^ x;
}
}
/* Calculates nQ where Q is the x-coordinate of a point on the curve
*
* resultx/resultz: the x coordinate of the resulting curve point (short form)
* n: a little endian, 32-byte number
* q: a point of the curve (short form) */
static void
cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
unsigned i, j;
memcpy(nqpqx, q, sizeof(limb) * 10);
for (i = 0; i < 32; ++i) {
u8 byte = n[31 - i];
for (j = 0; j < 8; ++j) {
const limb bit = byte >> 7;
swap_conditional(nqx, nqpqx, bit);
swap_conditional(nqz, nqpqz, bit);
fmonty(nqx2, nqz2,
nqpqx2, nqpqz2,
nqx, nqz,
nqpqx, nqpqz,
q);
swap_conditional(nqx2, nqpqx2, bit);
swap_conditional(nqz2, nqpqz2, bit);
t = nqx;
nqx = nqx2;
nqx2 = t;
t = nqz;
nqz = nqz2;
nqz2 = t;
t = nqpqx;
nqpqx = nqpqx2;
nqpqx2 = t;
t = nqpqz;
nqpqz = nqpqz2;
nqpqz2 = t;
byte <<= 1;
}
}
memcpy(resultx, nqx, sizeof(limb) * 10);
memcpy(resultz, nqz, sizeof(limb) * 10);
}
/* -----------------------------------------------------------------------------
* Shamelessly copied from djb's code
* ----------------------------------------------------------------------------- */
static void
crecip(limb *out, const limb *z) {
limb z2[10];
limb z9[10];
limb z11[10];
limb z2_5_0[10];
limb z2_10_0[10];
limb z2_20_0[10];
limb z2_50_0[10];
limb z2_100_0[10];
limb t0[10];
limb t1[10];
int i;
/* 2 */ fsquare(z2,z);
/* 4 */ fsquare(t1,z2);
/* 8 */ fsquare(t0,t1);
/* 9 */ fmul(z9,t0,z);
/* 11 */ fmul(z11,z9,z2);
/* 22 */ fsquare(t0,z11);
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
/* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
/* 2^7 - 2^2 */ fsquare(t1,t0);
/* 2^8 - 2^3 */ fsquare(t0,t1);
/* 2^9 - 2^4 */ fsquare(t1,t0);
/* 2^10 - 2^5 */ fsquare(t0,t1);
/* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
/* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
/* 2^12 - 2^2 */ fsquare(t1,t0);
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
/* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
/* 2^22 - 2^2 */ fsquare(t1,t0);
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
/* 2^41 - 2^1 */ fsquare(t1,t0);
/* 2^42 - 2^2 */ fsquare(t0,t1);
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
/* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
/* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
/* 2^52 - 2^2 */ fsquare(t1,t0);
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
/* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
/* 2^102 - 2^2 */ fsquare(t0,t1);
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
/* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
/* 2^201 - 2^1 */ fsquare(t0,t1);
/* 2^202 - 2^2 */ fsquare(t1,t0);
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
/* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
/* 2^251 - 2^1 */ fsquare(t1,t0);
/* 2^252 - 2^2 */ fsquare(t0,t1);
/* 2^253 - 2^3 */ fsquare(t1,t0);
/* 2^254 - 2^4 */ fsquare(t0,t1);
/* 2^255 - 2^5 */ fsquare(t1,t0);
/* 2^255 - 21 */ fmul(out,t1,z11);
}
int
curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
limb bp[10], x[10], z[11], zmone[10];
uint8_t e[32];
int i;
for (i = 0; i < 32; ++i) e[i] = secret[i];
e[0] &= 248;
e[31] &= 127;
e[31] |= 64;
fexpand(bp, basepoint);
cmult(x, z, e, bp);
crecip(zmone, z);
fmul(z, x, zmone);
fcontract(mypublic, z);
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,47 +0,0 @@
#include <tommath_private.h>
#ifdef BN_ERROR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
static const struct {
int code;
const char *msg;
} msgs[] = {
{ MP_OKAY, "Successful" },
{ MP_MEM, "Out of heap" },
{ MP_VAL, "Value out of range" }
};
/* return a char * string for a given code */
const char *mp_error_to_string(int code)
{
int x;
/* scan the lookup table for the given message */
for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
if (msgs[x].code == code) {
return msgs[x].msg;
}
}
/* generic reply for invalid code */
return "Invalid error code";
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,148 +0,0 @@
#include <tommath_private.h>
#ifdef BN_FAST_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes the modular inverse via binary extended euclidean algorithm,
* that is c = 1/a mod b
*
* Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, B, D;
int res, neg;
/* 2. [modified] b must be odd */
if (mp_iseven (b) == MP_YES) {
return MP_VAL;
}
/* init all our temps */
if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
return res;
}
/* x == modulus, y == value to invert */
if ((res = mp_copy (b, &x)) != MP_OKAY) {
goto LBL_ERR;
}
/* we need y = |a| */
if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
goto LBL_ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto LBL_ERR;
}
mp_set (&D, 1);
top:
/* 4. while u is even do */
while (mp_iseven (&u) == MP_YES) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto LBL_ERR;
}
/* 4.2 if B is odd then */
if (mp_isodd (&B) == MP_YES) {
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* B = B/2 */
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 5. while v is even do */
while (mp_iseven (&v) == MP_YES) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto LBL_ERR;
}
/* 5.2 if D is odd then */
if (mp_isodd (&D) == MP_YES) {
/* D = (D-x)/2 */
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* D = D/2 */
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 6. if u >= v then */
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto LBL_ERR;
}
} else {
/* v - v - u, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* if not zero goto step 4 */
if (mp_iszero (&u) == MP_NO) {
goto top;
}
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto LBL_ERR;
}
/* b is now the inverse */
neg = a->sign;
while (D.sign == MP_NEG) {
if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
mp_exch (&D, c);
c->sign = neg;
res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
return res;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,172 +0,0 @@
#include <tommath_private.h>
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes xR**-1 == x (mod N) via Montgomery Reduction
*
* This is an optimized implementation of montgomery_reduce
* which uses the comba method to quickly calculate the columns of the
* reduction.
*
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];
/* get old used count */
olduse = x->used;
/* grow a as required */
if (x->alloc < (n->used + 1)) {
if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
return res;
}
}
/* first we have to get the digits of the input into
* an array of double precision words W[...]
*/
{
mp_word *_W;
mp_digit *tmpx;
/* alias for the W[] array */
_W = W;
/* alias for the digits of x*/
tmpx = x->dp;
/* copy the digits of a into W[0..a->used-1] */
for (ix = 0; ix < x->used; ix++) {
*_W++ = *tmpx++;
}
/* zero the high words of W[a->used..m->used*2] */
for (; ix < ((n->used * 2) + 1); ix++) {
*_W++ = 0;
}
}
/* now we proceed to zero successive digits
* from the least significant upwards
*/
for (ix = 0; ix < n->used; ix++) {
/* mu = ai * m' mod b
*
* We avoid a double precision multiplication (which isn't required)
* by casting the value down to a mp_digit. Note this requires
* that W[ix-1] have the carry cleared (see after the inner loop)
*/
mp_digit mu;
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
/* a = a + mu * m * b**i
*
* This is computed in place and on the fly. The multiplication
* by b**i is handled by offseting which columns the results
* are added to.
*
* Note the comba method normally doesn't handle carries in the
* inner loop In this case we fix the carry from the previous
* column since the Montgomery reduction requires digits of the
* result (so far) [see above] to work. This is
* handled by fixing up one carry after the inner loop. The
* carry fixups are done in order so after these loops the
* first m->used words of W[] have the carries fixed
*/
{
int iy;
mp_digit *tmpn;
mp_word *_W;
/* alias for the digits of the modulus */
tmpn = n->dp;
/* Alias for the columns set by an offset of ix */
_W = W + ix;
/* inner loop */
for (iy = 0; iy < n->used; iy++) {
*_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
}
}
/* now fix carry for next digit, W[ix+1] */
W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
}
/* now we have to propagate the carries and
* shift the words downward [all those least
* significant digits we zeroed].
*/
{
mp_digit *tmpx;
mp_word *_W, *_W1;
/* nox fix rest of carries */
/* alias for current word */
_W1 = W + ix;
/* alias for next word, where the carry goes */
_W = W + ++ix;
for (; ix <= ((n->used * 2) + 1); ix++) {
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
}
/* copy out, A = A/b**n
*
* The result is A/b**n but instead of converting from an
* array of mp_word to mp_digit than calling mp_rshd
* we just copy them in the right order
*/
/* alias for destination word */
tmpx = x->dp;
/* alias for shifted double precision result */
_W = W + n->used;
for (ix = 0; ix < (n->used + 1); ix++) {
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
}
/* zero oldused digits, if the input a was larger than
* m->used+1 we'll have to clear the digits
*/
for (; ix < olduse; ix++) {
*tmpx++ = 0;
}
}
/* set the max used and clamp */
x->used = n->used + 1;
mp_clamp (x);
/* if A >= m then A = A - m */
if (mp_cmp_mag (x, n) != MP_LT) {
return s_mp_sub (x, n, x);
}
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,107 +0,0 @@
#include <tommath_private.h>
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Fast (comba) multiplier
*
* This is the fast column-array [comba] multiplier. It is
* designed to compute the columns of the product first
* then handle the carries afterwards. This has the effect
* of making the nested loops that compute the columns very
* simple and schedulable on super-scalar processors.
*
* This has been modified to produce a variable number of
* digits of output so if say only a half-product is required
* you don't have to compute the upper half (a feature
* required for fast Barrett reduction).
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*
*/
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
mp_word _W;
/* grow the destination as required */
if (c->alloc < digs) {
if ((res = mp_grow (c, digs)) != MP_OKAY) {
return res;
}
}
/* number of output digits to produce */
pa = MIN(digs, a->used + b->used);
/* clear the carry */
_W = 0;
for (ix = 0; ix < pa; ix++) {
int tx, ty;
int iy;
mp_digit *tmpx, *tmpy;
/* get offsets into the two bignums */
ty = MIN(b->used-1, ix);
tx = ix - ty;
/* setup temp aliases */
tmpx = a->dp + tx;
tmpy = b->dp + ty;
/* this is the number of times the loop will iterrate, essentially
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
/* execute loop */
for (iz = 0; iz < iy; ++iz) {
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
}
/* store term */
W[ix] = ((mp_digit)_W) & MP_MASK;
/* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = c->used;
c->used = pa;
{
mp_digit *tmpc;
tmpc = c->dp;
for (ix = 0; ix < pa; ix++) {
/* now extract the previous digit [below the carry] */
*tmpc++ = W[ix];
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,98 +0,0 @@
#include <tommath_private.h>
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* this is a modified version of fast_s_mul_digs that only produces
* output digits *above* digs. See the comments for fast_s_mul_digs
* to see how it works.
*
* This is used in the Barrett reduction since for one of the multiplications
* only the higher digits were needed. This essentially halves the work.
*
* Based on Algorithm 14.12 on pp.595 of HAC.
*/
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
mp_word _W;
/* grow the destination as required */
pa = a->used + b->used;
if (c->alloc < pa) {
if ((res = mp_grow (c, pa)) != MP_OKAY) {
return res;
}
}
/* number of output digits to produce */
pa = a->used + b->used;
_W = 0;
for (ix = digs; ix < pa; ix++) {
int tx, ty, iy;
mp_digit *tmpx, *tmpy;
/* get offsets into the two bignums */
ty = MIN(b->used-1, ix);
tx = ix - ty;
/* setup temp aliases */
tmpx = a->dp + tx;
tmpy = b->dp + ty;
/* this is the number of times the loop will iterrate, essentially its
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
/* execute loop */
for (iz = 0; iz < iy; iz++) {
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
}
/* store term */
W[ix] = ((mp_digit)_W) & MP_MASK;
/* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = c->used;
c->used = pa;
{
mp_digit *tmpc;
tmpc = c->dp + digs;
for (ix = digs; ix < pa; ix++) {
/* now extract the previous digit [below the carry] */
*tmpc++ = W[ix];
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
*tmpc++ = 0;
}
}
mp_clamp (c);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,114 +0,0 @@
#include <tommath_private.h>
#ifdef BN_FAST_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* the jist of squaring...
* you do like mult except the offset of the tmpx [one that
* starts closer to zero] can't equal the offset of tmpy.
* So basically you set up iy like before then you min it with
* (ty-tx) so that it never happens. You double all those
* you add in the inner loop
After that loop you do the squares and add them in.
*/
int fast_s_mp_sqr (mp_int * a, mp_int * b)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY], *tmpx;
mp_word W1;
/* grow the destination as required */
pa = a->used + a->used;
if (b->alloc < pa) {
if ((res = mp_grow (b, pa)) != MP_OKAY) {
return res;
}
}
/* number of output digits to produce */
W1 = 0;
for (ix = 0; ix < pa; ix++) {
int tx, ty, iy;
mp_word _W;
mp_digit *tmpy;
/* clear counter */
_W = 0;
/* get offsets into the two bignums */
ty = MIN(a->used-1, ix);
tx = ix - ty;
/* setup temp aliases */
tmpx = a->dp + tx;
tmpy = a->dp + ty;
/* this is the number of times the loop will iterrate, essentially
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
/* now for squaring tx can never equal ty
* we halve the distance since they approach at a rate of 2x
* and we have to round because odd cases need to be executed
*/
iy = MIN(iy, ((ty-tx)+1)>>1);
/* execute loop */
for (iz = 0; iz < iy; iz++) {
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
}
/* double the inner product and add carry */
_W = _W + _W + W1;
/* even columns have the square term in them */
if ((ix&1) == 0) {
_W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
}
/* store it */
W[ix] = (mp_digit)(_W & MP_MASK);
/* make next carry */
W1 = _W >> ((mp_word)DIGIT_BIT);
}
/* setup dest */
olduse = b->used;
b->used = a->used+a->used;
{
mp_digit *tmpb;
tmpb = b->dp;
for (ix = 0; ix < pa; ix++) {
*tmpb++ = W[ix] & MP_MASK;
}
/* clear unused digits [that existed in the old copy of c] */
for (; ix < olduse; ix++) {
*tmpb++ = 0;
}
}
mp_clamp (b);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,88 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_EXPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* based on gmp's mpz_export.
* see http://gmplib.org/manual/Integer-Import-and-Export.html
*/
int mp_export(void* rop, size_t* countp, int order, size_t size,
int endian, size_t nails, mp_int* op) {
int result;
size_t odd_nails, nail_bytes, i, j, bits, count;
unsigned char odd_nail_mask;
mp_int t;
if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
return result;
}
if (endian == 0) {
union {
unsigned int i;
char c[4];
} lint;
lint.i = 0x01020304;
endian = (lint.c[0] == 4) ? -1 : 1;
}
odd_nails = (nails % 8);
odd_nail_mask = 0xff;
for (i = 0; i < odd_nails; ++i) {
odd_nail_mask ^= (1 << (7 - i));
}
nail_bytes = nails / 8;
bits = mp_count_bits(&t);
count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0);
for (i = 0; i < count; ++i) {
for (j = 0; j < size; ++j) {
unsigned char* byte = (
(unsigned char*)rop +
(((order == -1) ? i : ((count - 1) - i)) * size) +
((endian == -1) ? j : ((size - 1) - j))
);
if (j >= (size - nail_bytes)) {
*byte = 0;
continue;
}
*byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF));
if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) {
mp_clear(&t);
return result;
}
}
}
mp_clear(&t);
if (countp != NULL) {
*countp = count;
}
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,28 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* wrapper function for mp_expt_d_ex() */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
return mp_expt_d_ex(a, b, c, 0);
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,83 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_EXPT_D_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* calculate c = a**b using a square-multiply algorithm */
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
int res;
unsigned int x;
mp_int g;
if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
return res;
}
/* set initial result */
mp_set (c, 1);
if (fast != 0) {
while (b > 0) {
/* if the bit is set multiply */
if ((b & 1) != 0) {
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
}
/* square */
if (b > 1) {
if ((res = mp_sqr (&g, &g)) != MP_OKAY) {
mp_clear (&g);
return res;
}
}
/* shift to next bit */
b >>= 1;
}
}
else {
for (x = 0; x < DIGIT_BIT; x++) {
/* square */
if ((res = mp_sqr (c, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
/* if the bit is set multiply */
if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
mp_clear (&g);
return res;
}
}
/* shift to next bit */
b <<= 1;
}
} /* if ... else */
mp_clear (&g);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,321 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
*
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
* The value of k changes based on the size of the exponent.
*
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
*/
#ifdef MP_LOW_MEM
#define TAB_SIZE 32
#else
#define TAB_SIZE 256
#endif
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
mp_int M[TAB_SIZE], res;
mp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* use a pointer to the reduction algorithm. This allows us to use
* one of many reduction algorithms without modding the guts of
* the code with if statements everywhere.
*/
int (*redux)(mp_int*,mp_int*,mp_digit);
/* find window size */
x = mp_count_bits (X);
if (x <= 7) {
winsize = 2;
} else if (x <= 36) {
winsize = 3;
} else if (x <= 140) {
winsize = 4;
} else if (x <= 450) {
winsize = 5;
} else if (x <= 1303) {
winsize = 6;
} else if (x <= 3529) {
winsize = 7;
} else {
winsize = 8;
}
#ifdef MP_LOW_MEM
if (winsize > 5) {
winsize = 5;
}
#endif
/* init M array */
/* init first cell */
if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear (&M[y]);
}
mp_clear(&M[1]);
return err;
}
}
/* determine and setup reduction code */
if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* now setup montgomery */
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
goto LBL_M;
}
#else
err = MP_VAL;
goto LBL_M;
#endif
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
if ((((P->used * 2) + 1) < MP_WARRAY) &&
(P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
redux = fast_mp_montgomery_reduce;
} else
#endif
{
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* use slower baseline Montgomery method */
redux = mp_montgomery_reduce;
#else
err = MP_VAL;
goto LBL_M;
#endif
}
} else if (redmode == 1) {
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
/* setup DR reduction for moduli of the form B**k - b */
mp_dr_setup(P, &mp);
redux = mp_dr_reduce;
#else
err = MP_VAL;
goto LBL_M;
#endif
} else {
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
/* setup DR reduction for moduli of the form 2**k - b */
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
goto LBL_M;
}
redux = mp_reduce_2k;
#else
err = MP_VAL;
goto LBL_M;
#endif
}
/* setup result */
if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) {
goto LBL_M;
}
/* create M table
*
*
* The first half of the table is not computed though accept for M[0] and M[1]
*/
if (redmode == 0) {
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* now we need R mod m */
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto LBL_RES;
}
/* now set M[1] to G * R mod m */
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
goto LBL_RES;
}
#else
err = MP_VAL;
goto LBL_RES;
#endif
} else {
mp_set(&res, 1);
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
goto LBL_RES;
}
}
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto LBL_RES;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
goto LBL_RES;
}
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
goto LBL_RES;
}
}
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
bitcpy = 0;
bitbuf = 0;
for (;;) {
/* grab next digit as required */
if (--bitcnt == 0) {
/* if digidx == -1 we are out of digits so break */
if (digidx == -1) {
break;
}
/* read next digit and reset bitcnt */
buf = X->dp[digidx--];
bitcnt = (int)DIGIT_BIT;
}
/* grab the next msb from the exponent */
y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
* These represent the leading zero bits before the first 1 bit
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
if ((mode == 0) && (y == 0)) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
if ((mode == 1) && (y == 0)) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
continue;
}
/* else we add it to the window */
bitbuf |= (y << (winsize - ++bitcpy));
mode = 2;
if (bitcpy == winsize) {
/* ok window is filled so square as required and multiply */
/* square first */
for (x = 0; x < winsize; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
}
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
/* empty window and reset */
bitcpy = 0;
bitbuf = 0;
mode = 1;
}
}
/* if bits remain then square/multiply */
if ((mode == 2) && (bitcpy > 0)) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
/* get next bit of the window */
bitbuf <<= 1;
if ((bitbuf & (1 << winsize)) != 0) {
/* then multiply */
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto LBL_RES;
}
if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
}
}
}
if (redmode == 0) {
/* fixup result if Montgomery reduction is used
* recall that any value in a Montgomery system is
* actually multiplied by R mod n. So we have
* to reduce one more time to cancel out the factor
* of R.
*/
if ((err = redux(&res, P, mp)) != MP_OKAY) {
goto LBL_RES;
}
}
/* swap res with Y */
mp_exch (&res, Y);
err = MP_OKAY;
LBL_RES:mp_clear (&res);
LBL_M:
mp_clear(&M[1]);
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
mp_clear (&M[x]);
}
return err;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,45 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_GET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int * a)
{
int i;
mp_min_u32 res;
if (a->used == 0) {
return 0;
}
/* get number of digits of the lsb we have to read */
i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
/* get most significant digit of result */
res = DIGIT(a,i);
while (--i >= 0) {
res = (res << DIGIT_BIT) | DIGIT(a,i);
}
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
return res & 0xFFFFFFFFUL;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,41 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_GET_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* get the lower unsigned long of an mp_int, platform dependent */
unsigned long mp_get_long(mp_int * a)
{
int i;
unsigned long res;
if (a->used == 0) {
return 0;
}
/* get number of digits of the lsb we have to read */
i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
/* get most significant digit of result */
res = DIGIT(a,i);
#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
while (--i >= 0) {
res = (res << DIGIT_BIT) | DIGIT(a,i);
}
#endif
return res;
}
#endif

View File

@ -1,41 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_GET_LONG_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* get the lower unsigned long long of an mp_int, platform dependent */
unsigned long long mp_get_long_long (mp_int * a)
{
int i;
unsigned long long res;
if (a->used == 0) {
return 0;
}
/* get number of digits of the lsb we have to read */
i = MIN(a->used,(int)(((sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
/* get most significant digit of result */
res = DIGIT(a,i);
#if DIGIT_BIT < 64
while (--i >= 0) {
res = (res << DIGIT_BIT) | DIGIT(a,i);
}
#endif
return res;
}
#endif

View File

@ -1,73 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_IMPORT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* based on gmp's mpz_import.
* see http://gmplib.org/manual/Integer-Import-and-Export.html
*/
int mp_import(mp_int* rop, size_t count, int order, size_t size,
int endian, size_t nails, const void* op) {
int result;
size_t odd_nails, nail_bytes, i, j;
unsigned char odd_nail_mask;
mp_zero(rop);
if (endian == 0) {
union {
unsigned int i;
char c[4];
} lint;
lint.i = 0x01020304;
endian = (lint.c[0] == 4) ? -1 : 1;
}
odd_nails = (nails % 8);
odd_nail_mask = 0xff;
for (i = 0; i < odd_nails; ++i) {
odd_nail_mask ^= (1 << (7 - i));
}
nail_bytes = nails / 8;
for (i = 0; i < count; ++i) {
for (j = 0; j < (size - nail_bytes); ++j) {
unsigned char byte = *(
(unsigned char*)op +
(((order == 1) ? i : ((count - 1) - i)) * size) +
((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes))
);
if (
(result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) {
return result;
}
rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte;
rop->used += 1;
}
}
mp_clamp(rop);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,31 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* initialize and set a digit */
int mp_init_set_int (mp_int * a, unsigned long b)
{
int err;
if ((err = mp_init(a)) != MP_OKAY) {
return err;
}
return mp_set_int(a, b);
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,175 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* hac 14.61, pp608 */
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x, y, u, v, A, B, C, D;
int res;
/* b cannot be negative */
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
return MP_VAL;
}
/* init temps */
if ((res = mp_init_multi(&x, &y, &u, &v,
&A, &B, &C, &D, NULL)) != MP_OKAY) {
return res;
}
/* x = a, y = b */
if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_copy (b, &y)) != MP_OKAY) {
goto LBL_ERR;
}
/* 2. [modified] if x,y are both even then return an error! */
if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) {
res = MP_VAL;
goto LBL_ERR;
}
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
goto LBL_ERR;
}
mp_set (&A, 1);
mp_set (&D, 1);
top:
/* 4. while u is even do */
while (mp_iseven (&u) == MP_YES) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto LBL_ERR;
}
/* 4.2 if A or B is odd then */
if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) {
/* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* A = A/2, B = B/2 */
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 5. while v is even do */
while (mp_iseven (&v) == MP_YES) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto LBL_ERR;
}
/* 5.2 if C or D is odd then */
if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) {
/* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* C = C/2, D = D/2 */
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* 6. if u >= v then */
if (mp_cmp (&u, &v) != MP_LT) {
/* u = u - v, A = A - C, B = B - D */
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
goto LBL_ERR;
}
} else {
/* v - v - u, C = C - A, D = D - B */
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
goto LBL_ERR;
}
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* if not zero goto step 4 */
if (mp_iszero (&u) == MP_NO)
goto top;
/* now a = C, b = D, gcd == g*v */
/* if v != 1 then there is no inverse */
if (mp_cmp_d (&v, 1) != MP_EQ) {
res = MP_VAL;
goto LBL_ERR;
}
/* if its too low */
while (mp_cmp_d(&C, 0) == MP_LT) {
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* too big */
while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto LBL_ERR;
}
}
/* C is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
return res;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,117 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
* HAC pp. 73 Algorithm 2.149
* HAC is wrong here, as the special case of (0 | 1) is not
* handled correctly.
*/
int mp_jacobi (mp_int * a, mp_int * n, int *c)
{
mp_int a1, p1;
int k, s, r, res;
mp_digit residue;
/* if a < 0 return MP_VAL */
if (mp_isneg(a) == MP_YES) {
return MP_VAL;
}
/* if n <= 0 return MP_VAL */
if (mp_cmp_d(n, 0) != MP_GT) {
return MP_VAL;
}
/* step 1. handle case of a == 0 */
if (mp_iszero (a) == MP_YES) {
/* special case of a == 0 and n == 1 */
if (mp_cmp_d (n, 1) == MP_EQ) {
*c = 1;
} else {
*c = 0;
}
return MP_OKAY;
}
/* step 2. if a == 1, return 1 */
if (mp_cmp_d (a, 1) == MP_EQ) {
*c = 1;
return MP_OKAY;
}
/* default */
s = 0;
/* step 3. write a = a1 * 2**k */
if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&p1)) != MP_OKAY) {
goto LBL_A1;
}
/* divide out larger power of two */
k = mp_cnt_lsb(&a1);
if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
goto LBL_P1;
}
/* step 4. if e is even set s=1 */
if ((k & 1) == 0) {
s = 1;
} else {
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
residue = n->dp[0] & 7;
if ((residue == 1) || (residue == 7)) {
s = 1;
} else if ((residue == 3) || (residue == 5)) {
s = -1;
}
}
/* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
if ( ((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
s = -s;
}
/* if a1 == 1 we're done */
if (mp_cmp_d (&a1, 1) == MP_EQ) {
*c = s;
} else {
/* n1 = n mod a1 */
if ((res = mp_mod (n, &a1, &p1)) != MP_OKAY) {
goto LBL_P1;
}
if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
goto LBL_P1;
}
*c = s * r;
}
/* done */
res = MP_OKAY;
LBL_P1:mp_clear (&p1);
LBL_A1:mp_clear (&a1);
return res;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,167 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* c = |a| * |b| using Karatsuba Multiplication using
* three half size multiplications
*
* Let B represent the radix [e.g. 2**DIGIT_BIT] and
* let n represent half of the number of digits in
* the min(a,b)
*
* a = a1 * B**n + a0
* b = b1 * B**n + b0
*
* Then, a * b =>
a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
*
* Note that a1b1 and a0b0 are used twice and only need to be
* computed once. So in total three half size (half # of
* digit) multiplications are performed, a0b0, a1b1 and
* (a1+b1)(a0+b0)
*
* Note that a multiplication of half the digits requires
* 1/4th the number of single precision multiplications so in
* total after one call 25% of the single precision multiplications
* are saved. Note also that the call to mp_mul can end up back
* in this function if the a0, a1, b0, or b1 are above the threshold.
* This is known as divide-and-conquer and leads to the famous
* O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
* the standard O(N**2) that the baseline/comba methods use.
* Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
{
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
int B, err;
/* default the return code to an error */
err = MP_MEM;
/* min # of digits */
B = MIN (a->used, b->used);
/* now divide in two */
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
goto ERR;
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
goto X0;
if (mp_init_size (&y0, B) != MP_OKAY)
goto X1;
if (mp_init_size (&y1, b->used - B) != MP_OKAY)
goto Y0;
/* init temps */
if (mp_init_size (&t1, B * 2) != MP_OKAY)
goto Y1;
if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
goto T1;
if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
goto X0Y0;
/* now shift the digits */
x0.used = y0.used = B;
x1.used = a->used - B;
y1.used = b->used - B;
{
int x;
mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
/* we copy the digits directly instead of using higher level functions
* since we also need to shift the digits
*/
tmpa = a->dp;
tmpb = b->dp;
tmpx = x0.dp;
tmpy = y0.dp;
for (x = 0; x < B; x++) {
*tmpx++ = *tmpa++;
*tmpy++ = *tmpb++;
}
tmpx = x1.dp;
for (x = B; x < a->used; x++) {
*tmpx++ = *tmpa++;
}
tmpy = y1.dp;
for (x = B; x < b->used; x++) {
*tmpy++ = *tmpb++;
}
}
/* only need to clamp the lower words since by definition the
* upper words x1/y1 must have a known number of digits
*/
mp_clamp (&x0);
mp_clamp (&y0);
/* now calc the products x0y0 and x1y1 */
/* after this x0 is no longer required, free temp [x0==t2]! */
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
goto X1Y1; /* x0y0 = x0*y0 */
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
goto X1Y1; /* x1y1 = x1*y1 */
/* now calc x1+x0 and y1+y0 */
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x1 - x0 */
if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
goto X1Y1; /* t2 = y1 - y0 */
if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
/* add x0y0 */
if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
goto X1Y1; /* t2 = x0y0 + x1y1 */
if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
goto X1Y1; /* x1y1 = x1y1 << 2*B */
if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + t1 */
if (mp_add (&t1, &x1y1, c) != MP_OKAY)
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
/* Algorithm succeeded set the return code to MP_OKAY */
err = MP_OKAY;
X1Y1:mp_clear (&x1y1);
X0Y0:mp_clear (&x0y0);
T1:mp_clear (&t1);
Y1:mp_clear (&y1);
Y0:mp_clear (&y0);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
return err;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,121 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Karatsuba squaring, computes b = a*a using three
* half size squarings
*
* See comments of karatsuba_mul for details. It
* is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
int B, err;
err = MP_MEM;
/* min # of digits */
B = a->used;
/* now divide in two */
B = B >> 1;
/* init copy all the temps */
if (mp_init_size (&x0, B) != MP_OKAY)
goto ERR;
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
goto X0;
/* init temps */
if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
goto X1;
if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
goto T1;
if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
goto T2;
if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
goto X0X0;
{
int x;
mp_digit *dst, *src;
src = a->dp;
/* now shift the digits */
dst = x0.dp;
for (x = 0; x < B; x++) {
*dst++ = *src++;
}
dst = x1.dp;
for (x = B; x < a->used; x++) {
*dst++ = *src++;
}
}
x0.used = B;
x1.used = a->used - B;
mp_clamp (&x0);
/* now calc the products x0*x0 and x1*x1 */
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
goto X1X1; /* x0x0 = x0*x0 */
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
goto X1X1; /* x1x1 = x1*x1 */
/* now calc (x1+x0)**2 */
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
goto X1X1; /* t1 = x1 - x0 */
if (mp_sqr (&t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
/* add x0y0 */
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
goto X1X1; /* t2 = x0x0 + x1x1 */
if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
goto X1X1; /* x1x1 = x1x1 << 2*B */
if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 */
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
err = MP_OKAY;
X1X1:mp_clear (&x1x1);
X0X0:mp_clear (&x0x0);
T2:mp_clear (&t2);
T1:mp_clear (&t1);
X1:mp_clear (&x1);
X0:mp_clear (&x0);
ERR:
return err;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,30 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_N_ROOT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* wrapper function for mp_n_root_ex()
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
*/
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
{
return mp_n_root_ex(a, b, c, 0);
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,132 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_N_ROOT_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* find the n'th root of an integer
*
* Result found such that (c)**b <= a and (c+1)**b > a
*
* This algorithm uses Newton's approximation
* x[i+1] = x[i] - f(x[i])/f'(x[i])
* which will find the root in log(N) time where
* each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
*/
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
mp_int t1, t2, t3;
int res, neg;
/* input must be positive if b is even */
if (((b & 1) == 0) && (a->sign == MP_NEG)) {
return MP_VAL;
}
if ((res = mp_init (&t1)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&t2)) != MP_OKAY) {
goto LBL_T1;
}
if ((res = mp_init (&t3)) != MP_OKAY) {
goto LBL_T2;
}
/* if a is negative fudge the sign but keep track */
neg = a->sign;
a->sign = MP_ZPOS;
/* t2 = 2 */
mp_set (&t2, 2);
do {
/* t1 = t2 */
if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
if ((res = mp_expt_d_ex (&t1, b - 1, &t3, fast)) != MP_OKAY) {
goto LBL_T3;
}
/* numerator */
/* t2 = t1**b */
if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1**b - a */
if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* denominator */
/* t3 = t1**(b-1) * b */
if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto LBL_T3;
}
if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
goto LBL_T3;
}
} while (mp_cmp (&t1, &t2) != MP_EQ);
/* result can be off by a few so check */
for (;;) {
if ((res = mp_expt_d_ex (&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
if (mp_cmp (&t2, a) == MP_GT) {
if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
goto LBL_T3;
}
} else {
break;
}
}
/* reset the sign of a first */
a->sign = neg;
/* set the result */
mp_exch (&t1, c);
/* set the sign of the result */
c->sign = neg;
res = MP_OKAY;
LBL_T3:mp_clear (&t3);
LBL_T2:mp_clear (&t2);
LBL_T1:mp_clear (&t1);
return res;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,50 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* determines if an integers is divisible by one
* of the first PRIME_SIZE primes or not
*
* sets result to 0 if not, 1 if yes
*/
int mp_prime_is_divisible (mp_int * a, int *result)
{
int err, ix;
mp_digit res;
/* default to not */
*result = MP_NO;
for (ix = 0; ix < PRIME_SIZE; ix++) {
/* what is a mod LBL_prime_tab[ix] */
if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
return err;
}
/* is the residue zero? */
if (res == 0) {
*result = MP_YES;
return MP_OKAY;
}
}
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,124 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_PRIME_RANDOM_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
* so it can be NULL
*
*/
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
{
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
int res, err, bsize, maskOR_msb_offset;
/* sanity check the input */
if ((size <= 1) || (t <= 0)) {
return MP_VAL;
}
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
if ((flags & LTM_PRIME_SAFE) != 0) {
flags |= LTM_PRIME_BBS;
}
/* calc the byte size */
bsize = (size>>3) + ((size&7)?1:0);
/* we need a buffer of bsize bytes */
tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
if (tmp == NULL) {
return MP_MEM;
}
/* calc the maskAND value for the MSbyte*/
maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
/* calc the maskOR_msb */
maskOR_msb = 0;
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
if ((flags & LTM_PRIME_2MSB_ON) != 0) {
maskOR_msb |= 0x80 >> ((9 - size) & 7);
}
/* get the maskOR_lsb */
maskOR_lsb = 1;
if ((flags & LTM_PRIME_BBS) != 0) {
maskOR_lsb |= 3;
}
do {
/* read the bytes */
if (cb(tmp, bsize, dat) != bsize) {
err = MP_VAL;
goto error;
}
/* work over the MSbyte */
tmp[0] &= maskAND;
tmp[0] |= 1 << ((size - 1) & 7);
/* mix in the maskORs */
tmp[maskOR_msb_offset] |= maskOR_msb;
tmp[bsize-1] |= maskOR_lsb;
/* read it in */
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
if (res == MP_NO) {
continue;
}
if ((flags & LTM_PRIME_SAFE) != 0) {
/* see if (a-1)/2 is prime */
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
}
} while (res == MP_NO);
if ((flags & LTM_PRIME_SAFE) != 0) {
/* restore a to the original value */
if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
}
err = MP_OKAY;
error:
XFREE(tmp);
return err;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,41 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_READ_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* read signed bin, big endian, first byte is 0==positive or 1==negative */
int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
{
int res;
/* read magnitude */
if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
return res;
}
/* first byte is 0 for positive, non-zero for negative */
if (b[0] == 0) {
a->sign = MP_ZPOS;
} else {
a->sign = MP_NEG;
}
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,55 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_READ_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
{
int res;
/* make sure there are at least two digits */
if (a->alloc < 2) {
if ((res = mp_grow(a, 2)) != MP_OKAY) {
return res;
}
}
/* zero the int */
mp_zero (a);
/* read the bytes in */
while (c-- > 0) {
if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
return res;
}
#ifndef MP_8BIT
a->dp[0] |= *b++;
a->used += 1;
#else
a->dp[0] = (*b & MP_MASK);
a->dp[1] |= ((*b++ >> 7U) & 1);
a->used += 2;
#endif
}
mp_clamp (a);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,48 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* set a 32-bit const */
int mp_set_int (mp_int * a, unsigned long b)
{
int x, res;
mp_zero (a);
/* set four bits at a time */
for (x = 0; x < 8; x++) {
/* shift the number up four bits */
if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
return res;
}
/* OR in the top four bits of the source */
a->dp[0] |= (b >> 28) & 15;
/* shift the source up to the next four bits */
b <<= 4;
/* ensure that digits are not clamped off */
a->used += 1;
}
mp_clamp (a);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,24 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_SET_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* set a platform dependent unsigned long int */
MP_SET_XLONG(mp_set_long, unsigned long)
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,24 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_SET_LONG_LONG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* set a platform dependent unsigned long long int */
MP_SET_XLONG(mp_set_long_long, unsigned long long)
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,27 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_SIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* get the size for an signed equivalent */
int mp_signed_bin_size (mp_int * a)
{
return 1 + mp_unsigned_bin_size (a);
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,33 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_TO_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* store in signed [big endian] format */
int mp_to_signed_bin (mp_int * a, unsigned char *b)
{
int res;
if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
return res;
}
b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1;
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,31 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_TO_SIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* store in signed [big endian] format */
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
return MP_VAL;
}
*outlen = mp_signed_bin_size(a);
return mp_to_signed_bin(a, b);
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,48 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
int x, res;
mp_int t;
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
x = 0;
while (mp_iszero (&t) == MP_NO) {
#ifndef MP_8BIT
b[x++] = (unsigned char) (t.dp[0] & 255);
#else
b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
#endif
if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
mp_clear (&t);
return res;
}
}
bn_reverse (b, x);
mp_clear (&t);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,31 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* store in unsigned [big endian] format */
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
{
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
return MP_VAL;
}
*outlen = mp_unsigned_bin_size(a);
return mp_to_unsigned_bin(a, b);
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,286 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_TOOM_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* multiplication using the Toom-Cook 3-way algorithm
*
* Much more complicated than Karatsuba but has a lower
* asymptotic running time of O(N**1.464). This algorithm is
* only particularly useful on VERY large inputs
* (we're talking 1000s of digits here...).
*/
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
int res, B;
/* init temps */
if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
&a0, &a1, &a2, &b0, &b1,
&b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
return res;
}
/* B */
B = MIN(a->used, b->used) / 3;
/* a = a2 * B**2 + a1 * B + a0 */
if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_copy(a, &a1)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&a1, B);
if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_copy(a, &a2)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&a2, B*2);
/* b = b2 * B**2 + b1 * B + b0 */
if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_copy(b, &b1)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&b1, B);
(void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
if ((res = mp_copy(b, &b2)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&b2, B*2);
/* w0 = a0*b0 */
if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
goto ERR;
}
/* w4 = a2 * b2 */
if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
goto ERR;
}
/* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
goto ERR;
}
/* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
goto ERR;
}
/* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
goto ERR;
}
/* now solve the matrix
0 0 0 0 1
1 2 4 8 16
1 1 1 1 1
16 8 4 2 1
1 0 0 0 0
using 12 subtractions, 4 shifts,
2 small divisions and 1 small multiplication
*/
/* r1 - r4 */
if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r0 */
if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1/2 */
if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3/2 */
if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
goto ERR;
}
/* r2 - r0 - r4 */
if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1 - 8r0 */
if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - 8r4 */
if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
goto ERR;
}
/* 3r2 - r1 - r3 */
if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1/3 */
if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
goto ERR;
}
/* r3/3 */
if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
goto ERR;
}
/* at this point shift W[n] by B*n */
if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
goto ERR;
}
ERR:
mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
&a0, &a1, &a2, &b0, &b1,
&b2, &tmp1, &tmp2, NULL);
return res;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,228 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_TOOM_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* squaring using Toom-Cook 3-way algorithm */
int
mp_toom_sqr(mp_int *a, mp_int *b)
{
mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
int res, B;
/* init temps */
if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
return res;
}
/* B */
B = a->used / 3;
/* a = a2 * B**2 + a1 * B + a0 */
if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_copy(a, &a1)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&a1, B);
if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_copy(a, &a2)) != MP_OKAY) {
goto ERR;
}
mp_rshd(&a2, B*2);
/* w0 = a0*a0 */
if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
goto ERR;
}
/* w4 = a2 * a2 */
if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
goto ERR;
}
/* w1 = (a2 + 2(a1 + 2a0))**2 */
if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
goto ERR;
}
/* w3 = (a0 + 2(a1 + 2a2))**2 */
if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
goto ERR;
}
/* w2 = (a2 + a1 + a0)**2 */
if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
goto ERR;
}
/* now solve the matrix
0 0 0 0 1
1 2 4 8 16
1 1 1 1 1
16 8 4 2 1
1 0 0 0 0
using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
*/
/* r1 - r4 */
if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r0 */
if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1/2 */
if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3/2 */
if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
goto ERR;
}
/* r2 - r0 - r4 */
if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1 - 8r0 */
if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - 8r4 */
if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
goto ERR;
}
/* 3r2 - r1 - r3 */
if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
goto ERR;
}
/* r1 - r2 */
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
goto ERR;
}
/* r3 - r2 */
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
goto ERR;
}
/* r1/3 */
if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
goto ERR;
}
/* r3/3 */
if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
goto ERR;
}
/* at this point shift W[n] by B*n */
if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
goto ERR;
}
if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
goto ERR;
}
ERR:
mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
return res;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,75 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_TORADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* stores a bignum as a ASCII string in a given radix (2..64) */
int mp_toradix (mp_int * a, char *str, int radix)
{
int res, digs;
mp_int t;
mp_digit d;
char *_s = str;
/* check range of the radix */
if ((radix < 2) || (radix > 64)) {
return MP_VAL;
}
/* quick out if its zero */
if (mp_iszero(a) == MP_YES) {
*str++ = '0';
*str = '\0';
return MP_OKAY;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
/* if it is negative output a - */
if (t.sign == MP_NEG) {
++_s;
*str++ = '-';
t.sign = MP_ZPOS;
}
digs = 0;
while (mp_iszero (&t) == MP_NO) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
}
*str++ = mp_s_rmap[d];
++digs;
}
/* reverse the digits of the string. In this case _s points
* to the first digit [exluding the sign] of the number]
*/
bn_reverse ((unsigned char *)_s, digs);
/* append a NULL so the string is properly terminated */
*str = '\0';
mp_clear (&t);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,88 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_TORADIX_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* stores a bignum as a ASCII string in a given radix (2..64)
*
* Stores upto maxlen-1 chars and always a NULL byte
*/
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
{
int res, digs;
mp_int t;
mp_digit d;
char *_s = str;
/* check range of the maxlen, radix */
if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
return MP_VAL;
}
/* quick out if its zero */
if (mp_iszero(a) == MP_YES) {
*str++ = '0';
*str = '\0';
return MP_OKAY;
}
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
}
/* if it is negative output a - */
if (t.sign == MP_NEG) {
/* we have to reverse our digits later... but not the - sign!! */
++_s;
/* store the flag and mark the number as positive */
*str++ = '-';
t.sign = MP_ZPOS;
/* subtract a char */
--maxlen;
}
digs = 0;
while (mp_iszero (&t) == MP_NO) {
if (--maxlen < 1) {
/* no more room */
break;
}
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
}
*str++ = mp_s_rmap[d];
++digs;
}
/* reverse the digits of the string. In this case _s points
* to the first digit [exluding the sign] of the number
*/
bn_reverse ((unsigned char *)_s, digs);
/* append a NULL so the string is properly terminated */
*str = '\0';
mp_clear (&t);
return MP_OKAY;
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,28 +0,0 @@
#include <tommath_private.h>
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size (mp_int * a)
{
int size = mp_count_bits (a);
return (size / 8) + (((size & 7) != 0) ? 1 : 0);
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,39 +0,0 @@
#include <tommath_private.h>
#ifdef BN_REVERSE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* reverse an array, used for radix code */
void
bn_reverse (unsigned char *s, int len)
{
int ix, iy;
unsigned char t;
ix = 0;
iy = len - 1;
while (ix < iy) {
t = s[ix];
s[ix] = s[iy];
s[iy] = t;
++ix;
--iy;
}
}
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,36 +0,0 @@
#include <tommath_private.h>
#ifdef BNCORE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is a library that provides multiple-precision
* integer arithmetic as well as number theoretic functionality.
*
* The library was designed directly after the MPI library by
* Michael Fromberger but has been written from scratch with
* additional optimizations in place.
*
* The library is free for all purposes without any express
* guarantee it works.
*
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Known optimal configurations
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
AMD Athlon64 /GCC v3.4.4 / 80/ 120/LTM 0.35
*/
int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 120, /* Min. number of digits before Karatsuba squaring is used. */
TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
TOOM_SQR_CUTOFF = 400;
#endif
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,267 +0,0 @@
#!/bin/perl
#
#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file
#
#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put
#
#EXAM,file
#
#This preprocessor will then open "file" and insert it as a verbatim copy.
#
#Tom St Denis
#get graphics type
if (shift =~ /PDF/) {
$graph = "";
} else {
$graph = ".ps";
}
open(IN,"<tommath.src") or die "Can't open source file";
open(OUT,">tommath.tex") or die "Can't open destination file";
print "Scanning for sections\n";
$chapter = $section = $subsection = 0;
$x = 0;
while (<IN>) {
print ".";
if (!(++$x % 80)) { print "\n"; }
#update the headings
if (~($_ =~ /\*/)) {
if ($_ =~ /\\chapter\{.+}/) {
++$chapter;
$section = $subsection = 0;
} elsif ($_ =~ /\\section\{.+}/) {
++$section;
$subsection = 0;
} elsif ($_ =~ /\\subsection\{.+}/) {
++$subsection;
}
}
if ($_ =~ m/MARK/) {
@m = split(",",$_);
chomp(@m[1]);
$index1{@m[1]} = $chapter;
$index2{@m[1]} = $section;
$index3{@m[1]} = $subsection;
}
}
close(IN);
open(IN,"<tommath.src") or die "Can't open source file";
$readline = $wroteline = 0;
$srcline = 0;
while (<IN>) {
++$readline;
++$srcline;
if ($_ =~ m/MARK/) {
} elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) {
if ($_ =~ m/EXAM/) {
$skipheader = 1;
} else {
$skipheader = 0;
}
# EXAM,file
chomp($_);
@m = split(",",$_);
open(SRC,"<$m[1]") or die "Error:$srcline:Can't open source file $m[1]";
print "$srcline:Inserting $m[1]:";
$line = 0;
$tmp = $m[1];
$tmp =~ s/_/"\\_"/ge;
print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
$wroteline += 5;
if ($skipheader == 1) {
# scan till next end of comment, e.g. skip license
while (<SRC>) {
$text[$line++] = $_;
last if ($_ =~ /libtom\.org/);
}
<SRC>;
}
$inline = 0;
while (<SRC>) {
next if ($_ =~ /\$Source/);
next if ($_ =~ /\$Revision/);
next if ($_ =~ /\$Date/);
$text[$line++] = $_;
++$inline;
chomp($_);
$_ =~ s/\t/" "/ge;
$_ =~ s/{/"^{"/ge;
$_ =~ s/}/"^}"/ge;
$_ =~ s/\\/'\symbol{92}'/ge;
$_ =~ s/\^/"\\"/ge;
printf OUT ("%03d ", $line);
for ($x = 0; $x < length($_); $x++) {
print OUT chr(vec($_, $x, 8));
if ($x == 75) {
print OUT "\n ";
++$wroteline;
}
}
print OUT "\n";
++$wroteline;
}
$totlines = $line;
print OUT "\\end{alltt}\n\\end{small}\n";
close(SRC);
print "$inline lines\n";
$wroteline += 2;
} elsif ($_ =~ m/@\d+,.+@/) {
# line contains [number,text]
# e.g. @14,for (ix = 0)@
$txt = $_;
while ($txt =~ m/@\d+,.+@/) {
@m = split("@",$txt); # splits into text, one, two
@parms = split(",",$m[1]); # splits one,two into two elements
# now search from $parms[0] down for $parms[1]
$found1 = 0;
$found2 = 0;
for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) {
if ($text[$i] =~ m/\Q$parms[1]\E/) {
$foundline1 = $i + 1;
$found1 = 1;
}
}
# now search backwards
for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) {
if ($text[$i] =~ m/\Q$parms[1]\E/) {
$foundline2 = $i + 1;
$found2 = 1;
}
}
# now use the closest match or the first if tied
if ($found1 == 1 && $found2 == 0) {
$found = 1;
$foundline = $foundline1;
} elsif ($found1 == 0 && $found2 == 1) {
$found = 1;
$foundline = $foundline2;
} elsif ($found1 == 1 && $found2 == 1) {
$found = 1;
if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) {
$foundline = $foundline1;
} else {
$foundline = $foundline2;
}
} else {
$found = 0;
}
# if found replace
if ($found == 1) {
$delta = $parms[0] - $foundline;
print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n";
$_ =~ s/@\Q$m[1]\E@/$foundline/;
} else {
print "ERROR: The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n";
}
# remake the rest of the line
$cnt = @m;
$txt = "";
for ($i = 2; $i < $cnt; $i++) {
$txt = $txt . $m[$i] . "@";
}
}
print OUT $_;
++$wroteline;
} elsif ($_ =~ /~.+~/) {
# line contains a ~text~ pair used to refer to indexing :-)
$txt = $_;
while ($txt =~ /~.+~/) {
@m = split("~", $txt);
# word is the second position
$word = @m[1];
$a = $index1{$word};
$b = $index2{$word};
$c = $index3{$word};
# if chapter (a) is zero it wasn't found
if ($a == 0) {
print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n";
} else {
# format the tag as x, x.y or x.y.z depending on the values
$str = $a;
$str = $str . ".$b" if ($b != 0);
$str = $str . ".$c" if ($c != 0);
if ($b == 0 && $c == 0) {
# its a chapter
if ($a <= 10) {
if ($a == 1) {
$str = "chapter one";
} elsif ($a == 2) {
$str = "chapter two";
} elsif ($a == 3) {
$str = "chapter three";
} elsif ($a == 4) {
$str = "chapter four";
} elsif ($a == 5) {
$str = "chapter five";
} elsif ($a == 6) {
$str = "chapter six";
} elsif ($a == 7) {
$str = "chapter seven";
} elsif ($a == 8) {
$str = "chapter eight";
} elsif ($a == 9) {
$str = "chapter nine";
} elsif ($a == 10) {
$str = "chapter ten";
}
} else {
$str = "chapter " . $str;
}
} else {
$str = "section " . $str if ($b != 0 && $c == 0);
$str = "sub-section " . $str if ($b != 0 && $c != 0);
}
#substitute
$_ =~ s/~\Q$word\E~/$str/;
print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n";
}
# remake rest of the line
$cnt = @m;
$txt = "";
for ($i = 2; $i < $cnt; $i++) {
$txt = $txt . $m[$i] . "~";
}
}
print OUT $_;
++$wroteline;
} elsif ($_ =~ m/FIGU/) {
# FIGU,file,caption
chomp($_);
@m = split(",", $_);
print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
$wroteline += 4;
} else {
print OUT $_;
++$wroteline;
}
}
print "Read $readline lines, wrote $wroteline lines\n";
close (OUT);
close (IN);
system('perl -pli -e "s/\s*$//" tommath.tex');

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,340 +0,0 @@
#include <tommath.h>
#include <time.h>
#include <unistd.h>
#include <stdint.h>
uint64_t _tt;
#ifdef IOWNANATHLON
#include <unistd.h>
#define SLEEP sleep(4)
#else
#define SLEEP
#endif
#ifdef LTM_TIMING_REAL_RAND
#define LTM_TIMING_RAND_SEED time(NULL)
#else
#define LTM_TIMING_RAND_SEED 23
#endif
void ndraw(mp_int * a, char *name)
{
char buf[4096];
printf("%s: ", name);
mp_toradix(a, buf, 64);
printf("%s\n", buf);
}
static void draw(mp_int * a)
{
ndraw(a, "");
}
unsigned long lfsr = 0xAAAAAAAAUL;
int lbit(void)
{
if (lfsr & 0x80000000UL) {
lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
return 1;
} else {
lfsr <<= 1;
return 0;
}
}
/* RDTSC from Scott Duplichan */
static uint64_t TIMFUNC(void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
* the old code always got a warning issued by gcc, clang did not complain...
*/
unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ((uint64_t)lo)|( ((uint64_t)hi)<<32);
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
while (__builtin_expect((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
return result;
#endif
// Microsoft and Intel Windows compilers
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg(3116);
#else
#error need rdtsc function for this build
#endif
}
#define DO(x) x; x;
//#define DO4(x) DO2(x); DO2(x);
//#define DO8(x) DO4(x); DO4(x);
//#define DO(x) DO8(x); DO8(x);
#ifdef TIMING_NO_LOGS
#define FOPEN(a, b) NULL
#define FPRINTF(a,b,c,d)
#define FFLUSH(a)
#define FCLOSE(a) (void)(a)
#else
#define FOPEN(a,b) fopen(a,b)
#define FPRINTF(a,b,c,d) fprintf(a,b,c,d)
#define FFLUSH(a) fflush(a)
#define FCLOSE(a) fclose(a)
#endif
int main(void)
{
uint64_t tt, gg, CLK_PER_SEC;
FILE *log, *logb, *logc, *logd;
mp_int a, b, c, d, e, f;
int n, cnt, ix, old_kara_m, old_kara_s, old_toom_m, old_toom_s;
unsigned rr;
mp_init(&a);
mp_init(&b);
mp_init(&c);
mp_init(&d);
mp_init(&e);
mp_init(&f);
srand(LTM_TIMING_RAND_SEED);
CLK_PER_SEC = TIMFUNC();
sleep(1);
CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
log = FOPEN("logs/add.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_add(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100000);
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
FFLUSH(log);
}
FCLOSE(log);
log = FOPEN("logs/sub.log", "w");
for (cnt = 8; cnt <= 128; cnt += 8) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_sub(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100000);
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
FFLUSH(log);
}
FCLOSE(log);
/* do mult/square twice, first without karatsuba and second with */
old_kara_m = KARATSUBA_MUL_CUTOFF;
old_kara_s = KARATSUBA_SQR_CUTOFF;
/* currently toom-cook cut-off is too high to kick in, so we just use the karatsuba values */
old_toom_m = old_kara_m;
old_toom_s = old_kara_m;
for (ix = 0; ix < 3; ix++) {
printf("With%s Karatsuba, With%s Toom\n", (ix == 0) ? "out" : "", (ix == 1) ? "out" : "");
KARATSUBA_MUL_CUTOFF = (ix == 1) ? old_kara_m : 9999;
KARATSUBA_SQR_CUTOFF = (ix == 1) ? old_kara_s : 9999;
TOOM_MUL_CUTOFF = (ix == 2) ? old_toom_m : 9999;
TOOM_SQR_CUTOFF = (ix == 2) ? old_toom_s : 9999;
log = FOPEN((ix == 0) ? "logs/mult.log" : (ix == 1) ? "logs/mult_kara.log" : "logs/mult_toom.log", "w");
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_mul(&a, &b, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100);
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", mp_count_bits(&a), tt);
FFLUSH(log);
}
FCLOSE(log);
log = FOPEN((ix == 0) ? "logs/sqr.log" : (ix == 1) ? "logs/sqr_kara.log" : "logs/sqr_toom.log", "w");
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
SLEEP;
mp_rand(&a, cnt);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_sqr(&a, &b));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 100);
printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", mp_count_bits(&a), tt);
FFLUSH(log);
}
FCLOSE(log);
}
{
char *primes[] = {
/* 2K large moduli */
"179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
"32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
"1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
/* 2K moduli mersenne primes */
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
/* DR moduli */
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
/* generic unrestricted moduli */
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
NULL
};
log = FOPEN("logs/expt.log", "w");
logb = FOPEN("logs/expt_dr.log", "w");
logc = FOPEN("logs/expt_2k.log", "w");
logd = FOPEN("logs/expt_2kl.log", "w");
for (n = 0; primes[n]; n++) {
SLEEP;
mp_read_radix(&a, primes[n], 10);
mp_zero(&b);
for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
mp_mul_2(&b, &b);
b.dp[0] |= lbit();
b.used += 1;
}
mp_sub_d(&a, 1, &c);
mp_mod(&b, &c, &b);
mp_set(&c, 3);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_exptmod(&c, &b, &a, &d));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 10);
mp_sub_d(&a, 1, &e);
mp_sub(&e, &b, &b);
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
if (mp_cmp_d(&d, 1)) {
printf("Different (%d)!!!\n", mp_count_bits(&a));
draw(&d);
exit(0);
}
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
"%d %9llu\n", mp_count_bits(&a), tt);
}
}
FCLOSE(log);
FCLOSE(logb);
FCLOSE(logc);
FCLOSE(logd);
log = FOPEN("logs/invmod.log", "w");
for (cnt = 4; cnt <= 32; cnt += 4) {
SLEEP;
mp_rand(&a, cnt);
mp_rand(&b, cnt);
do {
mp_add_d(&b, 1, &b);
mp_gcd(&a, &b, &c);
} while (mp_cmp_d(&c, 1) != MP_EQ);
rr = 0;
tt = -1;
do {
gg = TIMFUNC();
DO(mp_invmod(&b, &a, &c));
gg = (TIMFUNC() - gg) >> 1;
if (tt > gg)
tt = gg;
} while (++rr < 1000);
mp_mulmod(&b, &c, &a, &d);
if (mp_cmp_d(&d, 1) != MP_EQ) {
printf("Failed to invert\n");
return 0;
}
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
}
FCLOSE(log);
return 0;
}
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,127 +0,0 @@
#!/usr/bin/perl
#
# Walk through source, add labels and make classes
#
use strict;
use warnings;
my %deplist;
#open class file and write preamble
open(my $class, '>', 'tommath_class.h') or die "Couldn't open tommath_class.h for writing\n";
print {$class} "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined(LTM2)\n#define LTM3\n#endif\n#if defined(LTM1)\n#define LTM2\n#endif\n#define LTM1\n\n#if defined(LTM_ALL)\n";
foreach my $filename (glob 'bn*.c') {
my $define = $filename;
print "Processing $filename\n";
# convert filename to upper case so we can use it as a define
$define =~ tr/[a-z]/[A-Z]/;
$define =~ tr/\./_/;
print {$class} "#define $define\n";
# now copy text and apply #ifdef as required
my $apply = 0;
open(my $src, '<', $filename);
open(my $out, '>', 'tmp');
# first line will be the #ifdef
my $line = <$src>;
if ($line =~ /include/) {
print {$out} $line;
} else {
print {$out} "#include <tommath.h>\n#ifdef $define\n$line";
$apply = 1;
}
while (<$src>) {
if (!($_ =~ /tommath\.h/)) {
print {$out} $_;
}
}
if ($apply == 1) {
print {$out} "#endif\n";
}
close $src;
close $out;
unlink $filename;
rename 'tmp', $filename;
}
print {$class} "#endif\n\n";
# now do classes
foreach my $filename (glob 'bn*.c') {
open(my $src, '<', $filename) or die "Can't open source file!\n";
# convert filename to upper case so we can use it as a define
$filename =~ tr/[a-z]/[A-Z]/;
$filename =~ tr/\./_/;
print {$class} "#if defined($filename)\n";
my $list = $filename;
# scan for mp_* and make classes
while (<$src>) {
my $line = $_;
while ($line =~ m/(fast_)*(s_)*mp\_[a-z_0-9]*/) {
$line = $';
# now $& is the match, we want to skip over LTM keywords like
# mp_int, mp_word, mp_digit
if (!($& eq 'mp_digit') && !($& eq 'mp_word') && !($& eq 'mp_int') && !($& eq 'mp_min_u32')) {
my $a = $&;
$a =~ tr/[a-z]/[A-Z]/;
$a = 'BN_' . $a . '_C';
if (!($list =~ /$a/)) {
print {$class} " #define $a\n";
}
$list = $list . ',' . $a;
}
}
}
$deplist{$filename} = $list;
print {$class} "#endif\n\n";
close $src;
}
print {$class} "#ifdef LTM3\n#define LTM_LAST\n#endif\n#include <tommath_superclass.h>\n#include <tommath_class.h>\n#else\n#define LTM_LAST\n#endif\n";
close $class;
#now let's make a cool call graph...
open(my $out, '>', 'callgraph.txt');
my $indent = 0;
my $list;
foreach (sort keys %deplist) {
$list = '';
draw_func($deplist{$_});
print {$out} "\n\n";
}
close $out;
sub draw_func
{
my @funcs = split ',', $_[0];
if ($list =~ /$funcs[0]/) {
return;
} else {
$list = $list . $funcs[0];
}
if ($indent == 0) {
} elsif ($indent >= 1) {
print {$out} '| ' x ($indent - 1) . '+--->';
}
print {$out} $funcs[0] . "\n";
shift @funcs;
my $temp = $list;
foreach my $i (@funcs) {
++$indent;
draw_func($deplist{$i}) if exists $deplist{$i};
--$indent;
}
$list = $temp;
return;
}

View File

@ -1,2 +0,0 @@
256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979

View File

@ -1,84 +0,0 @@
/* Makes safe primes of a 2k nature */
#include <tommath.h>
#include <time.h>
int sizes[] = {256, 512, 768, 1024, 1536, 2048, 3072, 4096};
int main(void)
{
char buf[2000];
int x, y;
mp_int q, p;
FILE *out;
clock_t t1;
mp_digit z;
mp_init_multi(&q, &p, NULL);
out = fopen("2kprime.1", "w");
for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) {
top:
mp_2expt(&q, sizes[x]);
mp_add_d(&q, 3, &q);
z = -3;
t1 = clock();
for(;;) {
mp_sub_d(&q, 4, &q);
z += 4;
if (z > MP_MASK) {
printf("No primes of size %d found\n", sizes[x]);
break;
}
if (clock() - t1 > CLOCKS_PER_SEC) {
printf("."); fflush(stdout);
// sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC);
t1 = clock();
}
/* quick test on q */
mp_prime_is_prime(&q, 1, &y);
if (y == 0) {
continue;
}
/* find (q-1)/2 */
mp_sub_d(&q, 1, &p);
mp_div_2(&p, &p);
mp_prime_is_prime(&p, 3, &y);
if (y == 0) {
continue;
}
/* test on q */
mp_prime_is_prime(&q, 3, &y);
if (y == 0) {
continue;
}
break;
}
if (y == 0) {
++sizes[x];
goto top;
}
mp_toradix(&q, buf, 10);
printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out);
}
return 0;
}
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,64 +0,0 @@
/* Makes safe primes of a DR nature */
#include <tommath.h>
int sizes[] = { 1+256/DIGIT_BIT, 1+512/DIGIT_BIT, 1+768/DIGIT_BIT, 1+1024/DIGIT_BIT, 1+2048/DIGIT_BIT, 1+4096/DIGIT_BIT };
int main(void)
{
int res, x, y;
char buf[4096];
FILE *out;
mp_int a, b;
mp_init(&a);
mp_init(&b);
out = fopen("drprimes.txt", "w");
for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
top:
printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
mp_grow(&a, sizes[x]);
mp_zero(&a);
for (y = 1; y < sizes[x]; y++) {
a.dp[y] = MP_MASK;
}
/* make a DR modulus */
a.dp[0] = -1;
a.used = sizes[x];
/* now loop */
res = 0;
for (;;) {
a.dp[0] += 4;
if (a.dp[0] >= MP_MASK) break;
mp_prime_is_prime(&a, 1, &res);
if (res == 0) continue;
printf("."); fflush(stdout);
mp_sub_d(&a, 1, &b);
mp_div_2(&b, &b);
mp_prime_is_prime(&b, 3, &res);
if (res == 0) continue;
mp_prime_is_prime(&a, 3, &res);
if (res == 1) break;
}
if (res != 1) {
printf("Error not DR modulus\n"); sizes[x] += 1; goto top;
} else {
mp_toradix(&a, buf, 10);
printf("\n\np == %s\n\n", buf);
fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out);
}
}
fclose(out);
mp_clear(&a);
mp_clear(&b);
return 0;
}
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,25 +0,0 @@
DR safe primes for 28-bit digits.
224-bit prime:
p == 26959946667150639794667015087019630673637144422540572481103341844143
532-bit prime:
p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
784-bit prime:
p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039
1036-bit prime:
p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127
1540-bit prime:
p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783
2072-bit prime:
p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147
3080-bit prime:
p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503
4116-bit prime:
p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679

View File

@ -1,9 +0,0 @@
300-bit prime:
p == 2037035976334486086268445688409378161051468393665936250636140449354381298610415201576637819
540-bit prime:
p == 3599131035634557106248430806148785487095757694641533306480604458089470064537190296255232548883112685719936728506816716098566612844395439751206810991770626477344739
780-bit prime:
p == 6359114106063703798370219984742410466332205126109989319225557147754704702203399726411277962562135973685197744935448875852478791860694279747355800678568677946181447581781401213133886609947027230004277244697462656003655947791725966271167

View File

@ -1,50 +0,0 @@
CFLAGS += -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops -I../
# default lib name (requires install with root)
# LIBNAME=-ltommath
# libname when you can't install the lib with install
LIBNAME=../libtommath.a
#provable primes
pprime: pprime.o
$(CC) pprime.o $(LIBNAME) -o pprime
# portable [well requires clock()] tuning app
tune: tune.o
$(CC) tune.o $(LIBNAME) -o tune
# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
tune86: tune.c
nasm -f coff timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
# for cygwin
tune86c: tune.c
nasm -f gnuwin32 timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
#make tune86 for linux or any ELF format
tune86l: tune.c
nasm -f elf -DUSE_ELF timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
# spits out mersenne primes
mersenne: mersenne.o
$(CC) mersenne.o $(LIBNAME) -o mersenne
# fines DR safe primes for the given config
drprime: drprime.o
$(CC) drprime.o $(LIBNAME) -o drprime
# fines 2k safe primes for the given config
2kprime: 2kprime.o
$(CC) 2kprime.o $(LIBNAME) -o 2kprime
mont: mont.o
$(CC) mont.o $(LIBNAME) -o mont
clean:
rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat \
*.da *.dyn *.dpi *~

View File

@ -1,67 +0,0 @@
CC = icc
CFLAGS += -I../
# optimize for SPEED
#
# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
# -ax? specifies make code specifically for ? but compatible with IA-32
# -x? specifies compile solely for ? [not specifically IA-32 compatible]
#
# where ? is
# K - PIII
# W - first P4 [Williamette]
# N - P4 Northwood
# P - P4 Prescott
# B - Blend of P4 and PM [mobile]
#
# Default to just generic max opts
CFLAGS += -O3 -xP -ip
# default lib name (requires install with root)
# LIBNAME=-ltommath
# libname when you can't install the lib with install
LIBNAME=../libtommath.a
#provable primes
pprime: pprime.o
$(CC) pprime.o $(LIBNAME) -o pprime
# portable [well requires clock()] tuning app
tune: tune.o
$(CC) tune.o $(LIBNAME) -o tune
# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
tune86: tune.c
nasm -f coff timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
# for cygwin
tune86c: tune.c
nasm -f gnuwin32 timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
#make tune86 for linux or any ELF format
tune86l: tune.c
nasm -f elf -DUSE_ELF timer.asm
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
# spits out mersenne primes
mersenne: mersenne.o
$(CC) mersenne.o $(LIBNAME) -o mersenne
# fines DR safe primes for the given config
drprime: drprime.o
$(CC) drprime.o $(LIBNAME) -o drprime
# fines 2k safe primes for the given config
2kprime: 2kprime.o
$(CC) 2kprime.o $(LIBNAME) -o 2kprime
mont: mont.o
$(CC) mont.o $(LIBNAME) -o mont
clean:
rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat *.il

View File

@ -1,23 +0,0 @@
#MSVC Makefile
#
#Tom St Denis
CFLAGS = /I../ /Ox /DWIN32 /W3
pprime: pprime.obj
cl pprime.obj ../tommath.lib
mersenne: mersenne.obj
cl mersenne.obj ../tommath.lib
tune: tune.obj
cl tune.obj ../tommath.lib
mont: mont.obj
cl mont.obj ../tommath.lib
drprime: drprime.obj
cl drprime.obj ../tommath.lib
2kprime: 2kprime.obj
cl 2kprime.obj ../tommath.lib

View File

@ -1,144 +0,0 @@
/* Finds Mersenne primes using the Lucas-Lehmer test
*
* Tom St Denis, tomstdenis@gmail.com
*/
#include <time.h>
#include <tommath.h>
int
is_mersenne (long s, int *pp)
{
mp_int n, u;
int res, k;
*pp = 0;
if ((res = mp_init (&n)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&u)) != MP_OKAY) {
goto LBL_N;
}
/* n = 2^s - 1 */
if ((res = mp_2expt(&n, s)) != MP_OKAY) {
goto LBL_MU;
}
if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
goto LBL_MU;
}
/* set u=4 */
mp_set (&u, 4);
/* for k=1 to s-2 do */
for (k = 1; k <= s - 2; k++) {
/* u = u^2 - 2 mod n */
if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
goto LBL_MU;
}
if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
goto LBL_MU;
}
/* make sure u is positive */
while (u.sign == MP_NEG) {
if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
goto LBL_MU;
}
}
/* reduce */
if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
goto LBL_MU;
}
}
/* if u == 0 then its prime */
if (mp_iszero (&u) == 1) {
mp_prime_is_prime(&n, 8, pp);
if (*pp != 1) printf("FAILURE\n");
}
res = MP_OKAY;
LBL_MU:mp_clear (&u);
LBL_N:mp_clear (&n);
return res;
}
/* square root of a long < 65536 */
long
i_sqrt (long x)
{
long x1, x2;
x2 = 16;
do {
x1 = x2;
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
} while (x1 != x2);
if (x1 * x1 > x) {
--x1;
}
return x1;
}
/* is the long prime by brute force */
int
isprime (long k)
{
long y, z;
y = i_sqrt (k);
for (z = 2; z <= y; z++) {
if ((k % z) == 0)
return 0;
}
return 1;
}
int
main (void)
{
int pp;
long k;
clock_t tt;
k = 3;
for (;;) {
/* start time */
tt = clock ();
/* test if 2^k - 1 is prime */
if (is_mersenne (k, &pp) != MP_OKAY) {
printf ("Whoa error\n");
return -1;
}
if (pp == 1) {
/* count time */
tt = clock () - tt;
/* display if prime */
printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
}
/* goto next odd exponent */
k += 2;
/* but make sure its prime */
while (isprime (k) == 0) {
k += 2;
}
}
return 0;
}
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,50 +0,0 @@
/* tests the montgomery routines */
#include <tommath.h>
int main(void)
{
mp_int modulus, R, p, pp;
mp_digit mp;
long x, y;
srand(time(NULL));
mp_init_multi(&modulus, &R, &p, &pp, NULL);
/* loop through various sizes */
for (x = 4; x < 256; x++) {
printf("DIGITS == %3ld...", x); fflush(stdout);
/* make up the odd modulus */
mp_rand(&modulus, x);
modulus.dp[0] |= 1;
/* now find the R value */
mp_montgomery_calc_normalization(&R, &modulus);
mp_montgomery_setup(&modulus, &mp);
/* now run through a bunch tests */
for (y = 0; y < 1000; y++) {
mp_rand(&p, x/2); /* p = random */
mp_mul(&p, &R, &pp); /* pp = R * p */
mp_montgomery_reduce(&pp, &modulus, mp);
/* should be equal to p */
if (mp_cmp(&pp, &p) != MP_EQ) {
printf("FAILURE!\n");
exit(-1);
}
}
printf("PASSED\n");
}
return 0;
}
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,400 +0,0 @@
/* Generates provable primes
*
* See http://gmail.com:8080/papers/pp.pdf for more info.
*
* Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com
*/
#include <time.h>
#include "tommath.h"
int n_prime;
FILE *primes;
/* fast square root */
static mp_digit
i_sqrt (mp_word x)
{
mp_word x1, x2;
x2 = x;
do {
x1 = x2;
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
} while (x1 != x2);
if (x1 * x1 > x) {
--x1;
}
return x1;
}
/* generates a prime digit */
static void gen_prime (void)
{
mp_digit r, x, y, next;
FILE *out;
out = fopen("pprime.dat", "wb");
/* write first set of primes */
r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
/* get square root, since if 'r' is composite its factors must be < than this */
y = i_sqrt (r);
next = (y + 1) * (y + 1);
for (;;) {
do {
r += 2; /* next candidate */
r &= MP_MASK;
if (r < 31) break;
/* update sqrt ? */
if (next <= r) {
++y;
next = (y + 1) * (y + 1);
}
/* loop if divisible by 3,5,7,11,13,17,19,23,29 */
if ((r % 3) == 0) {
x = 0;
continue;
}
if ((r % 5) == 0) {
x = 0;
continue;
}
if ((r % 7) == 0) {
x = 0;
continue;
}
if ((r % 11) == 0) {
x = 0;
continue;
}
if ((r % 13) == 0) {
x = 0;
continue;
}
if ((r % 17) == 0) {
x = 0;
continue;
}
if ((r % 19) == 0) {
x = 0;
continue;
}
if ((r % 23) == 0) {
x = 0;
continue;
}
if ((r % 29) == 0) {
x = 0;
continue;
}
/* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
for (x = 30; x <= y; x += 30) {
if ((r % (x + 1)) == 0) {
x = 0;
break;
}
if ((r % (x + 7)) == 0) {
x = 0;
break;
}
if ((r % (x + 11)) == 0) {
x = 0;
break;
}
if ((r % (x + 13)) == 0) {
x = 0;
break;
}
if ((r % (x + 17)) == 0) {
x = 0;
break;
}
if ((r % (x + 19)) == 0) {
x = 0;
break;
}
if ((r % (x + 23)) == 0) {
x = 0;
break;
}
if ((r % (x + 29)) == 0) {
x = 0;
break;
}
}
} while (x == 0);
if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
if (r < 31) break;
}
fclose(out);
}
void load_tab(void)
{
primes = fopen("pprime.dat", "rb");
if (primes == NULL) {
gen_prime();
primes = fopen("pprime.dat", "rb");
}
fseek(primes, 0, SEEK_END);
n_prime = ftell(primes) / sizeof(mp_digit);
}
mp_digit prime_digit(void)
{
int n;
mp_digit d;
n = abs(rand()) % n_prime;
fseek(primes, n * sizeof(mp_digit), SEEK_SET);
fread(&d, 1, sizeof(mp_digit), primes);
return d;
}
/* makes a prime of at least k bits */
int
pprime (int k, int li, mp_int * p, mp_int * q)
{
mp_int a, b, c, n, x, y, z, v;
int res, ii;
static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
/* single digit ? */
if (k <= (int) DIGIT_BIT) {
mp_set (p, prime_digit ());
return MP_OKAY;
}
if ((res = mp_init (&c)) != MP_OKAY) {
return res;
}
if ((res = mp_init (&v)) != MP_OKAY) {
goto LBL_C;
}
/* product of first 50 primes */
if ((res =
mp_read_radix (&v,
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
10)) != MP_OKAY) {
goto LBL_V;
}
if ((res = mp_init (&a)) != MP_OKAY) {
goto LBL_V;
}
/* set the prime */
mp_set (&a, prime_digit ());
if ((res = mp_init (&b)) != MP_OKAY) {
goto LBL_A;
}
if ((res = mp_init (&n)) != MP_OKAY) {
goto LBL_B;
}
if ((res = mp_init (&x)) != MP_OKAY) {
goto LBL_N;
}
if ((res = mp_init (&y)) != MP_OKAY) {
goto LBL_X;
}
if ((res = mp_init (&z)) != MP_OKAY) {
goto LBL_Y;
}
/* now loop making the single digit */
while (mp_count_bits (&a) < k) {
fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
fflush (stderr);
top:
mp_set (&b, prime_digit ());
/* now compute z = a * b * 2 */
if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
goto LBL_Z;
}
if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
goto LBL_Z;
}
if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
goto LBL_Z;
}
/* n = z + 1 */
if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
goto LBL_Z;
}
/* check (n, v) == 1 */
if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) != MP_EQ)
goto top;
/* now try base x=bases[ii] */
for (ii = 0; ii < li; ii++) {
mp_set (&x, bases[ii]);
/* compute x^a mod n */
if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
goto LBL_Z;
}
/* if y == 1 loop */
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* now x^2a mod n */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* compute x^b mod n */
if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
goto LBL_Z;
}
/* if y == 1 loop */
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* now x^2b mod n */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
goto LBL_Z;
}
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* compute x^c mod n == x^ab mod n */
if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
goto LBL_Z;
}
/* if y == 1 loop */
if (mp_cmp_d (&y, 1) == MP_EQ)
continue;
/* now compute (x^c mod n)^2 */
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
goto LBL_Z;
}
/* y should be 1 */
if (mp_cmp_d (&y, 1) != MP_EQ)
continue;
break;
}
/* no bases worked? */
if (ii == li)
goto top;
{
char buf[4096];
mp_toradix(&n, buf, 10);
printf("Certificate of primality for:\n%s\n\n", buf);
mp_toradix(&a, buf, 10);
printf("A == \n%s\n\n", buf);
mp_toradix(&b, buf, 10);
printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
printf("----------------------------------------------------------------\n");
}
/* a = n */
mp_copy (&n, &a);
}
/* get q to be the order of the large prime subgroup */
mp_sub_d (&n, 1, q);
mp_div_2 (q, q);
mp_div (q, &b, q, NULL);
mp_exch (&n, p);
res = MP_OKAY;
LBL_Z:mp_clear (&z);
LBL_Y:mp_clear (&y);
LBL_X:mp_clear (&x);
LBL_N:mp_clear (&n);
LBL_B:mp_clear (&b);
LBL_A:mp_clear (&a);
LBL_V:mp_clear (&v);
LBL_C:mp_clear (&c);
return res;
}
int
main (void)
{
mp_int p, q;
char buf[4096];
int k, li;
clock_t t1;
srand (time (NULL));
load_tab();
printf ("Enter # of bits: \n");
fgets (buf, sizeof (buf), stdin);
sscanf (buf, "%d", &k);
printf ("Enter number of bases to try (1 to 8):\n");
fgets (buf, sizeof (buf), stdin);
sscanf (buf, "%d", &li);
mp_init (&p);
mp_init (&q);
t1 = clock ();
pprime (k, li, &p, &q);
t1 = clock () - t1;
printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
mp_toradix (&p, buf, 10);
printf ("P == %s\n", buf);
mp_toradix (&q, buf, 10);
printf ("Q == %s\n", buf);
return 0;
}
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,414 +0,0 @@
Enter # of bits:
Enter number of bases to try (1 to 8):
Certificate of primality for:
36360080703173363
A ==
89963569
B ==
202082249
G == 2
----------------------------------------------------------------
Certificate of primality for:
4851595597739856136987139
A ==
36360080703173363
B ==
66715963
G == 2
----------------------------------------------------------------
Certificate of primality for:
19550639734462621430325731591027
A ==
4851595597739856136987139
B ==
2014867
G == 2
----------------------------------------------------------------
Certificate of primality for:
10409036141344317165691858509923818734539
A ==
19550639734462621430325731591027
B ==
266207047
G == 2
----------------------------------------------------------------
Certificate of primality for:
1049829549988285012736475602118094726647504414203
A ==
10409036141344317165691858509923818734539
B ==
50428759
G == 2
----------------------------------------------------------------
Certificate of primality for:
77194737385528288387712399596835459931920358844586615003
A ==
1049829549988285012736475602118094726647504414203
B ==
36765367
G == 2
----------------------------------------------------------------
Certificate of primality for:
35663756695365208574443215955488689578374232732893628896541201763
A ==
77194737385528288387712399596835459931920358844586615003
B ==
230998627
G == 2
----------------------------------------------------------------
Certificate of primality for:
16711831463502165169495622246023119698415848120292671294127567620396469803
A ==
35663756695365208574443215955488689578374232732893628896541201763
B ==
234297127
G == 2
----------------------------------------------------------------
Certificate of primality for:
6163534781560285962890718925972249753147470953579266394395432475622345597103528739
A ==
16711831463502165169495622246023119698415848120292671294127567620396469803
B ==
184406323
G == 2
----------------------------------------------------------------
Certificate of primality for:
814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
A ==
6163534781560285962890718925972249753147470953579266394395432475622345597103528739
B ==
66054487
G == 2
----------------------------------------------------------------
Certificate of primality for:
176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
A ==
814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
B ==
108362239
G == 2
----------------------------------------------------------------
Certificate of primality for:
44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
A ==
176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
B ==
127286707
G == 2
----------------------------------------------------------------
Certificate of primality for:
20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
A ==
44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
B ==
229284691
G == 2
----------------------------------------------------------------
Certificate of primality for:
6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
A ==
20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
B ==
152800771
G == 2
----------------------------------------------------------------
Certificate of primality for:
3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
A ==
6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
B ==
246595759
G == 2
----------------------------------------------------------------
Certificate of primality for:
26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
A ==
3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
B ==
4252063
G == 2
----------------------------------------------------------------
Certificate of primality for:
11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
A ==
26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
B ==
210605419
G == 2
----------------------------------------------------------------
Certificate of primality for:
1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
A ==
11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
B ==
74170111
G == 2
----------------------------------------------------------------
Certificate of primality for:
857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
A ==
1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
B ==
260016763
G == 2
----------------------------------------------------------------
Certificate of primality for:
175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
A ==
857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
B ==
102563707
G == 2
----------------------------------------------------------------
Certificate of primality for:
48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
A ==
175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
B ==
137747527
G == 2
----------------------------------------------------------------
Certificate of primality for:
13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
A ==
48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
B ==
135672847
G == 2
----------------------------------------------------------------
Certificate of primality for:
6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
A ==
13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
B ==
241523587
G == 2
----------------------------------------------------------------
Certificate of primality for:
3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
A ==
6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
B ==
248388667
G == 2
----------------------------------------------------------------
Certificate of primality for:
390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
A ==
3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
B ==
61849651
G == 2
----------------------------------------------------------------
Certificate of primality for:
48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
A ==
390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
B ==
62201707
G == 2
----------------------------------------------------------------
Certificate of primality for:
25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
A ==
48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
B ==
264832231
G == 2
----------------------------------------------------------------
Certificate of primality for:
2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
A ==
25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
B ==
54494047
G == 2
----------------------------------------------------------------
Certificate of primality for:
738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
A ==
2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
B ==
131594179
G == 2
----------------------------------------------------------------
Certificate of primality for:
392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
A ==
738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
B ==
266107603
G == 2
----------------------------------------------------------------
Certificate of primality for:
168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
A ==
392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
B ==
214408111
G == 2
----------------------------------------------------------------
Certificate of primality for:
14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
A ==
168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
B ==
44122723
G == 2
----------------------------------------------------------------
Certificate of primality for:
1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
A ==
14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
B ==
40808563
G == 2
----------------------------------------------------------------
Certificate of primality for:
186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
A ==
1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
B ==
77035759
G == 2
----------------------------------------------------------------
Certificate of primality for:
83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
A ==
186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
B ==
222383587
G == 2
----------------------------------------------------------------
Certificate of primality for:
3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
A ==
83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
B ==
23407687
G == 2
----------------------------------------------------------------
Certificate of primality for:
1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
A ==
3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
B ==
213701827
G == 2
----------------------------------------------------------------
Took 33057 ticks, 1048 bits
P == 1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
Q == 3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443

View File

@ -1,205 +0,0 @@
Enter # of bits:
Enter number of bases to try (1 to 8):
Certificate of primality for:
85933926807634727
A ==
253758023
B ==
169322581
G == 5
----------------------------------------------------------------
Certificate of primality for:
23930198825086241462113799
A ==
85933926807634727
B ==
139236037
G == 11
----------------------------------------------------------------
Certificate of primality for:
6401844647261612602378676572510019
A ==
23930198825086241462113799
B ==
133760791
G == 2
----------------------------------------------------------------
Certificate of primality for:
269731366027728777712034888684015329354259
A ==
6401844647261612602378676572510019
B ==
21066691
G == 2
----------------------------------------------------------------
Certificate of primality for:
37942338209025571690075025099189467992329684223707
A ==
269731366027728777712034888684015329354259
B ==
70333567
G == 2
----------------------------------------------------------------
Certificate of primality for:
15306904714258982484473490774101705363308327436988160248323
A ==
37942338209025571690075025099189467992329684223707
B ==
201712723
G == 2
----------------------------------------------------------------
Certificate of primality for:
1616744757018513392810355191503853040357155275733333124624513530099
A ==
15306904714258982484473490774101705363308327436988160248323
B ==
52810963
G == 2
----------------------------------------------------------------
Certificate of primality for:
464222094814208047161771036072622485188658077940154689939306386289983787983
A ==
1616744757018513392810355191503853040357155275733333124624513530099
B ==
143566909
G == 5
----------------------------------------------------------------
Certificate of primality for:
187429931674053784626487560729643601208757374994177258429930699354770049369025096447
A ==
464222094814208047161771036072622485188658077940154689939306386289983787983
B ==
201875281
G == 5
----------------------------------------------------------------
Certificate of primality for:
100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
A ==
187429931674053784626487560729643601208757374994177258429930699354770049369025096447
B ==
268311523
G == 2
----------------------------------------------------------------
Certificate of primality for:
1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
A ==
100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
B ==
5834287
G == 2
----------------------------------------------------------------
Certificate of primality for:
191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
A ==
1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
B ==
81567097
G == 5
----------------------------------------------------------------
Certificate of primality for:
57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
A ==
191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
B ==
151095433
G == 7
----------------------------------------------------------------
Certificate of primality for:
13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
A ==
57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
B ==
119178679
G == 2
----------------------------------------------------------------
Certificate of primality for:
7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
A ==
13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
B ==
256552363
G == 2
----------------------------------------------------------------
Certificate of primality for:
1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
A ==
7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
B ==
86720989
G == 5
----------------------------------------------------------------
Certificate of primality for:
446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
A ==
1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
B ==
182015287
G == 2
----------------------------------------------------------------
Certificate of primality for:
5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
A ==
446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
B ==
5920567
G == 2
----------------------------------------------------------------
Took 3454 ticks, 521 bits
P == 5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
Q == 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763

View File

@ -1,37 +0,0 @@
; x86 timer in NASM
;
; Tom St Denis, tomstdenis@iahu.ca
[bits 32]
[section .data]
time dd 0, 0
[section .text]
%ifdef USE_ELF
[global t_start]
t_start:
%else
[global _t_start]
_t_start:
%endif
push edx
push eax
rdtsc
mov [time+0],edx
mov [time+4],eax
pop eax
pop edx
ret
%ifdef USE_ELF
[global t_read]
t_read:
%else
[global _t_read]
_t_read:
%endif
rdtsc
sub eax,[time+4]
sbb edx,[time+0]
ret

View File

@ -1,146 +0,0 @@
/* Tune the Karatsuba parameters
*
* Tom St Denis, tstdenis82@gmail.com
*/
#include <tommath.h>
#include <time.h>
#include <stdint.h>
/* how many times todo each size mult. Depends on your computer. For slow computers
* this can be low like 5 or 10. For fast [re: Athlon] should be 25 - 50 or so
*/
#define TIMES (1UL<<14UL)
#ifndef X86_TIMER
/* RDTSC from Scott Duplichan */
static uint64_t TIMFUNC (void)
{
#if defined __GNUC__
#if defined(__i386__) || defined(__x86_64__)
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
* the old code always got a warning issued by gcc, clang did not complain...
*/
unsigned hi, lo;
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
return ((uint64_t)lo)|( ((uint64_t)hi)<<32);
#else /* gcc-IA64 version */
unsigned long result;
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
while (__builtin_expect ((int) result == -1, 0))
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
return result;
#endif
// Microsoft and Intel Windows compilers
#elif defined _M_IX86
__asm rdtsc
#elif defined _M_AMD64
return __rdtsc ();
#elif defined _M_IA64
#if defined __INTEL_COMPILER
#include <ia64intrin.h>
#endif
return __getReg (3116);
#else
#error need rdtsc function for this build
#endif
}
/* generic ISO C timer */
uint64_t LBL_T;
void t_start(void) { LBL_T = TIMFUNC(); }
uint64_t t_read(void) { return TIMFUNC() - LBL_T; }
#else
extern void t_start(void);
extern uint64_t t_read(void);
#endif
uint64_t time_mult(int size, int s)
{
unsigned long x;
mp_int a, b, c;
uint64_t t1;
mp_init (&a);
mp_init (&b);
mp_init (&c);
mp_rand (&a, size);
mp_rand (&b, size);
if (s == 1) {
KARATSUBA_MUL_CUTOFF = size;
} else {
KARATSUBA_MUL_CUTOFF = 100000;
}
t_start();
for (x = 0; x < TIMES; x++) {
mp_mul(&a,&b,&c);
}
t1 = t_read();
mp_clear (&a);
mp_clear (&b);
mp_clear (&c);
return t1;
}
uint64_t time_sqr(int size, int s)
{
unsigned long x;
mp_int a, b;
uint64_t t1;
mp_init (&a);
mp_init (&b);
mp_rand (&a, size);
if (s == 1) {
KARATSUBA_SQR_CUTOFF = size;
} else {
KARATSUBA_SQR_CUTOFF = 100000;
}
t_start();
for (x = 0; x < TIMES; x++) {
mp_sqr(&a,&b);
}
t1 = t_read();
mp_clear (&a);
mp_clear (&b);
return t1;
}
int
main (void)
{
uint64_t t1, t2;
int x, y;
for (x = 8; ; x += 2) {
t1 = time_mult(x, 0);
t2 = time_mult(x, 1);
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
if (t2 < t1) break;
}
y = x;
for (x = 8; ; x += 2) {
t1 = time_sqr(x, 0);
t2 = time_sqr(x, 1);
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
if (t2 < t1) break;
}
printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
printf("KARATSUBA_SQR_CUTOFF = %d\n", x);
return 0;
}
/* ref: $Format:%D$ */
/* git commit: $Format:%H$ */
/* commit time: $Format:%ai$ */

View File

@ -1,34 +0,0 @@
#!/usr/bin/perl
# we want to filter every between START_INS and END_INS out and then insert crap from another file (this is fun)
use strict;
use warnings;
open(my $src, '<', shift);
open(my $ins, '<', shift);
open(my $tmp, '>', 'tmp.delme');
my $l = 0;
while (<$src>) {
if ($_ =~ /START_INS/) {
print {$tmp} $_;
$l = 1;
while (<$ins>) {
print {$tmp} $_;
}
close $ins;
} elsif ($_ =~ /END_INS/) {
print {$tmp} $_;
$l = 0;
} elsif ($l == 0) {
print {$tmp} $_;
}
}
close $tmp;
close $src;
# ref: $Format:%D$
# git commit: $Format:%H$
# commit time: $Format:%ai$

View File

@ -1,8 +0,0 @@
#!/bin/bash
export a=`find . -maxdepth 1 -type f -name '*.c' | sort | sed -e 'sE\./EE' | sed -e 's/\.c/\.o/' | xargs`
perl ./parsenames.pl OBJECTS "$a"
# ref: $Format:%D$
# git commit: $Format:%H$
# commit time: $Format:%ai$

View File

@ -1,13 +0,0 @@
To use the pretty graphs you have to first build/run the ltmtest from the root directory of the package.
Todo this type
make timing ; ltmtest
in the root. It will run for a while [about ten minutes on most PCs] and produce a series of .log files in logs/.
After doing that run "gnuplot graphs.dem" to make the PNGs. If you managed todo that all so far just open index.html to view
them all :-)
Have fun
Tom

View File

@ -1,16 +0,0 @@
480 87
960 111
1440 135
1920 159
2400 200
2880 224
3360 248
3840 272
4320 296
4800 320
5280 344
5760 368
6240 392
6720 416
7200 440
7680 464

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.1 KiB

View File

@ -1,7 +0,0 @@
513 1435869
769 3544970
1025 7791638
2049 46902238
2561 85334899
3073 141451412
4097 308770310

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.5 KiB

View File

@ -1,5 +0,0 @@
607 2109225
1279 10148314
2203 34126877
3217 82716424
4253 161569606

View File

@ -1,4 +0,0 @@
1024 7705271
2048 34286851
4096 165207491
521 1618631

View File

@ -1,7 +0,0 @@
532 1928550
784 3763908
1036 7564221
1540 16566059
2072 32283784
3080 79851565
4116 157843530

View File

@ -1,17 +0,0 @@
set terminal png
set size 1.75
set ylabel "Cycles per Operation"
set xlabel "Operand size (bits)"
set output "addsub.png"
plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
set output "mult.png"
plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
set output "expt.png"
plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)", 'expt_2k.log' smooth bezier title "Exptmod (2k Reduction)"
set output "invmod.png"
plot 'invmod.log' smooth bezier title "Modular Inverse"

View File

@ -1,27 +0,0 @@
<html>
<head>
<title>LibTomMath Log Plots</title>
</head>
<body>
<h1>Addition and Subtraction</h1>
<center><img src=addsub.png></center>
<hr>
<h1>Multipliers</h1>
<center><img src=mult.png></center>
<hr>
<h1>Exptmod</h1>
<center><img src=expt.png></center>
<hr>
<h1>Modular Inverse</h1>
<center><img src=invmod.png></center>
<hr>
</body>
</html>
/* $Source: /cvs/libtom/libtommath/logs/index.html,v $ */
/* $Revision: 1.2 $ */
/* $Date: 2005/05/05 14:38:47 $ */

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.8 KiB

View File

@ -1,84 +0,0 @@
271 555
390 855
508 1161
631 1605
749 2117
871 2687
991 3329
1108 4084
1231 4786
1351 5624
1470 6392
1586 7364
1710 8218
1830 9255
1951 10217
2067 11461
2191 12463
2308 13677
2430 14800
2551 16232
2671 17460
2791 18899
2902 20247
3028 21902
3151 23240
3267 24927
3391 26441
3511 28277
3631 29838
3749 31751
3869 33673
3989 35431
4111 37518
4231 39426
4349 41504
4471 43567
4591 45786
4711 47876
4831 50299
4951 52427
5071 54785
5189 57241
5307 59730
5431 62194
5551 64761
5670 67322
5789 70073
5907 72663
6030 75437
6151 78242
6268 81202
6389 83948
6509 86985
6631 89903
6747 93184
6869 96044
6991 99286
7109 102395
7229 105917
7351 108940
7470 112490
7589 115702
7711 119508
7831 122632
7951 126410
8071 129808
8190 133895
8311 137146
8431 141218
8549 144732
8667 149131
8790 152462
8911 156754
9030 160479
9149 165138
9271 168601
9391 173185
9511 176988
9627 181976
9751 185539
9870 190388
9991 194335
10110 199605
10228 203298

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.6 KiB

View File

@ -1,84 +0,0 @@
271 560
391 870
511 1159
631 1605
750 2111
871 2737
991 3361
1111 4054
1231 4778
1351 5600
1471 6404
1591 7323
1710 8255
1831 9239
1948 10257
2070 11397
2190 12531
2308 13665
2429 14870
2550 16175
2671 17539
2787 18879
2911 20350
3031 21807
3150 23415
3270 24897
3388 26567
3511 28205
3627 30076
3751 31744
3869 33657
3991 35425
4111 37522
4229 39363
4351 41503
4470 43491
4590 45827
4711 47795
4828 50166
4951 52318
5070 54911
5191 57036
5308 58237
5431 60248
5551 62678
5671 64786
5791 67294
5908 69343
6031 71607
6151 74166
6271 76590
6391 78734
6511 81175
6631 83742
6750 86403
6868 88873
6990 91150
7110 94211
7228 96922
7351 99445
7469 102216
7589 104968
7711 108113
7827 110758
7950 113714
8071 116511
8186 119643
8310 122679
8425 125581
8551 128715
8669 131778
8788 135116
8910 138138
9031 141628
9148 144754
9268 148367
9391 151551
9511 155033
9631 158652
9751 162125
9871 165248
9988 168627
10111 172427
10231 176412

View File

@ -1,84 +0,0 @@
265 562
389 882
509 1207
631 1572
750 1990
859 2433
991 2894
1109 3555
1230 4228
1350 5018
1471 5805
1591 6579
1709 7415
1829 8329
1949 9225
2071 10139
2188 11239
2309 12178
2431 13212
2551 14294
2671 15551
2791 16512
2911 17718
3030 18876
3150 20259
3270 21374
3391 22650
3511 23948
3631 25493
3750 26756
3870 28225
3989 29705
4110 31409
4230 32834
4351 34327
4471 35818
4591 37636
4711 39228
4830 40868
4949 42393
5070 44541
5191 46269
5310 48162
5429 49728
5548 51985
5671 53948
5791 55885
5910 57584
6031 60082
6150 62239
6270 64309
6390 66014
6511 68766
6631 71012
6750 73172
6871 74952
6991 77909
7111 80371
7231 82666
7351 84531
7469 87698
7589 90318
7711 225384
7830 232428
7950 240009
8070 246522
8190 253662
8310 260961
8431 269253
8549 275743
8671 283769
8789 290811
8911 300034
9030 306873
9149 315085
9270 323944
9390 332390
9508 337519
9631 348986
9749 356904
9871 367013
9989 373831
10108 381033
10230 393475

View File

@ -1,84 +0,0 @@
271 560
388 878
511 1179
629 1625
751 1988
871 2423
989 2896
1111 3561
1231 4209
1350 5015
1470 5804
1591 6556
1709 7420
1831 8263
1951 9173
2070 10153
2191 11229
2310 12167
2431 13211
2550 14309
2671 15524
2788 16525
2910 17712
3028 18822
3148 20220
3271 21343
3391 22652
3511 23944
3630 25485
3750 26778
3868 28201
3990 29653
4111 31393
4225 32841
4350 34328
4471 35786
4590 37652
4711 39245
4830 40876
4951 42433
5068 44547
5191 46321
5311 48140
5430 49727
5550 52034
5671 53954
5791 55921
5908 57597
6031 60084
6148 62226
6270 64295
6390 66045
6511 68779
6629 71003
6751 73169
6871 74992
6991 77895
7110 80376
7231 82628
7351 84468
7470 87664
7591 90284
7711 91352
7828 93995
7950 96276
8071 98691
8190 101256
8308 103631
8431 105222
8550 108343
8671 110281
8787 112764
8911 115397
9031 117690
9151 120266
9271 122715
9391 124624
9510 127937
9630 130313
9750 132914
9871 136129
9991 138517
10108 141525
10231 144225

View File

@ -1,16 +0,0 @@
480 94
960 116
1440 140
1920 164
2400 205
2880 229
3360 253
3840 277
4320 299
4800 321
5280 345
5760 371
6240 395
6720 419
7200 441
7680 465

View File

@ -1,46 +0,0 @@
#
# Borland C++Builder Makefile (makefile.bcc)
#
LIB = tlib
CC = bcc32
CFLAGS = -c -O2 -I.
#START_INS
OBJECTS=bncore.obj bn_error.obj bn_fast_mp_invmod.obj bn_fast_mp_montgomery_reduce.obj bn_fast_s_mp_mul_digs.obj \
bn_fast_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj \
bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj \
bn_mp_div.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj bn_mp_dr_setup.obj bn_mp_exch.obj \
bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj \
bn_mp_grow.obj bn_mp_import.obj bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj \
bn_mp_init_set_int.obj bn_mp_init_size.obj bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj \
bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj bn_mp_karatsuba_sqr.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod_2d.obj \
bn_mp_mod.obj bn_mp_mod_d.obj bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj \
bn_mp_montgomery_setup.obj bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_neg.obj \
bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_is_divisible.obj \
bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \
bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj \
bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce_2k.obj \
bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj bn_mp_reduce.obj \
bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj bn_mp_set_int.obj \
bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj \
bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_toom_mul.obj \
bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj \
bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj \
bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj bn_s_mp_mul_high_digs.obj \
bn_s_mp_sqr.obj bn_s_mp_sub.obj
#END_INS
HEADERS=tommath.h tommath_class.h tommath_superclass.h
TARGET = libtommath.lib
$(TARGET): $(OBJECTS)
.c.obj:
$(CC) $(CFLAGS) $<
$(LIB) $(TARGET) -+$@

View File

@ -1,57 +0,0 @@
#Makefile for Cygwin-GCC
#
#This makefile will build a Windows DLL [doesn't require cygwin to run] in the file
#libtommath.dll. The import library is in libtommath.dll.a. Remember to add
#"-Wl,--enable-auto-import" to your client build to avoid the auto-import warnings
#
#Tom St Denis
CFLAGS += -I./ -Wall -W -Wshadow -O3 -funroll-loops -mno-cygwin
#x86 optimizations [should be valid for any GCC install though]
CFLAGS += -fomit-frame-pointer
default: windll
#START_INS
OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \
bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \
bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \
bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \
bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \
bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \
bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \
bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \
bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \
bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \
bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \
bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \
bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \
bn_s_mp_sqr.o bn_s_mp_sub.o
#END_INS
HEADERS=tommath.h tommath_class.h tommath_superclass.h
# make a Windows DLL via Cygwin
windll: $(OBJECTS)
gcc -mno-cygwin -mdll -o libtommath.dll -Wl,--out-implib=libtommath.dll.a -Wl,--export-all-symbols *.o
ranlib libtommath.dll.a
# build the test program using the windows DLL
test: $(OBJECTS) windll
gcc $(CFLAGS) demo/demo.c libtommath.dll.a -Wl,--enable-auto-import -o test -s
cd mtest ; $(CC) -O3 -fomit-frame-pointer -funroll-loops mtest.c -o mtest -s
/* $Source: /cvs/libtom/libtommath/makefile.cygwin_dll,v $ */
/* $Revision: 1.2 $ */
/* $Date: 2005/05/05 14:38:45 $ */

View File

@ -1,117 +0,0 @@
#Makefile for ICC
#
#Tom St Denis
CC=icc
CFLAGS += -I./
# optimize for SPEED
#
# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
# -ax? specifies make code specifically for ? but compatible with IA-32
# -x? specifies compile solely for ? [not specifically IA-32 compatible]
#
# where ? is
# K - PIII
# W - first P4 [Williamette]
# N - P4 Northwood
# P - P4 Prescott
# B - Blend of P4 and PM [mobile]
#
# Default to just generic max opts
CFLAGS += -O3 -xP -ip
#install as this user
USER=root
GROUP=root
default: libtommath.a
#default files to install
LIBNAME=libtommath.a
#LIBPATH-The directory for libtomcrypt to be installed to.
#INCPATH-The directory to install the header files for libtommath.
#DATAPATH-The directory to install the pdf docs.
DESTDIR=
LIBPATH=/usr/lib
INCPATH=/usr/include
DATAPATH=/usr/share/doc/libtommath/pdf
#START_INS
OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \
bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \
bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \
bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \
bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \
bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \
bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \
bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \
bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \
bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \
bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \
bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \
bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \
bn_s_mp_sqr.o bn_s_mp_sub.o
#END_INS
HEADERS=tommath.h tommath_class.h tommath_superclass.h
libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
ranlib libtommath.a
#make a profiled library (takes a while!!!)
#
# This will build the library with profile generation
# then run the test demo and rebuild the library.
#
# So far I've seen improvements in the MP math
profiled:
make -f makefile.icc CFLAGS="$(CFLAGS) -prof_gen -DTESTING" timing
./ltmtest
rm -f *.a *.o ltmtest
make -f makefile.icc CFLAGS="$(CFLAGS) -prof_use"
#make a single object profiled library
profiled_single:
perl gen.pl
$(CC) $(CFLAGS) -prof_gen -DTESTING -c mpi.c -o mpi.o
$(CC) $(CFLAGS) -DTESTING -DTIMER demo/demo.c mpi.o -o ltmtest
./ltmtest
rm -f *.o ltmtest
$(CC) $(CFLAGS) -prof_use -ip -DTESTING -c mpi.c -o mpi.o
$(AR) $(ARFLAGS) libtommath.a mpi.o
ranlib libtommath.a
install: libtommath.a
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
test: libtommath.a demo/demo.o
$(CC) demo/demo.o libtommath.a -o test
mtest: test
cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest
timing: libtommath.a
$(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest
clean:
rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
*.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.il etc/*.il *.dyn
cd etc ; make clean
cd pics ; make clean

View File

@ -1,40 +0,0 @@
#MSVC Makefile
#
#Tom St Denis
CFLAGS = /I. /Ox /DWIN32 /W3 /Fo$@
default: library
#START_INS
OBJECTS=bncore.obj bn_error.obj bn_fast_mp_invmod.obj bn_fast_mp_montgomery_reduce.obj bn_fast_s_mp_mul_digs.obj \
bn_fast_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj \
bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj \
bn_mp_div.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj bn_mp_dr_setup.obj bn_mp_exch.obj \
bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj \
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj \
bn_mp_grow.obj bn_mp_import.obj bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj \
bn_mp_init_set_int.obj bn_mp_init_size.obj bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj \
bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj bn_mp_karatsuba_sqr.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod_2d.obj \
bn_mp_mod.obj bn_mp_mod_d.obj bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj \
bn_mp_montgomery_setup.obj bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_neg.obj \
bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_is_divisible.obj \
bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \
bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj \
bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce_2k.obj \
bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj bn_mp_reduce.obj \
bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj bn_mp_set_int.obj \
bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj \
bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_toom_mul.obj \
bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj \
bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj \
bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj bn_s_mp_mul_high_digs.obj \
bn_s_mp_sqr.obj bn_s_mp_sub.obj
#END_INS
HEADERS=tommath.h tommath_class.h tommath_superclass.h
library: $(OBJECTS)
lib /out:tommath.lib $(OBJECTS)

View File

@ -1,88 +0,0 @@
#Makefile for GCC
#
#Tom St Denis
#default files to install
ifndef LIBNAME
LIBNAME=libtommath.la
endif
include makefile_include.mk
ifndef LT
ifeq ($(PLATFORM), Darwin)
LT:=glibtool
else
LT:=libtool
endif
endif
LTCOMPILE = $(LT) --mode=compile --tag=CC $(CC)
LCOV_ARGS=--directory .libs --directory .
#START_INS
OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \
bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \
bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \
bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \
bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \
bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \
bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \
bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \
bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \
bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \
bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \
bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \
bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \
bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \
bn_s_mp_sqr.o bn_s_mp_sub.o
#END_INS
objs: $(OBJECTS)
.c.o:
$(LTCOMPILE) $(CFLAGS) $(LDFLAGS) -o $@ -c $<
LOBJECTS = $(OBJECTS:.o=.lo)
$(LIBNAME): $(OBJECTS)
$(LT) --mode=link --tag=CC $(CC) $(LDFLAGS) $(LOBJECTS) -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO)
install: $(LIBNAME)
install -d $(DESTDIR)$(LIBPATH)
install -d $(DESTDIR)$(INCPATH)
$(LT) --mode=install install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME)
install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH)
sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION_PC),' libtommath.pc.in > libtommath.pc
install -d $(DESTDIR)$(LIBPATH)/pkgconfig
install -m 644 libtommath.pc $(DESTDIR)$(LIBPATH)/pkgconfig/
uninstall:
$(LT) --mode=uninstall rm $(DESTDIR)$(LIBPATH)/$(LIBNAME)
rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%)
rm $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc
test: $(LIBNAME) demo/demo.o
$(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o
$(LT) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME)
test_standalone: $(LIBNAME) demo/demo.o
$(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o
$(LT) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME)
mtest:
cd mtest ; $(CC) $(CFLAGS) $(LDFLAGS) mtest.c -o mtest
timing: $(LIBNAME)
$(LT) --mode=link $(CC) $(CFLAGS) $(LDFLAGS) -DTIMER demo/timing.c $(LIBNAME) -o ltmtest

View File

@ -1,4 +0,0 @@
#!/bin/bash
if cvs log $1 >/dev/null 2>/dev/null; then exit 0; else echo "$1 shouldn't be here" ; exit 1; fi

View File

@ -1,24 +0,0 @@
const float s_logv_2[] = {
0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0 1 2 3 */
0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
0.193426404, 0.191958720, 0.190551412, 0.189200360, /* 36 37 38 39 */
0.187901825, 0.186652411, 0.185449023, 0.184288833, /* 40 41 42 43 */
0.183169251, 0.182087900, 0.181042597, 0.180031327, /* 44 45 46 47 */
0.179052232, 0.178103594, 0.177183820, 0.176291434, /* 48 49 50 51 */
0.175425064, 0.174583430, 0.173765343, 0.172969690, /* 52 53 54 55 */
0.172195434, 0.171441601, 0.170707280, 0.169991616, /* 56 57 58 59 */
0.169293808, 0.168613099, 0.167948779, 0.167300179, /* 60 61 62 63 */
0.166666667
};
/* $Source$ */
/* $Revision$ */
/* $Date$ */

View File

@ -1,90 +0,0 @@
/* Default configuration for MPI library */
/* $Id$ */
#ifndef MPI_CONFIG_H_
#define MPI_CONFIG_H_
/*
For boolean options,
0 = no
1 = yes
Other options are documented individually.
*/
#ifndef MP_IOFUNC
#define MP_IOFUNC 0 /* include mp_print() ? */
#endif
#ifndef MP_MODARITH
#define MP_MODARITH 1 /* include modular arithmetic ? */
#endif
#ifndef MP_NUMTH
#define MP_NUMTH 1 /* include number theoretic functions? */
#endif
#ifndef MP_LOGTAB
#define MP_LOGTAB 1 /* use table of logs instead of log()? */
#endif
#ifndef MP_MEMSET
#define MP_MEMSET 1 /* use memset() to zero buffers? */
#endif
#ifndef MP_MEMCPY
#define MP_MEMCPY 1 /* use memcpy() to copy buffers? */
#endif
#ifndef MP_CRYPTO
#define MP_CRYPTO 1 /* erase memory on free? */
#endif
#ifndef MP_ARGCHK
/*
0 = no parameter checks
1 = runtime checks, continue execution and return an error to caller
2 = assertions; dump core on parameter errors
*/
#define MP_ARGCHK 2 /* how to check input arguments */
#endif
#ifndef MP_DEBUG
#define MP_DEBUG 0 /* print diagnostic output? */
#endif
#ifndef MP_DEFPREC
#define MP_DEFPREC 64 /* default precision, in digits */
#endif
#ifndef MP_MACRO
#define MP_MACRO 1 /* use macros for frequent calls? */
#endif
#ifndef MP_SQUARE
#define MP_SQUARE 1 /* use separate squaring code? */
#endif
#ifndef MP_PTAB_SIZE
/*
When building mpprime.c, we build in a table of small prime
values to use for primality testing. The more you include,
the more space they take up. See primes.c for the possible
values (currently 16, 32, 64, 128, 256, and 6542)
*/
#define MP_PTAB_SIZE 128 /* how many built-in primes? */
#endif
#ifndef MP_COMPAT_MACROS
#define MP_COMPAT_MACROS 1 /* define compatibility macros? */
#endif
#endif /* ifndef MPI_CONFIG_H_ */
/* crc==3287762869, version==2, Sat Feb 02 06:43:53 2002 */
/* $Source$ */
/* $Revision$ */
/* $Date$ */

View File

@ -1,20 +0,0 @@
/* Type definitions generated by 'types.pl' */
typedef char mp_sign;
typedef unsigned short mp_digit; /* 2 byte type */
typedef unsigned int mp_word; /* 4 byte type */
typedef unsigned int mp_size;
typedef int mp_err;
#define MP_DIGIT_BIT (CHAR_BIT*sizeof(mp_digit))
#define MP_DIGIT_MAX USHRT_MAX
#define MP_WORD_BIT (CHAR_BIT*sizeof(mp_word))
#define MP_WORD_MAX UINT_MAX
#define MP_DIGIT_SIZE 2
#define DIGIT_FMT "%04X"
#define RADIX (MP_DIGIT_MAX+1)
/* $Source$ */
/* $Revision$ */
/* $Date$ */

File diff suppressed because it is too large Load Diff

View File

@ -1,231 +0,0 @@
/*
mpi.h
by Michael J. Fromberger <sting@linguist.dartmouth.edu>
Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
Arbitrary precision integer arithmetic library
$Id$
*/
#ifndef _H_MPI_
#define _H_MPI_
#include "mpi-config.h"
#define MP_LT -1
#define MP_EQ 0
#define MP_GT 1
#if MP_DEBUG
#undef MP_IOFUNC
#define MP_IOFUNC 1
#endif
#if MP_IOFUNC
#include <stdio.h>
#include <ctype.h>
#endif
#include <limits.h>
#define MP_NEG 1
#define MP_ZPOS 0
/* Included for compatibility... */
#define NEG MP_NEG
#define ZPOS MP_ZPOS
#define MP_OKAY 0 /* no error, all is well */
#define MP_YES 0 /* yes (boolean result) */
#define MP_NO -1 /* no (boolean result) */
#define MP_MEM -2 /* out of memory */
#define MP_RANGE -3 /* argument out of range */
#define MP_BADARG -4 /* invalid parameter */
#define MP_UNDEF -5 /* answer is undefined */
#define MP_LAST_CODE MP_UNDEF
#include "mpi-types.h"
/* Included for compatibility... */
#define DIGIT_BIT MP_DIGIT_BIT
#define DIGIT_MAX MP_DIGIT_MAX
/* Macros for accessing the mp_int internals */
#define SIGN(MP) ((MP)->sign)
#define USED(MP) ((MP)->used)
#define ALLOC(MP) ((MP)->alloc)
#define DIGITS(MP) ((MP)->dp)
#define DIGIT(MP,N) (MP)->dp[(N)]
#if MP_ARGCHK == 1
#define ARGCHK(X,Y) {if(!(X)){return (Y);}}
#elif MP_ARGCHK == 2
#include <assert.h>
#define ARGCHK(X,Y) assert(X)
#else
#define ARGCHK(X,Y) /* */
#endif
/* This defines the maximum I/O base (minimum is 2) */
#define MAX_RADIX 64
typedef struct {
mp_sign sign; /* sign of this quantity */
mp_size alloc; /* how many digits allocated */
mp_size used; /* how many digits used */
mp_digit *dp; /* the digits themselves */
} mp_int;
/*------------------------------------------------------------------------*/
/* Default precision */
unsigned int mp_get_prec(void);
void mp_set_prec(unsigned int prec);
/*------------------------------------------------------------------------*/
/* Memory management */
mp_err mp_init(mp_int *mp);
mp_err mp_init_array(mp_int mp[], int count);
mp_err mp_init_size(mp_int *mp, mp_size prec);
mp_err mp_init_copy(mp_int *mp, mp_int *from);
mp_err mp_copy(mp_int *from, mp_int *to);
void mp_exch(mp_int *mp1, mp_int *mp2);
void mp_clear(mp_int *mp);
void mp_clear_array(mp_int mp[], int count);
void mp_zero(mp_int *mp);
void mp_set(mp_int *mp, mp_digit d);
mp_err mp_set_int(mp_int *mp, long z);
mp_err mp_shrink(mp_int *a);
/*------------------------------------------------------------------------*/
/* Single digit arithmetic */
mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b);
mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b);
mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b);
mp_err mp_mul_2(mp_int *a, mp_int *c);
mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r);
mp_err mp_div_2(mp_int *a, mp_int *c);
mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c);
/*------------------------------------------------------------------------*/
/* Sign manipulations */
mp_err mp_abs(mp_int *a, mp_int *b);
mp_err mp_neg(mp_int *a, mp_int *b);
/*------------------------------------------------------------------------*/
/* Full arithmetic */
mp_err mp_add(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c);
#if MP_SQUARE
mp_err mp_sqr(mp_int *a, mp_int *b);
#else
#define mp_sqr(a, b) mp_mul(a, a, b)
#endif
mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r);
mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r);
mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_2expt(mp_int *a, mp_digit k);
mp_err mp_sqrt(mp_int *a, mp_int *b);
/*------------------------------------------------------------------------*/
/* Modular arithmetic */
#if MP_MODARITH
mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c);
mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c);
mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
#if MP_SQUARE
mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c);
#else
#define mp_sqrmod(a, m, c) mp_mulmod(a, a, m, c)
#endif
mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c);
#endif /* MP_MODARITH */
/*------------------------------------------------------------------------*/
/* Comparisons */
int mp_cmp_z(mp_int *a);
int mp_cmp_d(mp_int *a, mp_digit d);
int mp_cmp(mp_int *a, mp_int *b);
int mp_cmp_mag(mp_int *a, mp_int *b);
int mp_cmp_int(mp_int *a, long z);
int mp_isodd(mp_int *a);
int mp_iseven(mp_int *a);
/*------------------------------------------------------------------------*/
/* Number theoretic */
#if MP_NUMTH
mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c);
mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y);
mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c);
#endif /* end MP_NUMTH */
/*------------------------------------------------------------------------*/
/* Input and output */
#if MP_IOFUNC
void mp_print(mp_int *mp, FILE *ofp);
#endif /* end MP_IOFUNC */
/*------------------------------------------------------------------------*/
/* Base conversion */
#define BITS 1
#define BYTES CHAR_BIT
mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len);
int mp_signed_bin_size(mp_int *mp);
mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str);
mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len);
int mp_unsigned_bin_size(mp_int *mp);
mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str);
int mp_count_bits(mp_int *mp);
#if MP_COMPAT_MACROS
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
#define mp_raw_size(mp) mp_signed_bin_size(mp)
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
#endif
mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix);
int mp_radix_size(mp_int *mp, int radix);
int mp_value_radix_size(int num, int qty, int radix);
mp_err mp_toradix(mp_int *mp, char *str, int radix);
int mp_char2value(char ch, int r);
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
/*------------------------------------------------------------------------*/
/* Error strings */
const char *mp_strerror(mp_err ec);
#endif /* end _H_MPI_ */
/* $Source$ */
/* $Revision$ */
/* $Date$ */

View File

@ -1,374 +0,0 @@
/* makes a bignum test harness with NUM tests per operation
*
* the output is made in the following format [one parameter per line]
operation
operand1
operand2
[... operandN]
result1
result2
[... resultN]
So for example "a * b mod n" would be
mulmod
a
b
n
a*b mod n
e.g. if a=3, b=4 n=11 then
mulmod
3
4
11
1
*/
#ifdef MP_8BIT
#define THE_MASK 127
#else
#define THE_MASK 32767
#endif
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include "mpi.c"
#ifdef LTM_MTEST_REAL_RAND
#define getRandChar() fgetc(rng)
FILE *rng;
#else
#define getRandChar() (rand()&0xFF)
#endif
void rand_num(mp_int *a)
{
int size;
unsigned char buf[2048];
size_t sz;
size = 1 + ((getRandChar()<<8) + getRandChar()) % 101;
buf[0] = (getRandChar()&1)?1:0;
#ifdef LTM_MTEST_REAL_RAND
sz = fread(buf+1, 1, size, rng);
#else
sz = 1;
while (sz < (unsigned)size) {
buf[sz] = getRandChar();
++sz;
}
#endif
if (sz != (unsigned)size) {
fprintf(stderr, "\nWarning: fread failed\n\n");
}
while (buf[1] == 0) buf[1] = getRandChar();
mp_read_raw(a, buf, 1+size);
}
void rand_num2(mp_int *a)
{
int size;
unsigned char buf[2048];
size_t sz;
size = 10 + ((getRandChar()<<8) + getRandChar()) % 101;
buf[0] = (getRandChar()&1)?1:0;
#ifdef LTM_MTEST_REAL_RAND
sz = fread(buf+1, 1, size, rng);
#else
sz = 1;
while (sz < (unsigned)size) {
buf[sz] = getRandChar();
++sz;
}
#endif
if (sz != (unsigned)size) {
fprintf(stderr, "\nWarning: fread failed\n\n");
}
while (buf[1] == 0) buf[1] = getRandChar();
mp_read_raw(a, buf, 1+size);
}
#define mp_to64(a, b) mp_toradix(a, b, 64)
int main(int argc, char *argv[])
{
int n, tmp;
long long max;
mp_int a, b, c, d, e;
#ifdef MTEST_NO_FULLSPEED
clock_t t1;
#endif
char buf[4096];
mp_init(&a);
mp_init(&b);
mp_init(&c);
mp_init(&d);
mp_init(&e);
if (argc > 1) {
max = strtol(argv[1], NULL, 0);
if (max < 0) {
if (max > -64) {
max = (1 << -(max)) + 1;
} else {
max = 1;
}
} else if (max == 0) {
max = 1;
}
}
else {
max = 0;
}
/* initial (2^n - 1)^2 testing, makes sure the comba multiplier works [it has the new carry code] */
/*
mp_set(&a, 1);
for (n = 1; n < 8192; n++) {
mp_mul(&a, &a, &c);
printf("mul\n");
mp_to64(&a, buf);
printf("%s\n%s\n", buf, buf);
mp_to64(&c, buf);
printf("%s\n", buf);
mp_add_d(&a, 1, &a);
mp_mul_2(&a, &a);
mp_sub_d(&a, 1, &a);
}
*/
#ifdef LTM_MTEST_REAL_RAND
rng = fopen("/dev/urandom", "rb");
if (rng == NULL) {
rng = fopen("/dev/random", "rb");
if (rng == NULL) {
fprintf(stderr, "\nWarning: stdin used as random source\n\n");
rng = stdin;
}
}
#else
srand(23);
#endif
#ifdef MTEST_NO_FULLSPEED
t1 = clock();
#endif
for (;;) {
#ifdef MTEST_NO_FULLSPEED
if (clock() - t1 > CLOCKS_PER_SEC) {
sleep(2);
t1 = clock();
}
#endif
n = getRandChar() % 15;
if (max != 0) {
--max;
if (max == 0)
n = 255;
}
if (n == 0) {
/* add tests */
rand_num(&a);
rand_num(&b);
mp_add(&a, &b, &c);
printf("add\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
mp_to64(&c, buf);
printf("%s\n", buf);
} else if (n == 1) {
/* sub tests */
rand_num(&a);
rand_num(&b);
mp_sub(&a, &b, &c);
printf("sub\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
mp_to64(&c, buf);
printf("%s\n", buf);
} else if (n == 2) {
/* mul tests */
rand_num(&a);
rand_num(&b);
mp_mul(&a, &b, &c);
printf("mul\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
mp_to64(&c, buf);
printf("%s\n", buf);
} else if (n == 3) {
/* div tests */
rand_num(&a);
rand_num(&b);
mp_div(&a, &b, &c, &d);
printf("div\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
mp_to64(&c, buf);
printf("%s\n", buf);
mp_to64(&d, buf);
printf("%s\n", buf);
} else if (n == 4) {
/* sqr tests */
rand_num(&a);
mp_sqr(&a, &b);
printf("sqr\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
} else if (n == 5) {
/* mul_2d test */
rand_num(&a);
mp_copy(&a, &b);
n = getRandChar() & 63;
mp_mul_2d(&b, n, &b);
mp_to64(&a, buf);
printf("mul2d\n");
printf("%s\n", buf);
printf("%d\n", n);
mp_to64(&b, buf);
printf("%s\n", buf);
} else if (n == 6) {
/* div_2d test */
rand_num(&a);
mp_copy(&a, &b);
n = getRandChar() & 63;
mp_div_2d(&b, n, &b, NULL);
mp_to64(&a, buf);
printf("div2d\n");
printf("%s\n", buf);
printf("%d\n", n);
mp_to64(&b, buf);
printf("%s\n", buf);
} else if (n == 7) {
/* gcd test */
rand_num(&a);
rand_num(&b);
a.sign = MP_ZPOS;
b.sign = MP_ZPOS;
mp_gcd(&a, &b, &c);
printf("gcd\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
mp_to64(&c, buf);
printf("%s\n", buf);
} else if (n == 8) {
/* lcm test */
rand_num(&a);
rand_num(&b);
a.sign = MP_ZPOS;
b.sign = MP_ZPOS;
mp_lcm(&a, &b, &c);
printf("lcm\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
mp_to64(&c, buf);
printf("%s\n", buf);
} else if (n == 9) {
/* exptmod test */
rand_num2(&a);
rand_num2(&b);
rand_num2(&c);
// if (c.dp[0]&1) mp_add_d(&c, 1, &c);
a.sign = b.sign = c.sign = 0;
mp_exptmod(&a, &b, &c, &d);
printf("expt\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
mp_to64(&c, buf);
printf("%s\n", buf);
mp_to64(&d, buf);
printf("%s\n", buf);
} else if (n == 10) {
/* invmod test */
do {
rand_num2(&a);
rand_num2(&b);
b.sign = MP_ZPOS;
a.sign = MP_ZPOS;
mp_gcd(&a, &b, &c);
} while (mp_cmp_d(&c, 1) != 0 || mp_cmp_d(&b, 1) == 0);
mp_invmod(&a, &b, &c);
printf("invmod\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
mp_to64(&c, buf);
printf("%s\n", buf);
} else if (n == 11) {
rand_num(&a);
mp_mul_2(&a, &a);
mp_div_2(&a, &b);
printf("div2\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
} else if (n == 12) {
rand_num2(&a);
mp_mul_2(&a, &b);
printf("mul2\n");
mp_to64(&a, buf);
printf("%s\n", buf);
mp_to64(&b, buf);
printf("%s\n", buf);
} else if (n == 13) {
rand_num2(&a);
tmp = abs(rand()) & THE_MASK;
mp_add_d(&a, tmp, &b);
printf("add_d\n");
mp_to64(&a, buf);
printf("%s\n%d\n", buf, tmp);
mp_to64(&b, buf);
printf("%s\n", buf);
} else if (n == 14) {
rand_num2(&a);
tmp = abs(rand()) & THE_MASK;
mp_sub_d(&a, tmp, &b);
printf("sub_d\n");
mp_to64(&a, buf);
printf("%s\n%d\n", buf, tmp);
mp_to64(&b, buf);
printf("%s\n", buf);
} else if (n == 255) {
printf("exit\n");
break;
}
}
#ifdef LTM_MTEST_REAL_RAND
fclose(rng);
#endif
return 0;
}
/* $Source$ */
/* $Revision$ */
/* $Date$ */

View File

@ -1,28 +0,0 @@
#!/usr/bin/perl
#
# Splits the list of files and outputs for makefile type files
# wrapped at 80 chars
#
# Tom St Denis
use strict;
use warnings;
my @a = split ' ', $ARGV[1];
my $b = $ARGV[0] . '=';
my $len = length $b;
print $b;
foreach my $obj (@a) {
$len = $len + length $obj;
$obj =~ s/\*/\$/;
if ($len > 100) {
printf "\\\n";
$len = length $obj;
}
print $obj . ' ';
}
print "\n\n";
# ref: $Format:%D$
# git commit: $Format:%H$
# commit time: $Format:%ai$

View File

@ -1,35 +0,0 @@
# makes the images... yeah
default: pses
design_process.ps: design_process.tif
tiff2ps -s -e design_process.tif > design_process.ps
sliding_window.ps: sliding_window.tif
tiff2ps -s -e sliding_window.tif > sliding_window.ps
expt_state.ps: expt_state.tif
tiff2ps -s -e expt_state.tif > expt_state.ps
primality.ps: primality.tif
tiff2ps -s -e primality.tif > primality.ps
design_process.pdf: design_process.ps
epstopdf design_process.ps
sliding_window.pdf: sliding_window.ps
epstopdf sliding_window.ps
expt_state.pdf: expt_state.ps
epstopdf expt_state.ps
primality.pdf: primality.ps
epstopdf primality.ps
pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
clean:
rm -rf *.ps *.pdf .xvpics

Some files were not shown because too many files have changed in this diff Show More