mirror of
http://galexander.org/git/simplesshd.git
synced 2024-12-29 09:28:07 +00:00
Merge branch 'dropbear'
This time, to remove files that should have gone away (they are still referenced in the build scripts, probably).
This commit is contained in:
commit
903bfa7ca2
@ -1,860 +0,0 @@
|
||||
/* Copyright 2008, Google Inc.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are
|
||||
* met:
|
||||
*
|
||||
* * Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* * Redistributions in binary form must reproduce the above
|
||||
* copyright notice, this list of conditions and the following disclaimer
|
||||
* in the documentation and/or other materials provided with the
|
||||
* distribution.
|
||||
* * Neither the name of Google Inc. nor the names of its
|
||||
* contributors may be used to endorse or promote products derived from
|
||||
* this software without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*
|
||||
* curve25519-donna: Curve25519 elliptic curve, public key function
|
||||
*
|
||||
* http://code.google.com/p/curve25519-donna/
|
||||
*
|
||||
* Adam Langley <agl@imperialviolet.org>
|
||||
*
|
||||
* Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to>
|
||||
*
|
||||
* More information about curve25519 can be found here
|
||||
* http://cr.yp.to/ecdh.html
|
||||
*
|
||||
* djb's sample implementation of curve25519 is written in a special assembly
|
||||
* language called qhasm and uses the floating point registers.
|
||||
*
|
||||
* This is, almost, a clean room reimplementation from the curve25519 paper. It
|
||||
* uses many of the tricks described therein. Only the crecip function is taken
|
||||
* from the sample implementation. */
|
||||
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define inline __inline
|
||||
#endif
|
||||
|
||||
typedef uint8_t u8;
|
||||
typedef int32_t s32;
|
||||
typedef int64_t limb;
|
||||
|
||||
/* Field element representation:
|
||||
*
|
||||
* Field elements are written as an array of signed, 64-bit limbs, least
|
||||
* significant first. The value of the field element is:
|
||||
* x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ...
|
||||
*
|
||||
* i.e. the limbs are 26, 25, 26, 25, ... bits wide. */
|
||||
|
||||
/* Sum two numbers: output += in */
|
||||
static void fsum(limb *output, const limb *in) {
|
||||
unsigned i;
|
||||
for (i = 0; i < 10; i += 2) {
|
||||
output[0+i] = output[0+i] + in[0+i];
|
||||
output[1+i] = output[1+i] + in[1+i];
|
||||
}
|
||||
}
|
||||
|
||||
/* Find the difference of two numbers: output = in - output
|
||||
* (note the order of the arguments!). */
|
||||
static void fdifference(limb *output, const limb *in) {
|
||||
unsigned i;
|
||||
for (i = 0; i < 10; ++i) {
|
||||
output[i] = in[i] - output[i];
|
||||
}
|
||||
}
|
||||
|
||||
/* Multiply a number by a scalar: output = in * scalar */
|
||||
static void fscalar_product(limb *output, const limb *in, const limb scalar) {
|
||||
unsigned i;
|
||||
for (i = 0; i < 10; ++i) {
|
||||
output[i] = in[i] * scalar;
|
||||
}
|
||||
}
|
||||
|
||||
/* Multiply two numbers: output = in2 * in
|
||||
*
|
||||
* output must be distinct to both inputs. The inputs are reduced coefficient
|
||||
* form, the output is not.
|
||||
*
|
||||
* output[x] <= 14 * the largest product of the input limbs. */
|
||||
static void fproduct(limb *output, const limb *in2, const limb *in) {
|
||||
output[0] = ((limb) ((s32) in2[0])) * ((s32) in[0]);
|
||||
output[1] = ((limb) ((s32) in2[0])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[0]);
|
||||
output[2] = 2 * ((limb) ((s32) in2[1])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[0]);
|
||||
output[3] = ((limb) ((s32) in2[1])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[0]);
|
||||
output[4] = ((limb) ((s32) in2[2])) * ((s32) in[2]) +
|
||||
2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[1])) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[0]);
|
||||
output[5] = ((limb) ((s32) in2[2])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[0]);
|
||||
output[6] = 2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[1])) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[0]);
|
||||
output[7] = ((limb) ((s32) in2[3])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[0]);
|
||||
output[8] = ((limb) ((s32) in2[4])) * ((s32) in[4]) +
|
||||
2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[1])) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[0]);
|
||||
output[9] = ((limb) ((s32) in2[4])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in2[0])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[0]);
|
||||
output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[1])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[1])) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[2]);
|
||||
output[11] = ((limb) ((s32) in2[5])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in2[2])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[2]);
|
||||
output[12] = ((limb) ((s32) in2[6])) * ((s32) in[6]) +
|
||||
2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[3])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[3])) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[4]);
|
||||
output[13] = ((limb) ((s32) in2[6])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[7])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in2[4])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[4]);
|
||||
output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[5])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[5])) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[6]);
|
||||
output[15] = ((limb) ((s32) in2[7])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in2[8])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in2[6])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[6]);
|
||||
output[16] = ((limb) ((s32) in2[8])) * ((s32) in[8]) +
|
||||
2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[7]));
|
||||
output[17] = ((limb) ((s32) in2[8])) * ((s32) in[9]) +
|
||||
((limb) ((s32) in2[9])) * ((s32) in[8]);
|
||||
output[18] = 2 * ((limb) ((s32) in2[9])) * ((s32) in[9]);
|
||||
}
|
||||
|
||||
/* Reduce a long form to a short form by taking the input mod 2^255 - 19.
|
||||
*
|
||||
* On entry: |output[i]| < 14*2^54
|
||||
* On exit: |output[0..8]| < 280*2^54 */
|
||||
static void freduce_degree(limb *output) {
|
||||
/* Each of these shifts and adds ends up multiplying the value by 19.
|
||||
*
|
||||
* For output[0..8], the absolute entry value is < 14*2^54 and we add, at
|
||||
* most, 19*14*2^54 thus, on exit, |output[0..8]| < 280*2^54. */
|
||||
output[8] += output[18] << 4;
|
||||
output[8] += output[18] << 1;
|
||||
output[8] += output[18];
|
||||
output[7] += output[17] << 4;
|
||||
output[7] += output[17] << 1;
|
||||
output[7] += output[17];
|
||||
output[6] += output[16] << 4;
|
||||
output[6] += output[16] << 1;
|
||||
output[6] += output[16];
|
||||
output[5] += output[15] << 4;
|
||||
output[5] += output[15] << 1;
|
||||
output[5] += output[15];
|
||||
output[4] += output[14] << 4;
|
||||
output[4] += output[14] << 1;
|
||||
output[4] += output[14];
|
||||
output[3] += output[13] << 4;
|
||||
output[3] += output[13] << 1;
|
||||
output[3] += output[13];
|
||||
output[2] += output[12] << 4;
|
||||
output[2] += output[12] << 1;
|
||||
output[2] += output[12];
|
||||
output[1] += output[11] << 4;
|
||||
output[1] += output[11] << 1;
|
||||
output[1] += output[11];
|
||||
output[0] += output[10] << 4;
|
||||
output[0] += output[10] << 1;
|
||||
output[0] += output[10];
|
||||
}
|
||||
|
||||
#if (-1 & 3) != 3
|
||||
#error "This code only works on a two's complement system"
|
||||
#endif
|
||||
|
||||
/* return v / 2^26, using only shifts and adds.
|
||||
*
|
||||
* On entry: v can take any value. */
|
||||
static inline limb
|
||||
div_by_2_26(const limb v)
|
||||
{
|
||||
/* High word of v; no shift needed. */
|
||||
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
|
||||
/* Set to all 1s if v was negative; else set to 0s. */
|
||||
const int32_t sign = ((int32_t) highword) >> 31;
|
||||
/* Set to 0x3ffffff if v was negative; else set to 0. */
|
||||
const int32_t roundoff = ((uint32_t) sign) >> 6;
|
||||
/* Should return v / (1<<26) */
|
||||
return (v + roundoff) >> 26;
|
||||
}
|
||||
|
||||
/* return v / (2^25), using only shifts and adds.
|
||||
*
|
||||
* On entry: v can take any value. */
|
||||
static inline limb
|
||||
div_by_2_25(const limb v)
|
||||
{
|
||||
/* High word of v; no shift needed*/
|
||||
const uint32_t highword = (uint32_t) (((uint64_t) v) >> 32);
|
||||
/* Set to all 1s if v was negative; else set to 0s. */
|
||||
const int32_t sign = ((int32_t) highword) >> 31;
|
||||
/* Set to 0x1ffffff if v was negative; else set to 0. */
|
||||
const int32_t roundoff = ((uint32_t) sign) >> 7;
|
||||
/* Should return v / (1<<25) */
|
||||
return (v + roundoff) >> 25;
|
||||
}
|
||||
|
||||
/* Reduce all coefficients of the short form input so that |x| < 2^26.
|
||||
*
|
||||
* On entry: |output[i]| < 280*2^54 */
|
||||
static void freduce_coefficients(limb *output) {
|
||||
unsigned i;
|
||||
|
||||
output[10] = 0;
|
||||
|
||||
for (i = 0; i < 10; i += 2) {
|
||||
limb over = div_by_2_26(output[i]);
|
||||
/* The entry condition (that |output[i]| < 280*2^54) means that over is, at
|
||||
* most, 280*2^28 in the first iteration of this loop. This is added to the
|
||||
* next limb and we can approximate the resulting bound of that limb by
|
||||
* 281*2^54. */
|
||||
output[i] -= over << 26;
|
||||
output[i+1] += over;
|
||||
|
||||
/* For the first iteration, |output[i+1]| < 281*2^54, thus |over| <
|
||||
* 281*2^29. When this is added to the next limb, the resulting bound can
|
||||
* be approximated as 281*2^54.
|
||||
*
|
||||
* For subsequent iterations of the loop, 281*2^54 remains a conservative
|
||||
* bound and no overflow occurs. */
|
||||
over = div_by_2_25(output[i+1]);
|
||||
output[i+1] -= over << 25;
|
||||
output[i+2] += over;
|
||||
}
|
||||
/* Now |output[10]| < 281*2^29 and all other coefficients are reduced. */
|
||||
output[0] += output[10] << 4;
|
||||
output[0] += output[10] << 1;
|
||||
output[0] += output[10];
|
||||
|
||||
output[10] = 0;
|
||||
|
||||
/* Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29
|
||||
* So |over| will be no more than 2^16. */
|
||||
{
|
||||
limb over = div_by_2_26(output[0]);
|
||||
output[0] -= over << 26;
|
||||
output[1] += over;
|
||||
}
|
||||
|
||||
/* Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The
|
||||
* bound on |output[1]| is sufficient to meet our needs. */
|
||||
}
|
||||
|
||||
/* A helpful wrapper around fproduct: output = in * in2.
|
||||
*
|
||||
* On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
|
||||
*
|
||||
* output must be distinct to both inputs. The output is reduced degree
|
||||
* (indeed, one need only provide storage for 10 limbs) and |output[i]| < 2^26. */
|
||||
static void
|
||||
fmul(limb *output, const limb *in, const limb *in2) {
|
||||
limb t[19];
|
||||
fproduct(t, in, in2);
|
||||
/* |t[i]| < 14*2^54 */
|
||||
freduce_degree(t);
|
||||
freduce_coefficients(t);
|
||||
/* |t[i]| < 2^26 */
|
||||
memcpy(output, t, sizeof(limb) * 10);
|
||||
}
|
||||
|
||||
/* Square a number: output = in**2
|
||||
*
|
||||
* output must be distinct from the input. The inputs are reduced coefficient
|
||||
* form, the output is not.
|
||||
*
|
||||
* output[x] <= 14 * the largest product of the input limbs. */
|
||||
static void fsquare_inner(limb *output, const limb *in) {
|
||||
output[0] = ((limb) ((s32) in[0])) * ((s32) in[0]);
|
||||
output[1] = 2 * ((limb) ((s32) in[0])) * ((s32) in[1]);
|
||||
output[2] = 2 * (((limb) ((s32) in[1])) * ((s32) in[1]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[2]));
|
||||
output[3] = 2 * (((limb) ((s32) in[1])) * ((s32) in[2]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[3]));
|
||||
output[4] = ((limb) ((s32) in[2])) * ((s32) in[2]) +
|
||||
4 * ((limb) ((s32) in[1])) * ((s32) in[3]) +
|
||||
2 * ((limb) ((s32) in[0])) * ((s32) in[4]);
|
||||
output[5] = 2 * (((limb) ((s32) in[2])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in[1])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[5]));
|
||||
output[6] = 2 * (((limb) ((s32) in[3])) * ((s32) in[3]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[6]) +
|
||||
2 * ((limb) ((s32) in[1])) * ((s32) in[5]));
|
||||
output[7] = 2 * (((limb) ((s32) in[3])) * ((s32) in[4]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in[1])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[7]));
|
||||
output[8] = ((limb) ((s32) in[4])) * ((s32) in[4]) +
|
||||
2 * (((limb) ((s32) in[2])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[8]) +
|
||||
2 * (((limb) ((s32) in[1])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[3])) * ((s32) in[5])));
|
||||
output[9] = 2 * (((limb) ((s32) in[4])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in[3])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[1])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in[0])) * ((s32) in[9]));
|
||||
output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) +
|
||||
((limb) ((s32) in[4])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[8]) +
|
||||
2 * (((limb) ((s32) in[3])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[1])) * ((s32) in[9])));
|
||||
output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) +
|
||||
((limb) ((s32) in[4])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[3])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in[2])) * ((s32) in[9]));
|
||||
output[12] = ((limb) ((s32) in[6])) * ((s32) in[6]) +
|
||||
2 * (((limb) ((s32) in[4])) * ((s32) in[8]) +
|
||||
2 * (((limb) ((s32) in[5])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[3])) * ((s32) in[9])));
|
||||
output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[5])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in[4])) * ((s32) in[9]));
|
||||
output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) +
|
||||
((limb) ((s32) in[6])) * ((s32) in[8]) +
|
||||
2 * ((limb) ((s32) in[5])) * ((s32) in[9]));
|
||||
output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) +
|
||||
((limb) ((s32) in[6])) * ((s32) in[9]));
|
||||
output[16] = ((limb) ((s32) in[8])) * ((s32) in[8]) +
|
||||
4 * ((limb) ((s32) in[7])) * ((s32) in[9]);
|
||||
output[17] = 2 * ((limb) ((s32) in[8])) * ((s32) in[9]);
|
||||
output[18] = 2 * ((limb) ((s32) in[9])) * ((s32) in[9]);
|
||||
}
|
||||
|
||||
/* fsquare sets output = in^2.
|
||||
*
|
||||
* On entry: The |in| argument is in reduced coefficients form and |in[i]| <
|
||||
* 2^27.
|
||||
*
|
||||
* On exit: The |output| argument is in reduced coefficients form (indeed, one
|
||||
* need only provide storage for 10 limbs) and |out[i]| < 2^26. */
|
||||
static void
|
||||
fsquare(limb *output, const limb *in) {
|
||||
limb t[19];
|
||||
fsquare_inner(t, in);
|
||||
/* |t[i]| < 14*2^54 because the largest product of two limbs will be <
|
||||
* 2^(27+27) and fsquare_inner adds together, at most, 14 of those
|
||||
* products. */
|
||||
freduce_degree(t);
|
||||
freduce_coefficients(t);
|
||||
/* |t[i]| < 2^26 */
|
||||
memcpy(output, t, sizeof(limb) * 10);
|
||||
}
|
||||
|
||||
/* Take a little-endian, 32-byte number and expand it into polynomial form */
|
||||
static void
|
||||
fexpand(limb *output, const u8 *input) {
|
||||
#define F(n,start,shift,mask) \
|
||||
output[n] = ((((limb) input[start + 0]) | \
|
||||
((limb) input[start + 1]) << 8 | \
|
||||
((limb) input[start + 2]) << 16 | \
|
||||
((limb) input[start + 3]) << 24) >> shift) & mask;
|
||||
F(0, 0, 0, 0x3ffffff);
|
||||
F(1, 3, 2, 0x1ffffff);
|
||||
F(2, 6, 3, 0x3ffffff);
|
||||
F(3, 9, 5, 0x1ffffff);
|
||||
F(4, 12, 6, 0x3ffffff);
|
||||
F(5, 16, 0, 0x1ffffff);
|
||||
F(6, 19, 1, 0x3ffffff);
|
||||
F(7, 22, 3, 0x1ffffff);
|
||||
F(8, 25, 4, 0x3ffffff);
|
||||
F(9, 28, 6, 0x1ffffff);
|
||||
#undef F
|
||||
}
|
||||
|
||||
#if (-32 >> 1) != -16
|
||||
#error "This code only works when >> does sign-extension on negative numbers"
|
||||
#endif
|
||||
|
||||
/* s32_eq returns 0xffffffff iff a == b and zero otherwise. */
|
||||
static s32 s32_eq(s32 a, s32 b) {
|
||||
a = ~(a ^ b);
|
||||
a &= a << 16;
|
||||
a &= a << 8;
|
||||
a &= a << 4;
|
||||
a &= a << 2;
|
||||
a &= a << 1;
|
||||
return a >> 31;
|
||||
}
|
||||
|
||||
/* s32_gte returns 0xffffffff if a >= b and zero otherwise, where a and b are
|
||||
* both non-negative. */
|
||||
static s32 s32_gte(s32 a, s32 b) {
|
||||
a -= b;
|
||||
/* a >= 0 iff a >= b. */
|
||||
return ~(a >> 31);
|
||||
}
|
||||
|
||||
/* Take a fully reduced polynomial form number and contract it into a
|
||||
* little-endian, 32-byte array.
|
||||
*
|
||||
* On entry: |input_limbs[i]| < 2^26 */
|
||||
static void
|
||||
fcontract(u8 *output, limb *input_limbs) {
|
||||
int i;
|
||||
int j;
|
||||
s32 input[10];
|
||||
s32 mask;
|
||||
|
||||
/* |input_limbs[i]| < 2^26, so it's valid to convert to an s32. */
|
||||
for (i = 0; i < 10; i++) {
|
||||
input[i] = input_limbs[i];
|
||||
}
|
||||
|
||||
for (j = 0; j < 2; ++j) {
|
||||
for (i = 0; i < 9; ++i) {
|
||||
if ((i & 1) == 1) {
|
||||
/* This calculation is a time-invariant way to make input[i]
|
||||
* non-negative by borrowing from the next-larger limb. */
|
||||
const s32 mask = input[i] >> 31;
|
||||
const s32 carry = -((input[i] & mask) >> 25);
|
||||
input[i] = input[i] + (carry << 25);
|
||||
input[i+1] = input[i+1] - carry;
|
||||
} else {
|
||||
const s32 mask = input[i] >> 31;
|
||||
const s32 carry = -((input[i] & mask) >> 26);
|
||||
input[i] = input[i] + (carry << 26);
|
||||
input[i+1] = input[i+1] - carry;
|
||||
}
|
||||
}
|
||||
|
||||
/* There's no greater limb for input[9] to borrow from, but we can multiply
|
||||
* by 19 and borrow from input[0], which is valid mod 2^255-19. */
|
||||
{
|
||||
const s32 mask = input[9] >> 31;
|
||||
const s32 carry = -((input[9] & mask) >> 25);
|
||||
input[9] = input[9] + (carry << 25);
|
||||
input[0] = input[0] - (carry * 19);
|
||||
}
|
||||
|
||||
/* After the first iteration, input[1..9] are non-negative and fit within
|
||||
* 25 or 26 bits, depending on position. However, input[0] may be
|
||||
* negative. */
|
||||
}
|
||||
|
||||
/* The first borrow-propagation pass above ended with every limb
|
||||
except (possibly) input[0] non-negative.
|
||||
|
||||
If input[0] was negative after the first pass, then it was because of a
|
||||
carry from input[9]. On entry, input[9] < 2^26 so the carry was, at most,
|
||||
one, since (2**26-1) >> 25 = 1. Thus input[0] >= -19.
|
||||
|
||||
In the second pass, each limb is decreased by at most one. Thus the second
|
||||
borrow-propagation pass could only have wrapped around to decrease
|
||||
input[0] again if the first pass left input[0] negative *and* input[1]
|
||||
through input[9] were all zero. In that case, input[1] is now 2^25 - 1,
|
||||
and this last borrow-propagation step will leave input[1] non-negative. */
|
||||
{
|
||||
const s32 mask = input[0] >> 31;
|
||||
const s32 carry = -((input[0] & mask) >> 26);
|
||||
input[0] = input[0] + (carry << 26);
|
||||
input[1] = input[1] - carry;
|
||||
}
|
||||
|
||||
/* All input[i] are now non-negative. However, there might be values between
|
||||
* 2^25 and 2^26 in a limb which is, nominally, 25 bits wide. */
|
||||
for (j = 0; j < 2; j++) {
|
||||
for (i = 0; i < 9; i++) {
|
||||
if ((i & 1) == 1) {
|
||||
const s32 carry = input[i] >> 25;
|
||||
input[i] &= 0x1ffffff;
|
||||
input[i+1] += carry;
|
||||
} else {
|
||||
const s32 carry = input[i] >> 26;
|
||||
input[i] &= 0x3ffffff;
|
||||
input[i+1] += carry;
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
const s32 carry = input[9] >> 25;
|
||||
input[9] &= 0x1ffffff;
|
||||
input[0] += 19*carry;
|
||||
}
|
||||
}
|
||||
|
||||
/* If the first carry-chain pass, just above, ended up with a carry from
|
||||
* input[9], and that caused input[0] to be out-of-bounds, then input[0] was
|
||||
* < 2^26 + 2*19, because the carry was, at most, two.
|
||||
*
|
||||
* If the second pass carried from input[9] again then input[0] is < 2*19 and
|
||||
* the input[9] -> input[0] carry didn't push input[0] out of bounds. */
|
||||
|
||||
/* It still remains the case that input might be between 2^255-19 and 2^255.
|
||||
* In this case, input[1..9] must take their maximum value and input[0] must
|
||||
* be >= (2^255-19) & 0x3ffffff, which is 0x3ffffed. */
|
||||
mask = s32_gte(input[0], 0x3ffffed);
|
||||
for (i = 1; i < 10; i++) {
|
||||
if ((i & 1) == 1) {
|
||||
mask &= s32_eq(input[i], 0x1ffffff);
|
||||
} else {
|
||||
mask &= s32_eq(input[i], 0x3ffffff);
|
||||
}
|
||||
}
|
||||
|
||||
/* mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus
|
||||
* this conditionally subtracts 2^255-19. */
|
||||
input[0] -= mask & 0x3ffffed;
|
||||
|
||||
for (i = 1; i < 10; i++) {
|
||||
if ((i & 1) == 1) {
|
||||
input[i] -= mask & 0x1ffffff;
|
||||
} else {
|
||||
input[i] -= mask & 0x3ffffff;
|
||||
}
|
||||
}
|
||||
|
||||
input[1] <<= 2;
|
||||
input[2] <<= 3;
|
||||
input[3] <<= 5;
|
||||
input[4] <<= 6;
|
||||
input[6] <<= 1;
|
||||
input[7] <<= 3;
|
||||
input[8] <<= 4;
|
||||
input[9] <<= 6;
|
||||
#define F(i, s) \
|
||||
output[s+0] |= input[i] & 0xff; \
|
||||
output[s+1] = (input[i] >> 8) & 0xff; \
|
||||
output[s+2] = (input[i] >> 16) & 0xff; \
|
||||
output[s+3] = (input[i] >> 24) & 0xff;
|
||||
output[0] = 0;
|
||||
output[16] = 0;
|
||||
F(0,0);
|
||||
F(1,3);
|
||||
F(2,6);
|
||||
F(3,9);
|
||||
F(4,12);
|
||||
F(5,16);
|
||||
F(6,19);
|
||||
F(7,22);
|
||||
F(8,25);
|
||||
F(9,28);
|
||||
#undef F
|
||||
}
|
||||
|
||||
/* Input: Q, Q', Q-Q'
|
||||
* Output: 2Q, Q+Q'
|
||||
*
|
||||
* x2 z3: long form
|
||||
* x3 z3: long form
|
||||
* x z: short form, destroyed
|
||||
* xprime zprime: short form, destroyed
|
||||
* qmqp: short form, preserved
|
||||
*
|
||||
* On entry and exit, the absolute value of the limbs of all inputs and outputs
|
||||
* are < 2^26. */
|
||||
static void fmonty(limb *x2, limb *z2, /* output 2Q */
|
||||
limb *x3, limb *z3, /* output Q + Q' */
|
||||
limb *x, limb *z, /* input Q */
|
||||
limb *xprime, limb *zprime, /* input Q' */
|
||||
const limb *qmqp /* input Q - Q' */) {
|
||||
limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19],
|
||||
zzprime[19], zzzprime[19], xxxprime[19];
|
||||
|
||||
memcpy(origx, x, 10 * sizeof(limb));
|
||||
fsum(x, z);
|
||||
/* |x[i]| < 2^27 */
|
||||
fdifference(z, origx); /* does x - z */
|
||||
/* |z[i]| < 2^27 */
|
||||
|
||||
memcpy(origxprime, xprime, sizeof(limb) * 10);
|
||||
fsum(xprime, zprime);
|
||||
/* |xprime[i]| < 2^27 */
|
||||
fdifference(zprime, origxprime);
|
||||
/* |zprime[i]| < 2^27 */
|
||||
fproduct(xxprime, xprime, z);
|
||||
/* |xxprime[i]| < 14*2^54: the largest product of two limbs will be <
|
||||
* 2^(27+27) and fproduct adds together, at most, 14 of those products.
|
||||
* (Approximating that to 2^58 doesn't work out.) */
|
||||
fproduct(zzprime, x, zprime);
|
||||
/* |zzprime[i]| < 14*2^54 */
|
||||
freduce_degree(xxprime);
|
||||
freduce_coefficients(xxprime);
|
||||
/* |xxprime[i]| < 2^26 */
|
||||
freduce_degree(zzprime);
|
||||
freduce_coefficients(zzprime);
|
||||
/* |zzprime[i]| < 2^26 */
|
||||
memcpy(origxprime, xxprime, sizeof(limb) * 10);
|
||||
fsum(xxprime, zzprime);
|
||||
/* |xxprime[i]| < 2^27 */
|
||||
fdifference(zzprime, origxprime);
|
||||
/* |zzprime[i]| < 2^27 */
|
||||
fsquare(xxxprime, xxprime);
|
||||
/* |xxxprime[i]| < 2^26 */
|
||||
fsquare(zzzprime, zzprime);
|
||||
/* |zzzprime[i]| < 2^26 */
|
||||
fproduct(zzprime, zzzprime, qmqp);
|
||||
/* |zzprime[i]| < 14*2^52 */
|
||||
freduce_degree(zzprime);
|
||||
freduce_coefficients(zzprime);
|
||||
/* |zzprime[i]| < 2^26 */
|
||||
memcpy(x3, xxxprime, sizeof(limb) * 10);
|
||||
memcpy(z3, zzprime, sizeof(limb) * 10);
|
||||
|
||||
fsquare(xx, x);
|
||||
/* |xx[i]| < 2^26 */
|
||||
fsquare(zz, z);
|
||||
/* |zz[i]| < 2^26 */
|
||||
fproduct(x2, xx, zz);
|
||||
/* |x2[i]| < 14*2^52 */
|
||||
freduce_degree(x2);
|
||||
freduce_coefficients(x2);
|
||||
/* |x2[i]| < 2^26 */
|
||||
fdifference(zz, xx); /* does zz = xx - zz */
|
||||
/* |zz[i]| < 2^27 */
|
||||
memset(zzz + 10, 0, sizeof(limb) * 9);
|
||||
fscalar_product(zzz, zz, 121665);
|
||||
/* |zzz[i]| < 2^(27+17) */
|
||||
/* No need to call freduce_degree here:
|
||||
fscalar_product doesn't increase the degree of its input. */
|
||||
freduce_coefficients(zzz);
|
||||
/* |zzz[i]| < 2^26 */
|
||||
fsum(zzz, xx);
|
||||
/* |zzz[i]| < 2^27 */
|
||||
fproduct(z2, zz, zzz);
|
||||
/* |z2[i]| < 14*2^(26+27) */
|
||||
freduce_degree(z2);
|
||||
freduce_coefficients(z2);
|
||||
/* |z2|i| < 2^26 */
|
||||
}
|
||||
|
||||
/* Conditionally swap two reduced-form limb arrays if 'iswap' is 1, but leave
|
||||
* them unchanged if 'iswap' is 0. Runs in data-invariant time to avoid
|
||||
* side-channel attacks.
|
||||
*
|
||||
* NOTE that this function requires that 'iswap' be 1 or 0; other values give
|
||||
* wrong results. Also, the two limb arrays must be in reduced-coefficient,
|
||||
* reduced-degree form: the values in a[10..19] or b[10..19] aren't swapped,
|
||||
* and all all values in a[0..9],b[0..9] must have magnitude less than
|
||||
* INT32_MAX. */
|
||||
static void
|
||||
swap_conditional(limb a[19], limb b[19], limb iswap) {
|
||||
unsigned i;
|
||||
const s32 swap = (s32) -iswap;
|
||||
|
||||
for (i = 0; i < 10; ++i) {
|
||||
const s32 x = swap & ( ((s32)a[i]) ^ ((s32)b[i]) );
|
||||
a[i] = ((s32)a[i]) ^ x;
|
||||
b[i] = ((s32)b[i]) ^ x;
|
||||
}
|
||||
}
|
||||
|
||||
/* Calculates nQ where Q is the x-coordinate of a point on the curve
|
||||
*
|
||||
* resultx/resultz: the x coordinate of the resulting curve point (short form)
|
||||
* n: a little endian, 32-byte number
|
||||
* q: a point of the curve (short form) */
|
||||
static void
|
||||
cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) {
|
||||
limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0};
|
||||
limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t;
|
||||
limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1};
|
||||
limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h;
|
||||
|
||||
unsigned i, j;
|
||||
|
||||
memcpy(nqpqx, q, sizeof(limb) * 10);
|
||||
|
||||
for (i = 0; i < 32; ++i) {
|
||||
u8 byte = n[31 - i];
|
||||
for (j = 0; j < 8; ++j) {
|
||||
const limb bit = byte >> 7;
|
||||
|
||||
swap_conditional(nqx, nqpqx, bit);
|
||||
swap_conditional(nqz, nqpqz, bit);
|
||||
fmonty(nqx2, nqz2,
|
||||
nqpqx2, nqpqz2,
|
||||
nqx, nqz,
|
||||
nqpqx, nqpqz,
|
||||
q);
|
||||
swap_conditional(nqx2, nqpqx2, bit);
|
||||
swap_conditional(nqz2, nqpqz2, bit);
|
||||
|
||||
t = nqx;
|
||||
nqx = nqx2;
|
||||
nqx2 = t;
|
||||
t = nqz;
|
||||
nqz = nqz2;
|
||||
nqz2 = t;
|
||||
t = nqpqx;
|
||||
nqpqx = nqpqx2;
|
||||
nqpqx2 = t;
|
||||
t = nqpqz;
|
||||
nqpqz = nqpqz2;
|
||||
nqpqz2 = t;
|
||||
|
||||
byte <<= 1;
|
||||
}
|
||||
}
|
||||
|
||||
memcpy(resultx, nqx, sizeof(limb) * 10);
|
||||
memcpy(resultz, nqz, sizeof(limb) * 10);
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------------------------
|
||||
* Shamelessly copied from djb's code
|
||||
* ----------------------------------------------------------------------------- */
|
||||
static void
|
||||
crecip(limb *out, const limb *z) {
|
||||
limb z2[10];
|
||||
limb z9[10];
|
||||
limb z11[10];
|
||||
limb z2_5_0[10];
|
||||
limb z2_10_0[10];
|
||||
limb z2_20_0[10];
|
||||
limb z2_50_0[10];
|
||||
limb z2_100_0[10];
|
||||
limb t0[10];
|
||||
limb t1[10];
|
||||
int i;
|
||||
|
||||
/* 2 */ fsquare(z2,z);
|
||||
/* 4 */ fsquare(t1,z2);
|
||||
/* 8 */ fsquare(t0,t1);
|
||||
/* 9 */ fmul(z9,t0,z);
|
||||
/* 11 */ fmul(z11,z9,z2);
|
||||
/* 22 */ fsquare(t0,z11);
|
||||
/* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9);
|
||||
|
||||
/* 2^6 - 2^1 */ fsquare(t0,z2_5_0);
|
||||
/* 2^7 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^8 - 2^3 */ fsquare(t0,t1);
|
||||
/* 2^9 - 2^4 */ fsquare(t1,t0);
|
||||
/* 2^10 - 2^5 */ fsquare(t0,t1);
|
||||
/* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0);
|
||||
|
||||
/* 2^11 - 2^1 */ fsquare(t0,z2_10_0);
|
||||
/* 2^12 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
|
||||
/* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0);
|
||||
|
||||
/* 2^21 - 2^1 */ fsquare(t0,z2_20_0);
|
||||
/* 2^22 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
|
||||
/* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0);
|
||||
|
||||
/* 2^41 - 2^1 */ fsquare(t1,t0);
|
||||
/* 2^42 - 2^2 */ fsquare(t0,t1);
|
||||
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
|
||||
/* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0);
|
||||
|
||||
/* 2^51 - 2^1 */ fsquare(t0,z2_50_0);
|
||||
/* 2^52 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
|
||||
/* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0);
|
||||
|
||||
/* 2^101 - 2^1 */ fsquare(t1,z2_100_0);
|
||||
/* 2^102 - 2^2 */ fsquare(t0,t1);
|
||||
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); }
|
||||
/* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0);
|
||||
|
||||
/* 2^201 - 2^1 */ fsquare(t0,t1);
|
||||
/* 2^202 - 2^2 */ fsquare(t1,t0);
|
||||
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); }
|
||||
/* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0);
|
||||
|
||||
/* 2^251 - 2^1 */ fsquare(t1,t0);
|
||||
/* 2^252 - 2^2 */ fsquare(t0,t1);
|
||||
/* 2^253 - 2^3 */ fsquare(t1,t0);
|
||||
/* 2^254 - 2^4 */ fsquare(t0,t1);
|
||||
/* 2^255 - 2^5 */ fsquare(t1,t0);
|
||||
/* 2^255 - 21 */ fmul(out,t1,z11);
|
||||
}
|
||||
|
||||
int
|
||||
curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) {
|
||||
limb bp[10], x[10], z[11], zmone[10];
|
||||
uint8_t e[32];
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 32; ++i) e[i] = secret[i];
|
||||
e[0] &= 248;
|
||||
e[31] &= 127;
|
||||
e[31] |= 64;
|
||||
|
||||
fexpand(bp, basepoint);
|
||||
cmult(x, z, e, bp);
|
||||
crecip(zmone, z);
|
||||
fmul(z, x, zmone);
|
||||
fcontract(mypublic, z);
|
||||
return 0;
|
||||
}
|
File diff suppressed because it is too large
Load Diff
@ -1,47 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_ERROR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
static const struct {
|
||||
int code;
|
||||
const char *msg;
|
||||
} msgs[] = {
|
||||
{ MP_OKAY, "Successful" },
|
||||
{ MP_MEM, "Out of heap" },
|
||||
{ MP_VAL, "Value out of range" }
|
||||
};
|
||||
|
||||
/* return a char * string for a given code */
|
||||
const char *mp_error_to_string(int code)
|
||||
{
|
||||
int x;
|
||||
|
||||
/* scan the lookup table for the given message */
|
||||
for (x = 0; x < (int)(sizeof(msgs) / sizeof(msgs[0])); x++) {
|
||||
if (msgs[x].code == code) {
|
||||
return msgs[x].msg;
|
||||
}
|
||||
}
|
||||
|
||||
/* generic reply for invalid code */
|
||||
return "Invalid error code";
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,148 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_FAST_MP_INVMOD_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* computes the modular inverse via binary extended euclidean algorithm,
|
||||
* that is c = 1/a mod b
|
||||
*
|
||||
* Based on slow invmod except this is optimized for the case where b is
|
||||
* odd as per HAC Note 14.64 on pp. 610
|
||||
*/
|
||||
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x, y, u, v, B, D;
|
||||
int res, neg;
|
||||
|
||||
/* 2. [modified] b must be odd */
|
||||
if (mp_iseven (b) == MP_YES) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* init all our temps */
|
||||
if ((res = mp_init_multi(&x, &y, &u, &v, &B, &D, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* x == modulus, y == value to invert */
|
||||
if ((res = mp_copy (b, &x)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* we need y = |a| */
|
||||
if ((res = mp_mod (a, b, &y)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
||||
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
mp_set (&D, 1);
|
||||
|
||||
top:
|
||||
/* 4. while u is even do */
|
||||
while (mp_iseven (&u) == MP_YES) {
|
||||
/* 4.1 u = u/2 */
|
||||
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 4.2 if B is odd then */
|
||||
if (mp_isodd (&B) == MP_YES) {
|
||||
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* B = B/2 */
|
||||
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 5. while v is even do */
|
||||
while (mp_iseven (&v) == MP_YES) {
|
||||
/* 5.1 v = v/2 */
|
||||
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 5.2 if D is odd then */
|
||||
if (mp_isodd (&D) == MP_YES) {
|
||||
/* D = (D-x)/2 */
|
||||
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* D = D/2 */
|
||||
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 6. if u >= v then */
|
||||
if (mp_cmp (&u, &v) != MP_LT) {
|
||||
/* u = u - v, B = B - D */
|
||||
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else {
|
||||
/* v - v - u, D = D - B */
|
||||
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* if not zero goto step 4 */
|
||||
if (mp_iszero (&u) == MP_NO) {
|
||||
goto top;
|
||||
}
|
||||
|
||||
/* now a = C, b = D, gcd == g*v */
|
||||
|
||||
/* if v != 1 then there is no inverse */
|
||||
if (mp_cmp_d (&v, 1) != MP_EQ) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* b is now the inverse */
|
||||
neg = a->sign;
|
||||
while (D.sign == MP_NEG) {
|
||||
if ((res = mp_add (&D, b, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
mp_exch (&D, c);
|
||||
c->sign = neg;
|
||||
res = MP_OKAY;
|
||||
|
||||
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,172 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* computes xR**-1 == x (mod N) via Montgomery Reduction
|
||||
*
|
||||
* This is an optimized implementation of montgomery_reduce
|
||||
* which uses the comba method to quickly calculate the columns of the
|
||||
* reduction.
|
||||
*
|
||||
* Based on Algorithm 14.32 on pp.601 of HAC.
|
||||
*/
|
||||
int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
|
||||
{
|
||||
int ix, res, olduse;
|
||||
mp_word W[MP_WARRAY];
|
||||
|
||||
/* get old used count */
|
||||
olduse = x->used;
|
||||
|
||||
/* grow a as required */
|
||||
if (x->alloc < (n->used + 1)) {
|
||||
if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* first we have to get the digits of the input into
|
||||
* an array of double precision words W[...]
|
||||
*/
|
||||
{
|
||||
mp_word *_W;
|
||||
mp_digit *tmpx;
|
||||
|
||||
/* alias for the W[] array */
|
||||
_W = W;
|
||||
|
||||
/* alias for the digits of x*/
|
||||
tmpx = x->dp;
|
||||
|
||||
/* copy the digits of a into W[0..a->used-1] */
|
||||
for (ix = 0; ix < x->used; ix++) {
|
||||
*_W++ = *tmpx++;
|
||||
}
|
||||
|
||||
/* zero the high words of W[a->used..m->used*2] */
|
||||
for (; ix < ((n->used * 2) + 1); ix++) {
|
||||
*_W++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* now we proceed to zero successive digits
|
||||
* from the least significant upwards
|
||||
*/
|
||||
for (ix = 0; ix < n->used; ix++) {
|
||||
/* mu = ai * m' mod b
|
||||
*
|
||||
* We avoid a double precision multiplication (which isn't required)
|
||||
* by casting the value down to a mp_digit. Note this requires
|
||||
* that W[ix-1] have the carry cleared (see after the inner loop)
|
||||
*/
|
||||
mp_digit mu;
|
||||
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
|
||||
|
||||
/* a = a + mu * m * b**i
|
||||
*
|
||||
* This is computed in place and on the fly. The multiplication
|
||||
* by b**i is handled by offseting which columns the results
|
||||
* are added to.
|
||||
*
|
||||
* Note the comba method normally doesn't handle carries in the
|
||||
* inner loop In this case we fix the carry from the previous
|
||||
* column since the Montgomery reduction requires digits of the
|
||||
* result (so far) [see above] to work. This is
|
||||
* handled by fixing up one carry after the inner loop. The
|
||||
* carry fixups are done in order so after these loops the
|
||||
* first m->used words of W[] have the carries fixed
|
||||
*/
|
||||
{
|
||||
int iy;
|
||||
mp_digit *tmpn;
|
||||
mp_word *_W;
|
||||
|
||||
/* alias for the digits of the modulus */
|
||||
tmpn = n->dp;
|
||||
|
||||
/* Alias for the columns set by an offset of ix */
|
||||
_W = W + ix;
|
||||
|
||||
/* inner loop */
|
||||
for (iy = 0; iy < n->used; iy++) {
|
||||
*_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
|
||||
}
|
||||
}
|
||||
|
||||
/* now fix carry for next digit, W[ix+1] */
|
||||
W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* now we have to propagate the carries and
|
||||
* shift the words downward [all those least
|
||||
* significant digits we zeroed].
|
||||
*/
|
||||
{
|
||||
mp_digit *tmpx;
|
||||
mp_word *_W, *_W1;
|
||||
|
||||
/* nox fix rest of carries */
|
||||
|
||||
/* alias for current word */
|
||||
_W1 = W + ix;
|
||||
|
||||
/* alias for next word, where the carry goes */
|
||||
_W = W + ++ix;
|
||||
|
||||
for (; ix <= ((n->used * 2) + 1); ix++) {
|
||||
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* copy out, A = A/b**n
|
||||
*
|
||||
* The result is A/b**n but instead of converting from an
|
||||
* array of mp_word to mp_digit than calling mp_rshd
|
||||
* we just copy them in the right order
|
||||
*/
|
||||
|
||||
/* alias for destination word */
|
||||
tmpx = x->dp;
|
||||
|
||||
/* alias for shifted double precision result */
|
||||
_W = W + n->used;
|
||||
|
||||
for (ix = 0; ix < (n->used + 1); ix++) {
|
||||
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
|
||||
}
|
||||
|
||||
/* zero oldused digits, if the input a was larger than
|
||||
* m->used+1 we'll have to clear the digits
|
||||
*/
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpx++ = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* set the max used and clamp */
|
||||
x->used = n->used + 1;
|
||||
mp_clamp (x);
|
||||
|
||||
/* if A >= m then A = A - m */
|
||||
if (mp_cmp_mag (x, n) != MP_LT) {
|
||||
return s_mp_sub (x, n, x);
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,107 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* Fast (comba) multiplier
|
||||
*
|
||||
* This is the fast column-array [comba] multiplier. It is
|
||||
* designed to compute the columns of the product first
|
||||
* then handle the carries afterwards. This has the effect
|
||||
* of making the nested loops that compute the columns very
|
||||
* simple and schedulable on super-scalar processors.
|
||||
*
|
||||
* This has been modified to produce a variable number of
|
||||
* digits of output so if say only a half-product is required
|
||||
* you don't have to compute the upper half (a feature
|
||||
* required for fast Barrett reduction).
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*
|
||||
*/
|
||||
int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
mp_word _W;
|
||||
|
||||
/* grow the destination as required */
|
||||
if (c->alloc < digs) {
|
||||
if ((res = mp_grow (c, digs)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
pa = MIN(digs, a->used + b->used);
|
||||
|
||||
/* clear the carry */
|
||||
_W = 0;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
int tx, ty;
|
||||
int iy;
|
||||
mp_digit *tmpx, *tmpy;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(b->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = b->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; ++iz) {
|
||||
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
||||
|
||||
}
|
||||
|
||||
/* store term */
|
||||
W[ix] = ((mp_digit)_W) & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
_W = _W >> ((mp_word)DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
c->used = pa;
|
||||
|
||||
{
|
||||
mp_digit *tmpc;
|
||||
tmpc = c->dp;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
/* now extract the previous digit [below the carry] */
|
||||
*tmpc++ = W[ix];
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp (c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,98 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* this is a modified version of fast_s_mul_digs that only produces
|
||||
* output digits *above* digs. See the comments for fast_s_mul_digs
|
||||
* to see how it works.
|
||||
*
|
||||
* This is used in the Barrett reduction since for one of the multiplications
|
||||
* only the higher digits were needed. This essentially halves the work.
|
||||
*
|
||||
* Based on Algorithm 14.12 on pp.595 of HAC.
|
||||
*/
|
||||
int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY];
|
||||
mp_word _W;
|
||||
|
||||
/* grow the destination as required */
|
||||
pa = a->used + b->used;
|
||||
if (c->alloc < pa) {
|
||||
if ((res = mp_grow (c, pa)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
pa = a->used + b->used;
|
||||
_W = 0;
|
||||
for (ix = digs; ix < pa; ix++) {
|
||||
int tx, ty, iy;
|
||||
mp_digit *tmpx, *tmpy;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(b->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = b->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially its
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; iz++) {
|
||||
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
||||
}
|
||||
|
||||
/* store term */
|
||||
W[ix] = ((mp_digit)_W) & MP_MASK;
|
||||
|
||||
/* make next carry */
|
||||
_W = _W >> ((mp_word)DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = c->used;
|
||||
c->used = pa;
|
||||
|
||||
{
|
||||
mp_digit *tmpc;
|
||||
|
||||
tmpc = c->dp + digs;
|
||||
for (ix = digs; ix < pa; ix++) {
|
||||
/* now extract the previous digit [below the carry] */
|
||||
*tmpc++ = W[ix];
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpc++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp (c);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,114 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_FAST_S_MP_SQR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* the jist of squaring...
|
||||
* you do like mult except the offset of the tmpx [one that
|
||||
* starts closer to zero] can't equal the offset of tmpy.
|
||||
* So basically you set up iy like before then you min it with
|
||||
* (ty-tx) so that it never happens. You double all those
|
||||
* you add in the inner loop
|
||||
|
||||
After that loop you do the squares and add them in.
|
||||
*/
|
||||
|
||||
int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
int olduse, res, pa, ix, iz;
|
||||
mp_digit W[MP_WARRAY], *tmpx;
|
||||
mp_word W1;
|
||||
|
||||
/* grow the destination as required */
|
||||
pa = a->used + a->used;
|
||||
if (b->alloc < pa) {
|
||||
if ((res = mp_grow (b, pa)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* number of output digits to produce */
|
||||
W1 = 0;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
int tx, ty, iy;
|
||||
mp_word _W;
|
||||
mp_digit *tmpy;
|
||||
|
||||
/* clear counter */
|
||||
_W = 0;
|
||||
|
||||
/* get offsets into the two bignums */
|
||||
ty = MIN(a->used-1, ix);
|
||||
tx = ix - ty;
|
||||
|
||||
/* setup temp aliases */
|
||||
tmpx = a->dp + tx;
|
||||
tmpy = a->dp + ty;
|
||||
|
||||
/* this is the number of times the loop will iterrate, essentially
|
||||
while (tx++ < a->used && ty-- >= 0) { ... }
|
||||
*/
|
||||
iy = MIN(a->used-tx, ty+1);
|
||||
|
||||
/* now for squaring tx can never equal ty
|
||||
* we halve the distance since they approach at a rate of 2x
|
||||
* and we have to round because odd cases need to be executed
|
||||
*/
|
||||
iy = MIN(iy, ((ty-tx)+1)>>1);
|
||||
|
||||
/* execute loop */
|
||||
for (iz = 0; iz < iy; iz++) {
|
||||
_W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
|
||||
}
|
||||
|
||||
/* double the inner product and add carry */
|
||||
_W = _W + _W + W1;
|
||||
|
||||
/* even columns have the square term in them */
|
||||
if ((ix&1) == 0) {
|
||||
_W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
|
||||
}
|
||||
|
||||
/* store it */
|
||||
W[ix] = (mp_digit)(_W & MP_MASK);
|
||||
|
||||
/* make next carry */
|
||||
W1 = _W >> ((mp_word)DIGIT_BIT);
|
||||
}
|
||||
|
||||
/* setup dest */
|
||||
olduse = b->used;
|
||||
b->used = a->used+a->used;
|
||||
|
||||
{
|
||||
mp_digit *tmpb;
|
||||
tmpb = b->dp;
|
||||
for (ix = 0; ix < pa; ix++) {
|
||||
*tmpb++ = W[ix] & MP_MASK;
|
||||
}
|
||||
|
||||
/* clear unused digits [that existed in the old copy of c] */
|
||||
for (; ix < olduse; ix++) {
|
||||
*tmpb++ = 0;
|
||||
}
|
||||
}
|
||||
mp_clamp (b);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,88 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_EXPORT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* based on gmp's mpz_export.
|
||||
* see http://gmplib.org/manual/Integer-Import-and-Export.html
|
||||
*/
|
||||
int mp_export(void* rop, size_t* countp, int order, size_t size,
|
||||
int endian, size_t nails, mp_int* op) {
|
||||
int result;
|
||||
size_t odd_nails, nail_bytes, i, j, bits, count;
|
||||
unsigned char odd_nail_mask;
|
||||
|
||||
mp_int t;
|
||||
|
||||
if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
|
||||
return result;
|
||||
}
|
||||
|
||||
if (endian == 0) {
|
||||
union {
|
||||
unsigned int i;
|
||||
char c[4];
|
||||
} lint;
|
||||
lint.i = 0x01020304;
|
||||
|
||||
endian = (lint.c[0] == 4) ? -1 : 1;
|
||||
}
|
||||
|
||||
odd_nails = (nails % 8);
|
||||
odd_nail_mask = 0xff;
|
||||
for (i = 0; i < odd_nails; ++i) {
|
||||
odd_nail_mask ^= (1 << (7 - i));
|
||||
}
|
||||
nail_bytes = nails / 8;
|
||||
|
||||
bits = mp_count_bits(&t);
|
||||
count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0);
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
for (j = 0; j < size; ++j) {
|
||||
unsigned char* byte = (
|
||||
(unsigned char*)rop +
|
||||
(((order == -1) ? i : ((count - 1) - i)) * size) +
|
||||
((endian == -1) ? j : ((size - 1) - j))
|
||||
);
|
||||
|
||||
if (j >= (size - nail_bytes)) {
|
||||
*byte = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
*byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF));
|
||||
|
||||
if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) {
|
||||
mp_clear(&t);
|
||||
return result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
mp_clear(&t);
|
||||
|
||||
if (countp != NULL) {
|
||||
*countp = count;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,28 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_EXPT_D_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* wrapper function for mp_expt_d_ex() */
|
||||
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
|
||||
{
|
||||
return mp_expt_d_ex(a, b, c, 0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,83 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_EXPT_D_EX_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* calculate c = a**b using a square-multiply algorithm */
|
||||
int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
|
||||
{
|
||||
int res;
|
||||
unsigned int x;
|
||||
|
||||
mp_int g;
|
||||
|
||||
if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* set initial result */
|
||||
mp_set (c, 1);
|
||||
|
||||
if (fast != 0) {
|
||||
while (b > 0) {
|
||||
/* if the bit is set multiply */
|
||||
if ((b & 1) != 0) {
|
||||
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
|
||||
mp_clear (&g);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* square */
|
||||
if (b > 1) {
|
||||
if ((res = mp_sqr (&g, &g)) != MP_OKAY) {
|
||||
mp_clear (&g);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift to next bit */
|
||||
b >>= 1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (x = 0; x < DIGIT_BIT; x++) {
|
||||
/* square */
|
||||
if ((res = mp_sqr (c, c)) != MP_OKAY) {
|
||||
mp_clear (&g);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* if the bit is set multiply */
|
||||
if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
|
||||
if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
|
||||
mp_clear (&g);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* shift to next bit */
|
||||
b <<= 1;
|
||||
}
|
||||
} /* if ... else */
|
||||
|
||||
mp_clear (&g);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,321 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_EXPTMOD_FAST_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
|
||||
*
|
||||
* Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
|
||||
* The value of k changes based on the size of the exponent.
|
||||
*
|
||||
* Uses Montgomery or Diminished Radix reduction [whichever appropriate]
|
||||
*/
|
||||
|
||||
#ifdef MP_LOW_MEM
|
||||
#define TAB_SIZE 32
|
||||
#else
|
||||
#define TAB_SIZE 256
|
||||
#endif
|
||||
|
||||
int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
|
||||
{
|
||||
mp_int M[TAB_SIZE], res;
|
||||
mp_digit buf, mp;
|
||||
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
|
||||
|
||||
/* use a pointer to the reduction algorithm. This allows us to use
|
||||
* one of many reduction algorithms without modding the guts of
|
||||
* the code with if statements everywhere.
|
||||
*/
|
||||
int (*redux)(mp_int*,mp_int*,mp_digit);
|
||||
|
||||
/* find window size */
|
||||
x = mp_count_bits (X);
|
||||
if (x <= 7) {
|
||||
winsize = 2;
|
||||
} else if (x <= 36) {
|
||||
winsize = 3;
|
||||
} else if (x <= 140) {
|
||||
winsize = 4;
|
||||
} else if (x <= 450) {
|
||||
winsize = 5;
|
||||
} else if (x <= 1303) {
|
||||
winsize = 6;
|
||||
} else if (x <= 3529) {
|
||||
winsize = 7;
|
||||
} else {
|
||||
winsize = 8;
|
||||
}
|
||||
|
||||
#ifdef MP_LOW_MEM
|
||||
if (winsize > 5) {
|
||||
winsize = 5;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* init M array */
|
||||
/* init first cell */
|
||||
if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* now init the second half of the array */
|
||||
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
||||
if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
|
||||
for (y = 1<<(winsize-1); y < x; y++) {
|
||||
mp_clear (&M[y]);
|
||||
}
|
||||
mp_clear(&M[1]);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
/* determine and setup reduction code */
|
||||
if (redmode == 0) {
|
||||
#ifdef BN_MP_MONTGOMERY_SETUP_C
|
||||
/* now setup montgomery */
|
||||
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
|
||||
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
|
||||
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
|
||||
if ((((P->used * 2) + 1) < MP_WARRAY) &&
|
||||
(P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
|
||||
redux = fast_mp_montgomery_reduce;
|
||||
} else
|
||||
#endif
|
||||
{
|
||||
#ifdef BN_MP_MONTGOMERY_REDUCE_C
|
||||
/* use slower baseline Montgomery method */
|
||||
redux = mp_montgomery_reduce;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
}
|
||||
} else if (redmode == 1) {
|
||||
#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
|
||||
/* setup DR reduction for moduli of the form B**k - b */
|
||||
mp_dr_setup(P, &mp);
|
||||
redux = mp_dr_reduce;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
} else {
|
||||
#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
|
||||
/* setup DR reduction for moduli of the form 2**k - b */
|
||||
if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
redux = mp_reduce_2k;
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_M;
|
||||
#endif
|
||||
}
|
||||
|
||||
/* setup result */
|
||||
if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) {
|
||||
goto LBL_M;
|
||||
}
|
||||
|
||||
/* create M table
|
||||
*
|
||||
|
||||
*
|
||||
* The first half of the table is not computed though accept for M[0] and M[1]
|
||||
*/
|
||||
|
||||
if (redmode == 0) {
|
||||
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
|
||||
/* now we need R mod m */
|
||||
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* now set M[1] to G * R mod m */
|
||||
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
#else
|
||||
err = MP_VAL;
|
||||
goto LBL_RES;
|
||||
#endif
|
||||
} else {
|
||||
mp_set(&res, 1);
|
||||
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
|
||||
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
for (x = 0; x < (winsize - 1); x++) {
|
||||
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* create upper table */
|
||||
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
|
||||
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* set initial mode and bit cnt */
|
||||
mode = 0;
|
||||
bitcnt = 1;
|
||||
buf = 0;
|
||||
digidx = X->used - 1;
|
||||
bitcpy = 0;
|
||||
bitbuf = 0;
|
||||
|
||||
for (;;) {
|
||||
/* grab next digit as required */
|
||||
if (--bitcnt == 0) {
|
||||
/* if digidx == -1 we are out of digits so break */
|
||||
if (digidx == -1) {
|
||||
break;
|
||||
}
|
||||
/* read next digit and reset bitcnt */
|
||||
buf = X->dp[digidx--];
|
||||
bitcnt = (int)DIGIT_BIT;
|
||||
}
|
||||
|
||||
/* grab the next msb from the exponent */
|
||||
y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
|
||||
buf <<= (mp_digit)1;
|
||||
|
||||
/* if the bit is zero and mode == 0 then we ignore it
|
||||
* These represent the leading zero bits before the first 1 bit
|
||||
* in the exponent. Technically this opt is not required but it
|
||||
* does lower the # of trivial squaring/reductions used
|
||||
*/
|
||||
if ((mode == 0) && (y == 0)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* if the bit is zero and mode == 1 then we square */
|
||||
if ((mode == 1) && (y == 0)) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
/* else we add it to the window */
|
||||
bitbuf |= (y << (winsize - ++bitcpy));
|
||||
mode = 2;
|
||||
|
||||
if (bitcpy == winsize) {
|
||||
/* ok window is filled so square as required and multiply */
|
||||
/* square first */
|
||||
for (x = 0; x < winsize; x++) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* then multiply */
|
||||
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* empty window and reset */
|
||||
bitcpy = 0;
|
||||
bitbuf = 0;
|
||||
mode = 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* if bits remain then square/multiply */
|
||||
if ((mode == 2) && (bitcpy > 0)) {
|
||||
/* square then multiply if the bit is set */
|
||||
for (x = 0; x < bitcpy; x++) {
|
||||
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
|
||||
/* get next bit of the window */
|
||||
bitbuf <<= 1;
|
||||
if ((bitbuf & (1 << winsize)) != 0) {
|
||||
/* then multiply */
|
||||
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
if ((err = redux (&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (redmode == 0) {
|
||||
/* fixup result if Montgomery reduction is used
|
||||
* recall that any value in a Montgomery system is
|
||||
* actually multiplied by R mod n. So we have
|
||||
* to reduce one more time to cancel out the factor
|
||||
* of R.
|
||||
*/
|
||||
if ((err = redux(&res, P, mp)) != MP_OKAY) {
|
||||
goto LBL_RES;
|
||||
}
|
||||
}
|
||||
|
||||
/* swap res with Y */
|
||||
mp_exch (&res, Y);
|
||||
err = MP_OKAY;
|
||||
LBL_RES:mp_clear (&res);
|
||||
LBL_M:
|
||||
mp_clear(&M[1]);
|
||||
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
|
||||
mp_clear (&M[x]);
|
||||
}
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,45 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_GET_INT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* get the lower 32-bits of an mp_int */
|
||||
unsigned long mp_get_int(mp_int * a)
|
||||
{
|
||||
int i;
|
||||
mp_min_u32 res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a,i);
|
||||
}
|
||||
|
||||
/* force result to 32-bits always so it is consistent on non 32-bit platforms */
|
||||
return res & 0xFFFFFFFFUL;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,41 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_GET_LONG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* get the lower unsigned long of an mp_int, platform dependent */
|
||||
unsigned long mp_get_long(mp_int * a)
|
||||
{
|
||||
int i;
|
||||
unsigned long res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
||||
#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a,i);
|
||||
}
|
||||
#endif
|
||||
return res;
|
||||
}
|
||||
#endif
|
@ -1,41 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_GET_LONG_LONG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* get the lower unsigned long long of an mp_int, platform dependent */
|
||||
unsigned long long mp_get_long_long (mp_int * a)
|
||||
{
|
||||
int i;
|
||||
unsigned long long res;
|
||||
|
||||
if (a->used == 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* get number of digits of the lsb we have to read */
|
||||
i = MIN(a->used,(int)(((sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
|
||||
|
||||
/* get most significant digit of result */
|
||||
res = DIGIT(a,i);
|
||||
|
||||
#if DIGIT_BIT < 64
|
||||
while (--i >= 0) {
|
||||
res = (res << DIGIT_BIT) | DIGIT(a,i);
|
||||
}
|
||||
#endif
|
||||
return res;
|
||||
}
|
||||
#endif
|
@ -1,73 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_IMPORT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* based on gmp's mpz_import.
|
||||
* see http://gmplib.org/manual/Integer-Import-and-Export.html
|
||||
*/
|
||||
int mp_import(mp_int* rop, size_t count, int order, size_t size,
|
||||
int endian, size_t nails, const void* op) {
|
||||
int result;
|
||||
size_t odd_nails, nail_bytes, i, j;
|
||||
unsigned char odd_nail_mask;
|
||||
|
||||
mp_zero(rop);
|
||||
|
||||
if (endian == 0) {
|
||||
union {
|
||||
unsigned int i;
|
||||
char c[4];
|
||||
} lint;
|
||||
lint.i = 0x01020304;
|
||||
|
||||
endian = (lint.c[0] == 4) ? -1 : 1;
|
||||
}
|
||||
|
||||
odd_nails = (nails % 8);
|
||||
odd_nail_mask = 0xff;
|
||||
for (i = 0; i < odd_nails; ++i) {
|
||||
odd_nail_mask ^= (1 << (7 - i));
|
||||
}
|
||||
nail_bytes = nails / 8;
|
||||
|
||||
for (i = 0; i < count; ++i) {
|
||||
for (j = 0; j < (size - nail_bytes); ++j) {
|
||||
unsigned char byte = *(
|
||||
(unsigned char*)op +
|
||||
(((order == 1) ? i : ((count - 1) - i)) * size) +
|
||||
((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes))
|
||||
);
|
||||
|
||||
if (
|
||||
(result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) {
|
||||
return result;
|
||||
}
|
||||
|
||||
rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte;
|
||||
rop->used += 1;
|
||||
}
|
||||
}
|
||||
|
||||
mp_clamp(rop);
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,31 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_INIT_SET_INT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* initialize and set a digit */
|
||||
int mp_init_set_int (mp_int * a, unsigned long b)
|
||||
{
|
||||
int err;
|
||||
if ((err = mp_init(a)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
return mp_set_int(a, b);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,175 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_INVMOD_SLOW_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* hac 14.61, pp608 */
|
||||
int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x, y, u, v, A, B, C, D;
|
||||
int res;
|
||||
|
||||
/* b cannot be negative */
|
||||
if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* init temps */
|
||||
if ((res = mp_init_multi(&x, &y, &u, &v,
|
||||
&A, &B, &C, &D, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* x = a, y = b */
|
||||
if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy (b, &y)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 2. [modified] if x,y are both even then return an error! */
|
||||
if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
|
||||
if ((res = mp_copy (&x, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_copy (&y, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
mp_set (&A, 1);
|
||||
mp_set (&D, 1);
|
||||
|
||||
top:
|
||||
/* 4. while u is even do */
|
||||
while (mp_iseven (&u) == MP_YES) {
|
||||
/* 4.1 u = u/2 */
|
||||
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 4.2 if A or B is odd then */
|
||||
if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) {
|
||||
/* A = (A+y)/2, B = (B-x)/2 */
|
||||
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* A = A/2, B = B/2 */
|
||||
if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 5. while v is even do */
|
||||
while (mp_iseven (&v) == MP_YES) {
|
||||
/* 5.1 v = v/2 */
|
||||
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
/* 5.2 if C or D is odd then */
|
||||
if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) {
|
||||
/* C = (C+y)/2, D = (D-x)/2 */
|
||||
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
/* C = C/2, D = D/2 */
|
||||
if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* 6. if u >= v then */
|
||||
if (mp_cmp (&u, &v) != MP_LT) {
|
||||
/* u = u - v, A = A - C, B = B - D */
|
||||
if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
} else {
|
||||
/* v - v - u, C = C - A, D = D - B */
|
||||
if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* if not zero goto step 4 */
|
||||
if (mp_iszero (&u) == MP_NO)
|
||||
goto top;
|
||||
|
||||
/* now a = C, b = D, gcd == g*v */
|
||||
|
||||
/* if v != 1 then there is no inverse */
|
||||
if (mp_cmp_d (&v, 1) != MP_EQ) {
|
||||
res = MP_VAL;
|
||||
goto LBL_ERR;
|
||||
}
|
||||
|
||||
/* if its too low */
|
||||
while (mp_cmp_d(&C, 0) == MP_LT) {
|
||||
if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* too big */
|
||||
while (mp_cmp_mag(&C, b) != MP_LT) {
|
||||
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
|
||||
goto LBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
/* C is now the inverse */
|
||||
mp_exch (&C, c);
|
||||
res = MP_OKAY;
|
||||
LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,117 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_JACOBI_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
|
||||
* HAC pp. 73 Algorithm 2.149
|
||||
* HAC is wrong here, as the special case of (0 | 1) is not
|
||||
* handled correctly.
|
||||
*/
|
||||
int mp_jacobi (mp_int * a, mp_int * n, int *c)
|
||||
{
|
||||
mp_int a1, p1;
|
||||
int k, s, r, res;
|
||||
mp_digit residue;
|
||||
|
||||
/* if a < 0 return MP_VAL */
|
||||
if (mp_isneg(a) == MP_YES) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* if n <= 0 return MP_VAL */
|
||||
if (mp_cmp_d(n, 0) != MP_GT) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* step 1. handle case of a == 0 */
|
||||
if (mp_iszero (a) == MP_YES) {
|
||||
/* special case of a == 0 and n == 1 */
|
||||
if (mp_cmp_d (n, 1) == MP_EQ) {
|
||||
*c = 1;
|
||||
} else {
|
||||
*c = 0;
|
||||
}
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* step 2. if a == 1, return 1 */
|
||||
if (mp_cmp_d (a, 1) == MP_EQ) {
|
||||
*c = 1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
/* default */
|
||||
s = 0;
|
||||
|
||||
/* step 3. write a = a1 * 2**k */
|
||||
if ((res = mp_init_copy (&a1, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&p1)) != MP_OKAY) {
|
||||
goto LBL_A1;
|
||||
}
|
||||
|
||||
/* divide out larger power of two */
|
||||
k = mp_cnt_lsb(&a1);
|
||||
if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
|
||||
/* step 4. if e is even set s=1 */
|
||||
if ((k & 1) == 0) {
|
||||
s = 1;
|
||||
} else {
|
||||
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
|
||||
residue = n->dp[0] & 7;
|
||||
|
||||
if ((residue == 1) || (residue == 7)) {
|
||||
s = 1;
|
||||
} else if ((residue == 3) || (residue == 5)) {
|
||||
s = -1;
|
||||
}
|
||||
}
|
||||
|
||||
/* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
|
||||
if ( ((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
|
||||
s = -s;
|
||||
}
|
||||
|
||||
/* if a1 == 1 we're done */
|
||||
if (mp_cmp_d (&a1, 1) == MP_EQ) {
|
||||
*c = s;
|
||||
} else {
|
||||
/* n1 = n mod a1 */
|
||||
if ((res = mp_mod (n, &a1, &p1)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
|
||||
goto LBL_P1;
|
||||
}
|
||||
*c = s * r;
|
||||
}
|
||||
|
||||
/* done */
|
||||
res = MP_OKAY;
|
||||
LBL_P1:mp_clear (&p1);
|
||||
LBL_A1:mp_clear (&a1);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,167 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_KARATSUBA_MUL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* c = |a| * |b| using Karatsuba Multiplication using
|
||||
* three half size multiplications
|
||||
*
|
||||
* Let B represent the radix [e.g. 2**DIGIT_BIT] and
|
||||
* let n represent half of the number of digits in
|
||||
* the min(a,b)
|
||||
*
|
||||
* a = a1 * B**n + a0
|
||||
* b = b1 * B**n + b0
|
||||
*
|
||||
* Then, a * b =>
|
||||
a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
|
||||
*
|
||||
* Note that a1b1 and a0b0 are used twice and only need to be
|
||||
* computed once. So in total three half size (half # of
|
||||
* digit) multiplications are performed, a0b0, a1b1 and
|
||||
* (a1+b1)(a0+b0)
|
||||
*
|
||||
* Note that a multiplication of half the digits requires
|
||||
* 1/4th the number of single precision multiplications so in
|
||||
* total after one call 25% of the single precision multiplications
|
||||
* are saved. Note also that the call to mp_mul can end up back
|
||||
* in this function if the a0, a1, b0, or b1 are above the threshold.
|
||||
* This is known as divide-and-conquer and leads to the famous
|
||||
* O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
|
||||
* the standard O(N**2) that the baseline/comba methods use.
|
||||
* Generally though the overhead of this method doesn't pay off
|
||||
* until a certain size (N ~ 80) is reached.
|
||||
*/
|
||||
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||||
{
|
||||
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
||||
int B, err;
|
||||
|
||||
/* default the return code to an error */
|
||||
err = MP_MEM;
|
||||
|
||||
/* min # of digits */
|
||||
B = MIN (a->used, b->used);
|
||||
|
||||
/* now divide in two */
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size (&x0, B) != MP_OKAY)
|
||||
goto ERR;
|
||||
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
||||
goto X0;
|
||||
if (mp_init_size (&y0, B) != MP_OKAY)
|
||||
goto X1;
|
||||
if (mp_init_size (&y1, b->used - B) != MP_OKAY)
|
||||
goto Y0;
|
||||
|
||||
/* init temps */
|
||||
if (mp_init_size (&t1, B * 2) != MP_OKAY)
|
||||
goto Y1;
|
||||
if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
|
||||
goto T1;
|
||||
if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
|
||||
goto X0Y0;
|
||||
|
||||
/* now shift the digits */
|
||||
x0.used = y0.used = B;
|
||||
x1.used = a->used - B;
|
||||
y1.used = b->used - B;
|
||||
|
||||
{
|
||||
int x;
|
||||
mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
|
||||
|
||||
/* we copy the digits directly instead of using higher level functions
|
||||
* since we also need to shift the digits
|
||||
*/
|
||||
tmpa = a->dp;
|
||||
tmpb = b->dp;
|
||||
|
||||
tmpx = x0.dp;
|
||||
tmpy = y0.dp;
|
||||
for (x = 0; x < B; x++) {
|
||||
*tmpx++ = *tmpa++;
|
||||
*tmpy++ = *tmpb++;
|
||||
}
|
||||
|
||||
tmpx = x1.dp;
|
||||
for (x = B; x < a->used; x++) {
|
||||
*tmpx++ = *tmpa++;
|
||||
}
|
||||
|
||||
tmpy = y1.dp;
|
||||
for (x = B; x < b->used; x++) {
|
||||
*tmpy++ = *tmpb++;
|
||||
}
|
||||
}
|
||||
|
||||
/* only need to clamp the lower words since by definition the
|
||||
* upper words x1/y1 must have a known number of digits
|
||||
*/
|
||||
mp_clamp (&x0);
|
||||
mp_clamp (&y0);
|
||||
|
||||
/* now calc the products x0y0 and x1y1 */
|
||||
/* after this x0 is no longer required, free temp [x0==t2]! */
|
||||
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
|
||||
goto X1Y1; /* x0y0 = x0*y0 */
|
||||
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
|
||||
goto X1Y1; /* x1y1 = x1*y1 */
|
||||
|
||||
/* now calc x1+x0 and y1+y0 */
|
||||
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x1 - x0 */
|
||||
if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
|
||||
goto X1Y1; /* t2 = y1 - y0 */
|
||||
if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
|
||||
|
||||
/* add x0y0 */
|
||||
if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
|
||||
goto X1Y1; /* t2 = x0y0 + x1y1 */
|
||||
if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
|
||||
|
||||
/* shift by B */
|
||||
if (mp_lshd (&t1, B) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
||||
if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
|
||||
goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
||||
|
||||
if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x0y0 + t1 */
|
||||
if (mp_add (&t1, &x1y1, c) != MP_OKAY)
|
||||
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
||||
|
||||
/* Algorithm succeeded set the return code to MP_OKAY */
|
||||
err = MP_OKAY;
|
||||
|
||||
X1Y1:mp_clear (&x1y1);
|
||||
X0Y0:mp_clear (&x0y0);
|
||||
T1:mp_clear (&t1);
|
||||
Y1:mp_clear (&y1);
|
||||
Y0:mp_clear (&y0);
|
||||
X1:mp_clear (&x1);
|
||||
X0:mp_clear (&x0);
|
||||
ERR:
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,121 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_KARATSUBA_SQR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* Karatsuba squaring, computes b = a*a using three
|
||||
* half size squarings
|
||||
*
|
||||
* See comments of karatsuba_mul for details. It
|
||||
* is essentially the same algorithm but merely
|
||||
* tuned to perform recursive squarings.
|
||||
*/
|
||||
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
|
||||
{
|
||||
mp_int x0, x1, t1, t2, x0x0, x1x1;
|
||||
int B, err;
|
||||
|
||||
err = MP_MEM;
|
||||
|
||||
/* min # of digits */
|
||||
B = a->used;
|
||||
|
||||
/* now divide in two */
|
||||
B = B >> 1;
|
||||
|
||||
/* init copy all the temps */
|
||||
if (mp_init_size (&x0, B) != MP_OKAY)
|
||||
goto ERR;
|
||||
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
||||
goto X0;
|
||||
|
||||
/* init temps */
|
||||
if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
|
||||
goto X1;
|
||||
if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
|
||||
goto T1;
|
||||
if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
|
||||
goto T2;
|
||||
if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
|
||||
goto X0X0;
|
||||
|
||||
{
|
||||
int x;
|
||||
mp_digit *dst, *src;
|
||||
|
||||
src = a->dp;
|
||||
|
||||
/* now shift the digits */
|
||||
dst = x0.dp;
|
||||
for (x = 0; x < B; x++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
|
||||
dst = x1.dp;
|
||||
for (x = B; x < a->used; x++) {
|
||||
*dst++ = *src++;
|
||||
}
|
||||
}
|
||||
|
||||
x0.used = B;
|
||||
x1.used = a->used - B;
|
||||
|
||||
mp_clamp (&x0);
|
||||
|
||||
/* now calc the products x0*x0 and x1*x1 */
|
||||
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
|
||||
goto X1X1; /* x0x0 = x0*x0 */
|
||||
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
|
||||
goto X1X1; /* x1x1 = x1*x1 */
|
||||
|
||||
/* now calc (x1+x0)**2 */
|
||||
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x1 - x0 */
|
||||
if (mp_sqr (&t1, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
|
||||
|
||||
/* add x0y0 */
|
||||
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
|
||||
goto X1X1; /* t2 = x0x0 + x1x1 */
|
||||
if (s_mp_sub (&t1, &t2, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x1+x0)**2 - (x0x0 + x1x1) */
|
||||
|
||||
/* shift by B */
|
||||
if (mp_lshd (&t1, B) != MP_OKAY)
|
||||
goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
|
||||
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
|
||||
goto X1X1; /* x1x1 = x1x1 << 2*B */
|
||||
|
||||
if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x0x0 + t1 */
|
||||
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
|
||||
goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
|
||||
|
||||
err = MP_OKAY;
|
||||
|
||||
X1X1:mp_clear (&x1x1);
|
||||
X0X0:mp_clear (&x0x0);
|
||||
T2:mp_clear (&t2);
|
||||
T1:mp_clear (&t1);
|
||||
X1:mp_clear (&x1);
|
||||
X0:mp_clear (&x0);
|
||||
ERR:
|
||||
return err;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,30 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_N_ROOT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* wrapper function for mp_n_root_ex()
|
||||
* computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
|
||||
*/
|
||||
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
|
||||
{
|
||||
return mp_n_root_ex(a, b, c, 0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,132 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_N_ROOT_EX_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* find the n'th root of an integer
|
||||
*
|
||||
* Result found such that (c)**b <= a and (c+1)**b > a
|
||||
*
|
||||
* This algorithm uses Newton's approximation
|
||||
* x[i+1] = x[i] - f(x[i])/f'(x[i])
|
||||
* which will find the root in log(N) time where
|
||||
* each step involves a fair bit. This is not meant to
|
||||
* find huge roots [square and cube, etc].
|
||||
*/
|
||||
int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
|
||||
{
|
||||
mp_int t1, t2, t3;
|
||||
int res, neg;
|
||||
|
||||
/* input must be positive if b is even */
|
||||
if (((b & 1) == 0) && (a->sign == MP_NEG)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&t1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&t2)) != MP_OKAY) {
|
||||
goto LBL_T1;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&t3)) != MP_OKAY) {
|
||||
goto LBL_T2;
|
||||
}
|
||||
|
||||
/* if a is negative fudge the sign but keep track */
|
||||
neg = a->sign;
|
||||
a->sign = MP_ZPOS;
|
||||
|
||||
/* t2 = 2 */
|
||||
mp_set (&t2, 2);
|
||||
|
||||
do {
|
||||
/* t1 = t2 */
|
||||
if ((res = mp_copy (&t2, &t1)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
|
||||
|
||||
/* t3 = t1**(b-1) */
|
||||
if ((res = mp_expt_d_ex (&t1, b - 1, &t3, fast)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* numerator */
|
||||
/* t2 = t1**b */
|
||||
if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* t2 = t1**b - a */
|
||||
if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* denominator */
|
||||
/* t3 = t1**(b-1) * b */
|
||||
if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
|
||||
if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
} while (mp_cmp (&t1, &t2) != MP_EQ);
|
||||
|
||||
/* result can be off by a few so check */
|
||||
for (;;) {
|
||||
if ((res = mp_expt_d_ex (&t1, b, &t2, fast)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
|
||||
if (mp_cmp (&t2, a) == MP_GT) {
|
||||
if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) {
|
||||
goto LBL_T3;
|
||||
}
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/* reset the sign of a first */
|
||||
a->sign = neg;
|
||||
|
||||
/* set the result */
|
||||
mp_exch (&t1, c);
|
||||
|
||||
/* set the sign of the result */
|
||||
c->sign = neg;
|
||||
|
||||
res = MP_OKAY;
|
||||
|
||||
LBL_T3:mp_clear (&t3);
|
||||
LBL_T2:mp_clear (&t2);
|
||||
LBL_T1:mp_clear (&t1);
|
||||
return res;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,50 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* determines if an integers is divisible by one
|
||||
* of the first PRIME_SIZE primes or not
|
||||
*
|
||||
* sets result to 0 if not, 1 if yes
|
||||
*/
|
||||
int mp_prime_is_divisible (mp_int * a, int *result)
|
||||
{
|
||||
int err, ix;
|
||||
mp_digit res;
|
||||
|
||||
/* default to not */
|
||||
*result = MP_NO;
|
||||
|
||||
for (ix = 0; ix < PRIME_SIZE; ix++) {
|
||||
/* what is a mod LBL_prime_tab[ix] */
|
||||
if ((err = mp_mod_d (a, ltm_prime_tab[ix], &res)) != MP_OKAY) {
|
||||
return err;
|
||||
}
|
||||
|
||||
/* is the residue zero? */
|
||||
if (res == 0) {
|
||||
*result = MP_YES;
|
||||
return MP_OKAY;
|
||||
}
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,124 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_PRIME_RANDOM_EX_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* makes a truly random prime of a given size (bits),
|
||||
*
|
||||
* Flags are as follows:
|
||||
*
|
||||
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
|
||||
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
|
||||
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
|
||||
*
|
||||
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
|
||||
* have passed to the callback (e.g. a state or something). This function doesn't use "dat" itself
|
||||
* so it can be NULL
|
||||
*
|
||||
*/
|
||||
|
||||
/* This is possibly the mother of all prime generation functions, muahahahahaha! */
|
||||
int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback cb, void *dat)
|
||||
{
|
||||
unsigned char *tmp, maskAND, maskOR_msb, maskOR_lsb;
|
||||
int res, err, bsize, maskOR_msb_offset;
|
||||
|
||||
/* sanity check the input */
|
||||
if ((size <= 1) || (t <= 0)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
|
||||
if ((flags & LTM_PRIME_SAFE) != 0) {
|
||||
flags |= LTM_PRIME_BBS;
|
||||
}
|
||||
|
||||
/* calc the byte size */
|
||||
bsize = (size>>3) + ((size&7)?1:0);
|
||||
|
||||
/* we need a buffer of bsize bytes */
|
||||
tmp = OPT_CAST(unsigned char) XMALLOC(bsize);
|
||||
if (tmp == NULL) {
|
||||
return MP_MEM;
|
||||
}
|
||||
|
||||
/* calc the maskAND value for the MSbyte*/
|
||||
maskAND = ((size&7) == 0) ? 0xFF : (0xFF >> (8 - (size & 7)));
|
||||
|
||||
/* calc the maskOR_msb */
|
||||
maskOR_msb = 0;
|
||||
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
|
||||
if ((flags & LTM_PRIME_2MSB_ON) != 0) {
|
||||
maskOR_msb |= 0x80 >> ((9 - size) & 7);
|
||||
}
|
||||
|
||||
/* get the maskOR_lsb */
|
||||
maskOR_lsb = 1;
|
||||
if ((flags & LTM_PRIME_BBS) != 0) {
|
||||
maskOR_lsb |= 3;
|
||||
}
|
||||
|
||||
do {
|
||||
/* read the bytes */
|
||||
if (cb(tmp, bsize, dat) != bsize) {
|
||||
err = MP_VAL;
|
||||
goto error;
|
||||
}
|
||||
|
||||
/* work over the MSbyte */
|
||||
tmp[0] &= maskAND;
|
||||
tmp[0] |= 1 << ((size - 1) & 7);
|
||||
|
||||
/* mix in the maskORs */
|
||||
tmp[maskOR_msb_offset] |= maskOR_msb;
|
||||
tmp[bsize-1] |= maskOR_lsb;
|
||||
|
||||
/* read it in */
|
||||
if ((err = mp_read_unsigned_bin(a, tmp, bsize)) != MP_OKAY) { goto error; }
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
||||
if (res == MP_NO) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if ((flags & LTM_PRIME_SAFE) != 0) {
|
||||
/* see if (a-1)/2 is prime */
|
||||
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
|
||||
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
|
||||
|
||||
/* is it prime? */
|
||||
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
|
||||
}
|
||||
} while (res == MP_NO);
|
||||
|
||||
if ((flags & LTM_PRIME_SAFE) != 0) {
|
||||
/* restore a to the original value */
|
||||
if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
|
||||
if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
|
||||
}
|
||||
|
||||
err = MP_OKAY;
|
||||
error:
|
||||
XFREE(tmp);
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,41 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_READ_SIGNED_BIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* read signed bin, big endian, first byte is 0==positive or 1==negative */
|
||||
int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* read magnitude */
|
||||
if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* first byte is 0 for positive, non-zero for negative */
|
||||
if (b[0] == 0) {
|
||||
a->sign = MP_ZPOS;
|
||||
} else {
|
||||
a->sign = MP_NEG;
|
||||
}
|
||||
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,55 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_READ_UNSIGNED_BIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
|
||||
int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
|
||||
{
|
||||
int res;
|
||||
|
||||
/* make sure there are at least two digits */
|
||||
if (a->alloc < 2) {
|
||||
if ((res = mp_grow(a, 2)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/* zero the int */
|
||||
mp_zero (a);
|
||||
|
||||
/* read the bytes in */
|
||||
while (c-- > 0) {
|
||||
if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
#ifndef MP_8BIT
|
||||
a->dp[0] |= *b++;
|
||||
a->used += 1;
|
||||
#else
|
||||
a->dp[0] = (*b & MP_MASK);
|
||||
a->dp[1] |= ((*b++ >> 7U) & 1);
|
||||
a->used += 2;
|
||||
#endif
|
||||
}
|
||||
mp_clamp (a);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,48 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_SET_INT_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* set a 32-bit const */
|
||||
int mp_set_int (mp_int * a, unsigned long b)
|
||||
{
|
||||
int x, res;
|
||||
|
||||
mp_zero (a);
|
||||
|
||||
/* set four bits at a time */
|
||||
for (x = 0; x < 8; x++) {
|
||||
/* shift the number up four bits */
|
||||
if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* OR in the top four bits of the source */
|
||||
a->dp[0] |= (b >> 28) & 15;
|
||||
|
||||
/* shift the source up to the next four bits */
|
||||
b <<= 4;
|
||||
|
||||
/* ensure that digits are not clamped off */
|
||||
a->used += 1;
|
||||
}
|
||||
mp_clamp (a);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,24 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_SET_LONG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* set a platform dependent unsigned long int */
|
||||
MP_SET_XLONG(mp_set_long, unsigned long)
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,24 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_SET_LONG_LONG_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* set a platform dependent unsigned long long int */
|
||||
MP_SET_XLONG(mp_set_long_long, unsigned long long)
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,27 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_SIGNED_BIN_SIZE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* get the size for an signed equivalent */
|
||||
int mp_signed_bin_size (mp_int * a)
|
||||
{
|
||||
return 1 + mp_unsigned_bin_size (a);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,33 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_TO_SIGNED_BIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* store in signed [big endian] format */
|
||||
int mp_to_signed_bin (mp_int * a, unsigned char *b)
|
||||
{
|
||||
int res;
|
||||
|
||||
if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1;
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,31 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_TO_SIGNED_BIN_N_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* store in signed [big endian] format */
|
||||
int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
if (*outlen < (unsigned long)mp_signed_bin_size(a)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
*outlen = mp_signed_bin_size(a);
|
||||
return mp_to_signed_bin(a, b);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,48 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_TO_UNSIGNED_BIN_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* store in unsigned [big endian] format */
|
||||
int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
|
||||
{
|
||||
int x, res;
|
||||
mp_int t;
|
||||
|
||||
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
x = 0;
|
||||
while (mp_iszero (&t) == MP_NO) {
|
||||
#ifndef MP_8BIT
|
||||
b[x++] = (unsigned char) (t.dp[0] & 255);
|
||||
#else
|
||||
b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
|
||||
#endif
|
||||
if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
bn_reverse (b, x);
|
||||
mp_clear (&t);
|
||||
return MP_OKAY;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,31 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* store in unsigned [big endian] format */
|
||||
int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
|
||||
{
|
||||
if (*outlen < (unsigned long)mp_unsigned_bin_size(a)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
*outlen = mp_unsigned_bin_size(a);
|
||||
return mp_to_unsigned_bin(a, b);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,286 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_TOOM_MUL_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* multiplication using the Toom-Cook 3-way algorithm
|
||||
*
|
||||
* Much more complicated than Karatsuba but has a lower
|
||||
* asymptotic running time of O(N**1.464). This algorithm is
|
||||
* only particularly useful on VERY large inputs
|
||||
* (we're talking 1000s of digits here...).
|
||||
*/
|
||||
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
|
||||
{
|
||||
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
|
||||
int res, B;
|
||||
|
||||
/* init temps */
|
||||
if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
|
||||
&a0, &a1, &a2, &b0, &b1,
|
||||
&b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* B */
|
||||
B = MIN(a->used, b->used) / 3;
|
||||
|
||||
/* a = a2 * B**2 + a1 * B + a0 */
|
||||
if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_copy(a, &a1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
mp_rshd(&a1, B);
|
||||
if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_copy(a, &a2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
mp_rshd(&a2, B*2);
|
||||
|
||||
/* b = b2 * B**2 + b1 * B + b0 */
|
||||
if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_copy(b, &b1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
mp_rshd(&b1, B);
|
||||
(void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
|
||||
|
||||
if ((res = mp_copy(b, &b2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
mp_rshd(&b2, B*2);
|
||||
|
||||
/* w0 = a0*b0 */
|
||||
if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* w4 = a2 * b2 */
|
||||
if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
|
||||
if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
|
||||
if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
|
||||
/* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
|
||||
if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* now solve the matrix
|
||||
|
||||
0 0 0 0 1
|
||||
1 2 4 8 16
|
||||
1 1 1 1 1
|
||||
16 8 4 2 1
|
||||
1 0 0 0 0
|
||||
|
||||
using 12 subtractions, 4 shifts,
|
||||
2 small divisions and 1 small multiplication
|
||||
*/
|
||||
|
||||
/* r1 - r4 */
|
||||
if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3 - r0 */
|
||||
if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1/2 */
|
||||
if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3/2 */
|
||||
if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r2 - r0 - r4 */
|
||||
if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1 - r2 */
|
||||
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3 - r2 */
|
||||
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1 - 8r0 */
|
||||
if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3 - 8r4 */
|
||||
if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* 3r2 - r1 - r3 */
|
||||
if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1 - r2 */
|
||||
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3 - r2 */
|
||||
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1/3 */
|
||||
if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3/3 */
|
||||
if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* at this point shift W[n] by B*n */
|
||||
if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
ERR:
|
||||
mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
|
||||
&a0, &a1, &a2, &b0, &b1,
|
||||
&b2, &tmp1, &tmp2, NULL);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,228 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_TOOM_SQR_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* squaring using Toom-Cook 3-way algorithm */
|
||||
int
|
||||
mp_toom_sqr(mp_int *a, mp_int *b)
|
||||
{
|
||||
mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
|
||||
int res, B;
|
||||
|
||||
/* init temps */
|
||||
if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* B */
|
||||
B = a->used / 3;
|
||||
|
||||
/* a = a2 * B**2 + a1 * B + a0 */
|
||||
if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_copy(a, &a1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
mp_rshd(&a1, B);
|
||||
if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_copy(a, &a2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
mp_rshd(&a2, B*2);
|
||||
|
||||
/* w0 = a0*a0 */
|
||||
if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* w4 = a2 * a2 */
|
||||
if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* w1 = (a2 + 2(a1 + 2a0))**2 */
|
||||
if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* w3 = (a0 + 2(a1 + 2a2))**2 */
|
||||
if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
|
||||
/* w2 = (a2 + a1 + a0)**2 */
|
||||
if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* now solve the matrix
|
||||
|
||||
0 0 0 0 1
|
||||
1 2 4 8 16
|
||||
1 1 1 1 1
|
||||
16 8 4 2 1
|
||||
1 0 0 0 0
|
||||
|
||||
using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
|
||||
*/
|
||||
|
||||
/* r1 - r4 */
|
||||
if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3 - r0 */
|
||||
if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1/2 */
|
||||
if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3/2 */
|
||||
if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r2 - r0 - r4 */
|
||||
if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1 - r2 */
|
||||
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3 - r2 */
|
||||
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1 - 8r0 */
|
||||
if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3 - 8r4 */
|
||||
if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* 3r2 - r1 - r3 */
|
||||
if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1 - r2 */
|
||||
if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3 - r2 */
|
||||
if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r1/3 */
|
||||
if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
/* r3/3 */
|
||||
if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
/* at this point shift W[n] by B*n */
|
||||
if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
|
||||
goto ERR;
|
||||
}
|
||||
|
||||
ERR:
|
||||
mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
|
||||
return res;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,75 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_TORADIX_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* stores a bignum as a ASCII string in a given radix (2..64) */
|
||||
int mp_toradix (mp_int * a, char *str, int radix)
|
||||
{
|
||||
int res, digs;
|
||||
mp_int t;
|
||||
mp_digit d;
|
||||
char *_s = str;
|
||||
|
||||
/* check range of the radix */
|
||||
if ((radix < 2) || (radix > 64)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* quick out if its zero */
|
||||
if (mp_iszero(a) == MP_YES) {
|
||||
*str++ = '0';
|
||||
*str = '\0';
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* if it is negative output a - */
|
||||
if (t.sign == MP_NEG) {
|
||||
++_s;
|
||||
*str++ = '-';
|
||||
t.sign = MP_ZPOS;
|
||||
}
|
||||
|
||||
digs = 0;
|
||||
while (mp_iszero (&t) == MP_NO) {
|
||||
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
*str++ = mp_s_rmap[d];
|
||||
++digs;
|
||||
}
|
||||
|
||||
/* reverse the digits of the string. In this case _s points
|
||||
* to the first digit [exluding the sign] of the number]
|
||||
*/
|
||||
bn_reverse ((unsigned char *)_s, digs);
|
||||
|
||||
/* append a NULL so the string is properly terminated */
|
||||
*str = '\0';
|
||||
|
||||
mp_clear (&t);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,88 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_TORADIX_N_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* stores a bignum as a ASCII string in a given radix (2..64)
|
||||
*
|
||||
* Stores upto maxlen-1 chars and always a NULL byte
|
||||
*/
|
||||
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
|
||||
{
|
||||
int res, digs;
|
||||
mp_int t;
|
||||
mp_digit d;
|
||||
char *_s = str;
|
||||
|
||||
/* check range of the maxlen, radix */
|
||||
if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
|
||||
return MP_VAL;
|
||||
}
|
||||
|
||||
/* quick out if its zero */
|
||||
if (mp_iszero(a) == MP_YES) {
|
||||
*str++ = '0';
|
||||
*str = '\0';
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
/* if it is negative output a - */
|
||||
if (t.sign == MP_NEG) {
|
||||
/* we have to reverse our digits later... but not the - sign!! */
|
||||
++_s;
|
||||
|
||||
/* store the flag and mark the number as positive */
|
||||
*str++ = '-';
|
||||
t.sign = MP_ZPOS;
|
||||
|
||||
/* subtract a char */
|
||||
--maxlen;
|
||||
}
|
||||
|
||||
digs = 0;
|
||||
while (mp_iszero (&t) == MP_NO) {
|
||||
if (--maxlen < 1) {
|
||||
/* no more room */
|
||||
break;
|
||||
}
|
||||
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
|
||||
mp_clear (&t);
|
||||
return res;
|
||||
}
|
||||
*str++ = mp_s_rmap[d];
|
||||
++digs;
|
||||
}
|
||||
|
||||
/* reverse the digits of the string. In this case _s points
|
||||
* to the first digit [exluding the sign] of the number
|
||||
*/
|
||||
bn_reverse ((unsigned char *)_s, digs);
|
||||
|
||||
/* append a NULL so the string is properly terminated */
|
||||
*str = '\0';
|
||||
|
||||
mp_clear (&t);
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,28 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* get the size for an unsigned equivalent */
|
||||
int mp_unsigned_bin_size (mp_int * a)
|
||||
{
|
||||
int size = mp_count_bits (a);
|
||||
return (size / 8) + (((size & 7) != 0) ? 1 : 0);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,39 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BN_REVERSE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* reverse an array, used for radix code */
|
||||
void
|
||||
bn_reverse (unsigned char *s, int len)
|
||||
{
|
||||
int ix, iy;
|
||||
unsigned char t;
|
||||
|
||||
ix = 0;
|
||||
iy = len - 1;
|
||||
while (ix < iy) {
|
||||
t = s[ix];
|
||||
s[ix] = s[iy];
|
||||
s[iy] = t;
|
||||
++ix;
|
||||
--iy;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,36 +0,0 @@
|
||||
#include <tommath_private.h>
|
||||
#ifdef BNCORE_C
|
||||
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||||
*
|
||||
* LibTomMath is a library that provides multiple-precision
|
||||
* integer arithmetic as well as number theoretic functionality.
|
||||
*
|
||||
* The library was designed directly after the MPI library by
|
||||
* Michael Fromberger but has been written from scratch with
|
||||
* additional optimizations in place.
|
||||
*
|
||||
* The library is free for all purposes without any express
|
||||
* guarantee it works.
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
|
||||
*/
|
||||
|
||||
/* Known optimal configurations
|
||||
|
||||
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
|
||||
-------------------------------------------------------------
|
||||
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
|
||||
AMD Athlon64 /GCC v3.4.4 / 80/ 120/LTM 0.35
|
||||
|
||||
*/
|
||||
|
||||
int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */
|
||||
KARATSUBA_SQR_CUTOFF = 120, /* Min. number of digits before Karatsuba squaring is used. */
|
||||
|
||||
TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
|
||||
TOOM_SQR_CUTOFF = 400;
|
||||
#endif
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,267 +0,0 @@
|
||||
#!/bin/perl
|
||||
#
|
||||
#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file
|
||||
#
|
||||
#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put
|
||||
#
|
||||
#EXAM,file
|
||||
#
|
||||
#This preprocessor will then open "file" and insert it as a verbatim copy.
|
||||
#
|
||||
#Tom St Denis
|
||||
|
||||
#get graphics type
|
||||
if (shift =~ /PDF/) {
|
||||
$graph = "";
|
||||
} else {
|
||||
$graph = ".ps";
|
||||
}
|
||||
|
||||
open(IN,"<tommath.src") or die "Can't open source file";
|
||||
open(OUT,">tommath.tex") or die "Can't open destination file";
|
||||
|
||||
print "Scanning for sections\n";
|
||||
$chapter = $section = $subsection = 0;
|
||||
$x = 0;
|
||||
while (<IN>) {
|
||||
print ".";
|
||||
if (!(++$x % 80)) { print "\n"; }
|
||||
#update the headings
|
||||
if (~($_ =~ /\*/)) {
|
||||
if ($_ =~ /\\chapter\{.+}/) {
|
||||
++$chapter;
|
||||
$section = $subsection = 0;
|
||||
} elsif ($_ =~ /\\section\{.+}/) {
|
||||
++$section;
|
||||
$subsection = 0;
|
||||
} elsif ($_ =~ /\\subsection\{.+}/) {
|
||||
++$subsection;
|
||||
}
|
||||
}
|
||||
|
||||
if ($_ =~ m/MARK/) {
|
||||
@m = split(",",$_);
|
||||
chomp(@m[1]);
|
||||
$index1{@m[1]} = $chapter;
|
||||
$index2{@m[1]} = $section;
|
||||
$index3{@m[1]} = $subsection;
|
||||
}
|
||||
}
|
||||
close(IN);
|
||||
|
||||
open(IN,"<tommath.src") or die "Can't open source file";
|
||||
$readline = $wroteline = 0;
|
||||
$srcline = 0;
|
||||
|
||||
while (<IN>) {
|
||||
++$readline;
|
||||
++$srcline;
|
||||
|
||||
if ($_ =~ m/MARK/) {
|
||||
} elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) {
|
||||
if ($_ =~ m/EXAM/) {
|
||||
$skipheader = 1;
|
||||
} else {
|
||||
$skipheader = 0;
|
||||
}
|
||||
|
||||
# EXAM,file
|
||||
chomp($_);
|
||||
@m = split(",",$_);
|
||||
open(SRC,"<$m[1]") or die "Error:$srcline:Can't open source file $m[1]";
|
||||
|
||||
print "$srcline:Inserting $m[1]:";
|
||||
|
||||
$line = 0;
|
||||
$tmp = $m[1];
|
||||
$tmp =~ s/_/"\\_"/ge;
|
||||
print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
|
||||
$wroteline += 5;
|
||||
|
||||
if ($skipheader == 1) {
|
||||
# scan till next end of comment, e.g. skip license
|
||||
while (<SRC>) {
|
||||
$text[$line++] = $_;
|
||||
last if ($_ =~ /libtom\.org/);
|
||||
}
|
||||
<SRC>;
|
||||
}
|
||||
|
||||
$inline = 0;
|
||||
while (<SRC>) {
|
||||
next if ($_ =~ /\$Source/);
|
||||
next if ($_ =~ /\$Revision/);
|
||||
next if ($_ =~ /\$Date/);
|
||||
$text[$line++] = $_;
|
||||
++$inline;
|
||||
chomp($_);
|
||||
$_ =~ s/\t/" "/ge;
|
||||
$_ =~ s/{/"^{"/ge;
|
||||
$_ =~ s/}/"^}"/ge;
|
||||
$_ =~ s/\\/'\symbol{92}'/ge;
|
||||
$_ =~ s/\^/"\\"/ge;
|
||||
|
||||
printf OUT ("%03d ", $line);
|
||||
for ($x = 0; $x < length($_); $x++) {
|
||||
print OUT chr(vec($_, $x, 8));
|
||||
if ($x == 75) {
|
||||
print OUT "\n ";
|
||||
++$wroteline;
|
||||
}
|
||||
}
|
||||
print OUT "\n";
|
||||
++$wroteline;
|
||||
}
|
||||
$totlines = $line;
|
||||
print OUT "\\end{alltt}\n\\end{small}\n";
|
||||
close(SRC);
|
||||
print "$inline lines\n";
|
||||
$wroteline += 2;
|
||||
} elsif ($_ =~ m/@\d+,.+@/) {
|
||||
# line contains [number,text]
|
||||
# e.g. @14,for (ix = 0)@
|
||||
$txt = $_;
|
||||
while ($txt =~ m/@\d+,.+@/) {
|
||||
@m = split("@",$txt); # splits into text, one, two
|
||||
@parms = split(",",$m[1]); # splits one,two into two elements
|
||||
|
||||
# now search from $parms[0] down for $parms[1]
|
||||
$found1 = 0;
|
||||
$found2 = 0;
|
||||
for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) {
|
||||
if ($text[$i] =~ m/\Q$parms[1]\E/) {
|
||||
$foundline1 = $i + 1;
|
||||
$found1 = 1;
|
||||
}
|
||||
}
|
||||
|
||||
# now search backwards
|
||||
for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) {
|
||||
if ($text[$i] =~ m/\Q$parms[1]\E/) {
|
||||
$foundline2 = $i + 1;
|
||||
$found2 = 1;
|
||||
}
|
||||
}
|
||||
|
||||
# now use the closest match or the first if tied
|
||||
if ($found1 == 1 && $found2 == 0) {
|
||||
$found = 1;
|
||||
$foundline = $foundline1;
|
||||
} elsif ($found1 == 0 && $found2 == 1) {
|
||||
$found = 1;
|
||||
$foundline = $foundline2;
|
||||
} elsif ($found1 == 1 && $found2 == 1) {
|
||||
$found = 1;
|
||||
if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) {
|
||||
$foundline = $foundline1;
|
||||
} else {
|
||||
$foundline = $foundline2;
|
||||
}
|
||||
} else {
|
||||
$found = 0;
|
||||
}
|
||||
|
||||
# if found replace
|
||||
if ($found == 1) {
|
||||
$delta = $parms[0] - $foundline;
|
||||
print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n";
|
||||
$_ =~ s/@\Q$m[1]\E@/$foundline/;
|
||||
} else {
|
||||
print "ERROR: The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n";
|
||||
}
|
||||
|
||||
# remake the rest of the line
|
||||
$cnt = @m;
|
||||
$txt = "";
|
||||
for ($i = 2; $i < $cnt; $i++) {
|
||||
$txt = $txt . $m[$i] . "@";
|
||||
}
|
||||
}
|
||||
print OUT $_;
|
||||
++$wroteline;
|
||||
} elsif ($_ =~ /~.+~/) {
|
||||
# line contains a ~text~ pair used to refer to indexing :-)
|
||||
$txt = $_;
|
||||
while ($txt =~ /~.+~/) {
|
||||
@m = split("~", $txt);
|
||||
|
||||
# word is the second position
|
||||
$word = @m[1];
|
||||
$a = $index1{$word};
|
||||
$b = $index2{$word};
|
||||
$c = $index3{$word};
|
||||
|
||||
# if chapter (a) is zero it wasn't found
|
||||
if ($a == 0) {
|
||||
print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n";
|
||||
} else {
|
||||
# format the tag as x, x.y or x.y.z depending on the values
|
||||
$str = $a;
|
||||
$str = $str . ".$b" if ($b != 0);
|
||||
$str = $str . ".$c" if ($c != 0);
|
||||
|
||||
if ($b == 0 && $c == 0) {
|
||||
# its a chapter
|
||||
if ($a <= 10) {
|
||||
if ($a == 1) {
|
||||
$str = "chapter one";
|
||||
} elsif ($a == 2) {
|
||||
$str = "chapter two";
|
||||
} elsif ($a == 3) {
|
||||
$str = "chapter three";
|
||||
} elsif ($a == 4) {
|
||||
$str = "chapter four";
|
||||
} elsif ($a == 5) {
|
||||
$str = "chapter five";
|
||||
} elsif ($a == 6) {
|
||||
$str = "chapter six";
|
||||
} elsif ($a == 7) {
|
||||
$str = "chapter seven";
|
||||
} elsif ($a == 8) {
|
||||
$str = "chapter eight";
|
||||
} elsif ($a == 9) {
|
||||
$str = "chapter nine";
|
||||
} elsif ($a == 10) {
|
||||
$str = "chapter ten";
|
||||
}
|
||||
} else {
|
||||
$str = "chapter " . $str;
|
||||
}
|
||||
} else {
|
||||
$str = "section " . $str if ($b != 0 && $c == 0);
|
||||
$str = "sub-section " . $str if ($b != 0 && $c != 0);
|
||||
}
|
||||
|
||||
#substitute
|
||||
$_ =~ s/~\Q$word\E~/$str/;
|
||||
|
||||
print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n";
|
||||
}
|
||||
|
||||
# remake rest of the line
|
||||
$cnt = @m;
|
||||
$txt = "";
|
||||
for ($i = 2; $i < $cnt; $i++) {
|
||||
$txt = $txt . $m[$i] . "~";
|
||||
}
|
||||
}
|
||||
print OUT $_;
|
||||
++$wroteline;
|
||||
} elsif ($_ =~ m/FIGU/) {
|
||||
# FIGU,file,caption
|
||||
chomp($_);
|
||||
@m = split(",", $_);
|
||||
print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
|
||||
print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
|
||||
$wroteline += 4;
|
||||
} else {
|
||||
print OUT $_;
|
||||
++$wroteline;
|
||||
}
|
||||
}
|
||||
print "Read $readline lines, wrote $wroteline lines\n";
|
||||
|
||||
close (OUT);
|
||||
close (IN);
|
||||
|
||||
system('perl -pli -e "s/\s*$//" tommath.tex');
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -1,340 +0,0 @@
|
||||
#include <tommath.h>
|
||||
#include <time.h>
|
||||
#include <unistd.h>
|
||||
#include <stdint.h>
|
||||
|
||||
uint64_t _tt;
|
||||
|
||||
#ifdef IOWNANATHLON
|
||||
#include <unistd.h>
|
||||
#define SLEEP sleep(4)
|
||||
#else
|
||||
#define SLEEP
|
||||
#endif
|
||||
|
||||
#ifdef LTM_TIMING_REAL_RAND
|
||||
#define LTM_TIMING_RAND_SEED time(NULL)
|
||||
#else
|
||||
#define LTM_TIMING_RAND_SEED 23
|
||||
#endif
|
||||
|
||||
|
||||
void ndraw(mp_int * a, char *name)
|
||||
{
|
||||
char buf[4096];
|
||||
|
||||
printf("%s: ", name);
|
||||
mp_toradix(a, buf, 64);
|
||||
printf("%s\n", buf);
|
||||
}
|
||||
|
||||
static void draw(mp_int * a)
|
||||
{
|
||||
ndraw(a, "");
|
||||
}
|
||||
|
||||
|
||||
unsigned long lfsr = 0xAAAAAAAAUL;
|
||||
|
||||
int lbit(void)
|
||||
{
|
||||
if (lfsr & 0x80000000UL) {
|
||||
lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
|
||||
return 1;
|
||||
} else {
|
||||
lfsr <<= 1;
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* RDTSC from Scott Duplichan */
|
||||
static uint64_t TIMFUNC(void)
|
||||
{
|
||||
#if defined __GNUC__
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
|
||||
* the old code always got a warning issued by gcc, clang did not complain...
|
||||
*/
|
||||
unsigned hi, lo;
|
||||
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
|
||||
return ((uint64_t)lo)|( ((uint64_t)hi)<<32);
|
||||
#else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
|
||||
|
||||
while (__builtin_expect((int) result == -1, 0))
|
||||
__asm__ __volatile__("mov %0=ar.itc":"=r"(result)::"memory");
|
||||
|
||||
return result;
|
||||
#endif
|
||||
|
||||
// Microsoft and Intel Windows compilers
|
||||
#elif defined _M_IX86
|
||||
__asm rdtsc
|
||||
#elif defined _M_AMD64
|
||||
return __rdtsc();
|
||||
#elif defined _M_IA64
|
||||
#if defined __INTEL_COMPILER
|
||||
#include <ia64intrin.h>
|
||||
#endif
|
||||
return __getReg(3116);
|
||||
#else
|
||||
#error need rdtsc function for this build
|
||||
#endif
|
||||
}
|
||||
|
||||
#define DO(x) x; x;
|
||||
//#define DO4(x) DO2(x); DO2(x);
|
||||
//#define DO8(x) DO4(x); DO4(x);
|
||||
//#define DO(x) DO8(x); DO8(x);
|
||||
|
||||
#ifdef TIMING_NO_LOGS
|
||||
#define FOPEN(a, b) NULL
|
||||
#define FPRINTF(a,b,c,d)
|
||||
#define FFLUSH(a)
|
||||
#define FCLOSE(a) (void)(a)
|
||||
#else
|
||||
#define FOPEN(a,b) fopen(a,b)
|
||||
#define FPRINTF(a,b,c,d) fprintf(a,b,c,d)
|
||||
#define FFLUSH(a) fflush(a)
|
||||
#define FCLOSE(a) fclose(a)
|
||||
#endif
|
||||
|
||||
int main(void)
|
||||
{
|
||||
uint64_t tt, gg, CLK_PER_SEC;
|
||||
FILE *log, *logb, *logc, *logd;
|
||||
mp_int a, b, c, d, e, f;
|
||||
int n, cnt, ix, old_kara_m, old_kara_s, old_toom_m, old_toom_s;
|
||||
unsigned rr;
|
||||
|
||||
mp_init(&a);
|
||||
mp_init(&b);
|
||||
mp_init(&c);
|
||||
mp_init(&d);
|
||||
mp_init(&e);
|
||||
mp_init(&f);
|
||||
|
||||
srand(LTM_TIMING_RAND_SEED);
|
||||
|
||||
|
||||
CLK_PER_SEC = TIMFUNC();
|
||||
sleep(1);
|
||||
CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
|
||||
|
||||
printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
|
||||
log = FOPEN("logs/add.log", "w");
|
||||
for (cnt = 8; cnt <= 128; cnt += 8) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_add(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100000);
|
||||
printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
|
||||
FFLUSH(log);
|
||||
}
|
||||
FCLOSE(log);
|
||||
|
||||
log = FOPEN("logs/sub.log", "w");
|
||||
for (cnt = 8; cnt <= 128; cnt += 8) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sub(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100000);
|
||||
|
||||
printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
|
||||
FFLUSH(log);
|
||||
}
|
||||
FCLOSE(log);
|
||||
|
||||
/* do mult/square twice, first without karatsuba and second with */
|
||||
old_kara_m = KARATSUBA_MUL_CUTOFF;
|
||||
old_kara_s = KARATSUBA_SQR_CUTOFF;
|
||||
/* currently toom-cook cut-off is too high to kick in, so we just use the karatsuba values */
|
||||
old_toom_m = old_kara_m;
|
||||
old_toom_s = old_kara_m;
|
||||
for (ix = 0; ix < 3; ix++) {
|
||||
printf("With%s Karatsuba, With%s Toom\n", (ix == 0) ? "out" : "", (ix == 1) ? "out" : "");
|
||||
|
||||
KARATSUBA_MUL_CUTOFF = (ix == 1) ? old_kara_m : 9999;
|
||||
KARATSUBA_SQR_CUTOFF = (ix == 1) ? old_kara_s : 9999;
|
||||
TOOM_MUL_CUTOFF = (ix == 2) ? old_toom_m : 9999;
|
||||
TOOM_SQR_CUTOFF = (ix == 2) ? old_toom_s : 9999;
|
||||
|
||||
log = FOPEN((ix == 0) ? "logs/mult.log" : (ix == 1) ? "logs/mult_kara.log" : "logs/mult_toom.log", "w");
|
||||
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_mul(&a, &b, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9llu\n", mp_count_bits(&a), tt);
|
||||
FFLUSH(log);
|
||||
}
|
||||
FCLOSE(log);
|
||||
|
||||
log = FOPEN((ix == 0) ? "logs/sqr.log" : (ix == 1) ? "logs/sqr_kara.log" : "logs/sqr_toom.log", "w");
|
||||
for (cnt = 4; cnt <= 10240 / DIGIT_BIT; cnt += 2) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_sqr(&a, &b));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 100);
|
||||
printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9llu\n", mp_count_bits(&a), tt);
|
||||
FFLUSH(log);
|
||||
}
|
||||
FCLOSE(log);
|
||||
|
||||
}
|
||||
|
||||
{
|
||||
char *primes[] = {
|
||||
/* 2K large moduli */
|
||||
"179769313486231590772930519078902473361797697894230657273430081157732675805500963132708477322407536021120113879871393357658789768814416622492847430639474124377767893424865485276302219601246094119453082952085005768838150682342462881473913110540827237163350510684586239334100047359817950870678242457666208137217",
|
||||
"32317006071311007300714876688669951960444102669715484032130345427524655138867890893197201411522913463688717960921898019494119559150490921095088152386448283120630877367300996091750197750389652106796057638384067568276792218642619756161838094338476170470581645852036305042887575891541065808607552399123930385521914333389668342420684974786564569494856176035326322058077805659331026192708460314150258592864177116725943603718461857357598351152301645904403697613233287231227125684710820209725157101726931323469678542580656697935045997268352998638099733077152121140120031150424541696791951097529546801429027668869927491725169",
|
||||
"1044388881413152506691752710716624382579964249047383780384233483283953907971557456848826811934997558340890106714439262837987573438185793607263236087851365277945956976543709998340361590134383718314428070011855946226376318839397712745672334684344586617496807908705803704071284048740118609114467977783598029006686938976881787785946905630190260940599579453432823469303026696443059025015972399867714215541693835559885291486318237914434496734087811872639496475100189041349008417061675093668333850551032972088269550769983616369411933015213796825837188091833656751221318492846368125550225998300412344784862595674492194617023806505913245610825731835380087608622102834270197698202313169017678006675195485079921636419370285375124784014907159135459982790513399611551794271106831134090584272884279791554849782954323534517065223269061394905987693002122963395687782878948440616007412945674919823050571642377154816321380631045902916136926708342856440730447899971901781465763473223850267253059899795996090799469201774624817718449867455659250178329070473119433165550807568221846571746373296884912819520317457002440926616910874148385078411929804522981857338977648103126085902995208257421855249796721729039744118165938433694823325696642096892124547425283",
|
||||
/* 2K moduli mersenne primes */
|
||||
"6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
|
||||
"531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
|
||||
"10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
|
||||
"1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
|
||||
"259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
|
||||
"190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
|
||||
|
||||
/* DR moduli */
|
||||
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
|
||||
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
|
||||
"736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
|
||||
"38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
|
||||
"542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
|
||||
"1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
|
||||
"1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
|
||||
|
||||
/* generic unrestricted moduli */
|
||||
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
|
||||
"2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
|
||||
"347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
|
||||
"47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
|
||||
"436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
|
||||
"11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
|
||||
"1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
|
||||
NULL
|
||||
};
|
||||
log = FOPEN("logs/expt.log", "w");
|
||||
logb = FOPEN("logs/expt_dr.log", "w");
|
||||
logc = FOPEN("logs/expt_2k.log", "w");
|
||||
logd = FOPEN("logs/expt_2kl.log", "w");
|
||||
for (n = 0; primes[n]; n++) {
|
||||
SLEEP;
|
||||
mp_read_radix(&a, primes[n], 10);
|
||||
mp_zero(&b);
|
||||
for (rr = 0; rr < (unsigned) mp_count_bits(&a); rr++) {
|
||||
mp_mul_2(&b, &b);
|
||||
b.dp[0] |= lbit();
|
||||
b.used += 1;
|
||||
}
|
||||
mp_sub_d(&a, 1, &c);
|
||||
mp_mod(&b, &c, &b);
|
||||
mp_set(&c, 3);
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_exptmod(&c, &b, &a, &d));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 10);
|
||||
mp_sub_d(&a, 1, &e);
|
||||
mp_sub(&e, &b, &b);
|
||||
mp_exptmod(&c, &b, &a, &e); /* c^(p-1-b) mod a */
|
||||
mp_mulmod(&e, &d, &a, &d); /* c^b * c^(p-1-b) == c^p-1 == 1 */
|
||||
if (mp_cmp_d(&d, 1)) {
|
||||
printf("Different (%d)!!!\n", mp_count_bits(&a));
|
||||
draw(&d);
|
||||
exit(0);
|
||||
}
|
||||
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(n < 4 ? logd : (n < 9) ? logc : (n < 16) ? logb : log,
|
||||
"%d %9llu\n", mp_count_bits(&a), tt);
|
||||
}
|
||||
}
|
||||
FCLOSE(log);
|
||||
FCLOSE(logb);
|
||||
FCLOSE(logc);
|
||||
FCLOSE(logd);
|
||||
|
||||
log = FOPEN("logs/invmod.log", "w");
|
||||
for (cnt = 4; cnt <= 32; cnt += 4) {
|
||||
SLEEP;
|
||||
mp_rand(&a, cnt);
|
||||
mp_rand(&b, cnt);
|
||||
|
||||
do {
|
||||
mp_add_d(&b, 1, &b);
|
||||
mp_gcd(&a, &b, &c);
|
||||
} while (mp_cmp_d(&c, 1) != MP_EQ);
|
||||
|
||||
rr = 0;
|
||||
tt = -1;
|
||||
do {
|
||||
gg = TIMFUNC();
|
||||
DO(mp_invmod(&b, &a, &c));
|
||||
gg = (TIMFUNC() - gg) >> 1;
|
||||
if (tt > gg)
|
||||
tt = gg;
|
||||
} while (++rr < 1000);
|
||||
mp_mulmod(&b, &c, &a, &d);
|
||||
if (mp_cmp_d(&d, 1) != MP_EQ) {
|
||||
printf("Failed to invert\n");
|
||||
return 0;
|
||||
}
|
||||
printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n",
|
||||
mp_count_bits(&a), CLK_PER_SEC / tt, tt);
|
||||
FPRINTF(log, "%d %9llu\n", cnt * DIGIT_BIT, tt);
|
||||
}
|
||||
FCLOSE(log);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,127 +0,0 @@
|
||||
#!/usr/bin/perl
|
||||
#
|
||||
# Walk through source, add labels and make classes
|
||||
#
|
||||
use strict;
|
||||
use warnings;
|
||||
|
||||
my %deplist;
|
||||
|
||||
#open class file and write preamble
|
||||
open(my $class, '>', 'tommath_class.h') or die "Couldn't open tommath_class.h for writing\n";
|
||||
print {$class} "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined(LTM2)\n#define LTM3\n#endif\n#if defined(LTM1)\n#define LTM2\n#endif\n#define LTM1\n\n#if defined(LTM_ALL)\n";
|
||||
|
||||
foreach my $filename (glob 'bn*.c') {
|
||||
my $define = $filename;
|
||||
|
||||
print "Processing $filename\n";
|
||||
|
||||
# convert filename to upper case so we can use it as a define
|
||||
$define =~ tr/[a-z]/[A-Z]/;
|
||||
$define =~ tr/\./_/;
|
||||
print {$class} "#define $define\n";
|
||||
|
||||
# now copy text and apply #ifdef as required
|
||||
my $apply = 0;
|
||||
open(my $src, '<', $filename);
|
||||
open(my $out, '>', 'tmp');
|
||||
|
||||
# first line will be the #ifdef
|
||||
my $line = <$src>;
|
||||
if ($line =~ /include/) {
|
||||
print {$out} $line;
|
||||
} else {
|
||||
print {$out} "#include <tommath.h>\n#ifdef $define\n$line";
|
||||
$apply = 1;
|
||||
}
|
||||
while (<$src>) {
|
||||
if (!($_ =~ /tommath\.h/)) {
|
||||
print {$out} $_;
|
||||
}
|
||||
}
|
||||
if ($apply == 1) {
|
||||
print {$out} "#endif\n";
|
||||
}
|
||||
close $src;
|
||||
close $out;
|
||||
|
||||
unlink $filename;
|
||||
rename 'tmp', $filename;
|
||||
}
|
||||
print {$class} "#endif\n\n";
|
||||
|
||||
# now do classes
|
||||
|
||||
foreach my $filename (glob 'bn*.c') {
|
||||
open(my $src, '<', $filename) or die "Can't open source file!\n";
|
||||
|
||||
# convert filename to upper case so we can use it as a define
|
||||
$filename =~ tr/[a-z]/[A-Z]/;
|
||||
$filename =~ tr/\./_/;
|
||||
|
||||
print {$class} "#if defined($filename)\n";
|
||||
my $list = $filename;
|
||||
|
||||
# scan for mp_* and make classes
|
||||
while (<$src>) {
|
||||
my $line = $_;
|
||||
while ($line =~ m/(fast_)*(s_)*mp\_[a-z_0-9]*/) {
|
||||
$line = $';
|
||||
# now $& is the match, we want to skip over LTM keywords like
|
||||
# mp_int, mp_word, mp_digit
|
||||
if (!($& eq 'mp_digit') && !($& eq 'mp_word') && !($& eq 'mp_int') && !($& eq 'mp_min_u32')) {
|
||||
my $a = $&;
|
||||
$a =~ tr/[a-z]/[A-Z]/;
|
||||
$a = 'BN_' . $a . '_C';
|
||||
if (!($list =~ /$a/)) {
|
||||
print {$class} " #define $a\n";
|
||||
}
|
||||
$list = $list . ',' . $a;
|
||||
}
|
||||
}
|
||||
}
|
||||
$deplist{$filename} = $list;
|
||||
|
||||
print {$class} "#endif\n\n";
|
||||
close $src;
|
||||
}
|
||||
|
||||
print {$class} "#ifdef LTM3\n#define LTM_LAST\n#endif\n#include <tommath_superclass.h>\n#include <tommath_class.h>\n#else\n#define LTM_LAST\n#endif\n";
|
||||
close $class;
|
||||
|
||||
#now let's make a cool call graph...
|
||||
|
||||
open(my $out, '>', 'callgraph.txt');
|
||||
my $indent = 0;
|
||||
my $list;
|
||||
foreach (sort keys %deplist) {
|
||||
$list = '';
|
||||
draw_func($deplist{$_});
|
||||
print {$out} "\n\n";
|
||||
}
|
||||
close $out;
|
||||
|
||||
sub draw_func
|
||||
{
|
||||
my @funcs = split ',', $_[0];
|
||||
if ($list =~ /$funcs[0]/) {
|
||||
return;
|
||||
} else {
|
||||
$list = $list . $funcs[0];
|
||||
}
|
||||
if ($indent == 0) {
|
||||
} elsif ($indent >= 1) {
|
||||
print {$out} '| ' x ($indent - 1) . '+--->';
|
||||
}
|
||||
print {$out} $funcs[0] . "\n";
|
||||
shift @funcs;
|
||||
my $temp = $list;
|
||||
foreach my $i (@funcs) {
|
||||
++$indent;
|
||||
draw_func($deplist{$i}) if exists $deplist{$i};
|
||||
--$indent;
|
||||
}
|
||||
$list = $temp;
|
||||
return;
|
||||
}
|
||||
|
@ -1,2 +0,0 @@
|
||||
256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
|
||||
512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
|
@ -1,84 +0,0 @@
|
||||
/* Makes safe primes of a 2k nature */
|
||||
#include <tommath.h>
|
||||
#include <time.h>
|
||||
|
||||
int sizes[] = {256, 512, 768, 1024, 1536, 2048, 3072, 4096};
|
||||
|
||||
int main(void)
|
||||
{
|
||||
char buf[2000];
|
||||
int x, y;
|
||||
mp_int q, p;
|
||||
FILE *out;
|
||||
clock_t t1;
|
||||
mp_digit z;
|
||||
|
||||
mp_init_multi(&q, &p, NULL);
|
||||
|
||||
out = fopen("2kprime.1", "w");
|
||||
for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) {
|
||||
top:
|
||||
mp_2expt(&q, sizes[x]);
|
||||
mp_add_d(&q, 3, &q);
|
||||
z = -3;
|
||||
|
||||
t1 = clock();
|
||||
for(;;) {
|
||||
mp_sub_d(&q, 4, &q);
|
||||
z += 4;
|
||||
|
||||
if (z > MP_MASK) {
|
||||
printf("No primes of size %d found\n", sizes[x]);
|
||||
break;
|
||||
}
|
||||
|
||||
if (clock() - t1 > CLOCKS_PER_SEC) {
|
||||
printf("."); fflush(stdout);
|
||||
// sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC);
|
||||
t1 = clock();
|
||||
}
|
||||
|
||||
/* quick test on q */
|
||||
mp_prime_is_prime(&q, 1, &y);
|
||||
if (y == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* find (q-1)/2 */
|
||||
mp_sub_d(&q, 1, &p);
|
||||
mp_div_2(&p, &p);
|
||||
mp_prime_is_prime(&p, 3, &y);
|
||||
if (y == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
/* test on q */
|
||||
mp_prime_is_prime(&q, 3, &y);
|
||||
if (y == 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
if (y == 0) {
|
||||
++sizes[x];
|
||||
goto top;
|
||||
}
|
||||
|
||||
mp_toradix(&q, buf, 10);
|
||||
printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
|
||||
fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,64 +0,0 @@
|
||||
/* Makes safe primes of a DR nature */
|
||||
#include <tommath.h>
|
||||
|
||||
int sizes[] = { 1+256/DIGIT_BIT, 1+512/DIGIT_BIT, 1+768/DIGIT_BIT, 1+1024/DIGIT_BIT, 1+2048/DIGIT_BIT, 1+4096/DIGIT_BIT };
|
||||
int main(void)
|
||||
{
|
||||
int res, x, y;
|
||||
char buf[4096];
|
||||
FILE *out;
|
||||
mp_int a, b;
|
||||
|
||||
mp_init(&a);
|
||||
mp_init(&b);
|
||||
|
||||
out = fopen("drprimes.txt", "w");
|
||||
for (x = 0; x < (int)(sizeof(sizes)/sizeof(sizes[0])); x++) {
|
||||
top:
|
||||
printf("Seeking a %d-bit safe prime\n", sizes[x] * DIGIT_BIT);
|
||||
mp_grow(&a, sizes[x]);
|
||||
mp_zero(&a);
|
||||
for (y = 1; y < sizes[x]; y++) {
|
||||
a.dp[y] = MP_MASK;
|
||||
}
|
||||
|
||||
/* make a DR modulus */
|
||||
a.dp[0] = -1;
|
||||
a.used = sizes[x];
|
||||
|
||||
/* now loop */
|
||||
res = 0;
|
||||
for (;;) {
|
||||
a.dp[0] += 4;
|
||||
if (a.dp[0] >= MP_MASK) break;
|
||||
mp_prime_is_prime(&a, 1, &res);
|
||||
if (res == 0) continue;
|
||||
printf("."); fflush(stdout);
|
||||
mp_sub_d(&a, 1, &b);
|
||||
mp_div_2(&b, &b);
|
||||
mp_prime_is_prime(&b, 3, &res);
|
||||
if (res == 0) continue;
|
||||
mp_prime_is_prime(&a, 3, &res);
|
||||
if (res == 1) break;
|
||||
}
|
||||
|
||||
if (res != 1) {
|
||||
printf("Error not DR modulus\n"); sizes[x] += 1; goto top;
|
||||
} else {
|
||||
mp_toradix(&a, buf, 10);
|
||||
printf("\n\np == %s\n\n", buf);
|
||||
fprintf(out, "%d-bit prime:\np == %s\n\n", mp_count_bits(&a), buf); fflush(out);
|
||||
}
|
||||
}
|
||||
fclose(out);
|
||||
|
||||
mp_clear(&a);
|
||||
mp_clear(&b);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,25 +0,0 @@
|
||||
DR safe primes for 28-bit digits.
|
||||
|
||||
224-bit prime:
|
||||
p == 26959946667150639794667015087019630673637144422540572481103341844143
|
||||
|
||||
532-bit prime:
|
||||
p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
|
||||
|
||||
784-bit prime:
|
||||
p == 101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039
|
||||
|
||||
1036-bit prime:
|
||||
p == 736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821798437127
|
||||
|
||||
1540-bit prime:
|
||||
p == 38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783
|
||||
|
||||
2072-bit prime:
|
||||
p == 542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147
|
||||
|
||||
3080-bit prime:
|
||||
p == 1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503
|
||||
|
||||
4116-bit prime:
|
||||
p == 1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679
|
@ -1,9 +0,0 @@
|
||||
300-bit prime:
|
||||
p == 2037035976334486086268445688409378161051468393665936250636140449354381298610415201576637819
|
||||
|
||||
540-bit prime:
|
||||
p == 3599131035634557106248430806148785487095757694641533306480604458089470064537190296255232548883112685719936728506816716098566612844395439751206810991770626477344739
|
||||
|
||||
780-bit prime:
|
||||
p == 6359114106063703798370219984742410466332205126109989319225557147754704702203399726411277962562135973685197744935448875852478791860694279747355800678568677946181447581781401213133886609947027230004277244697462656003655947791725966271167
|
||||
|
@ -1,50 +0,0 @@
|
||||
CFLAGS += -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops -I../
|
||||
|
||||
# default lib name (requires install with root)
|
||||
# LIBNAME=-ltommath
|
||||
|
||||
# libname when you can't install the lib with install
|
||||
LIBNAME=../libtommath.a
|
||||
|
||||
#provable primes
|
||||
pprime: pprime.o
|
||||
$(CC) pprime.o $(LIBNAME) -o pprime
|
||||
|
||||
# portable [well requires clock()] tuning app
|
||||
tune: tune.o
|
||||
$(CC) tune.o $(LIBNAME) -o tune
|
||||
|
||||
# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
|
||||
tune86: tune.c
|
||||
nasm -f coff timer.asm
|
||||
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
|
||||
|
||||
# for cygwin
|
||||
tune86c: tune.c
|
||||
nasm -f gnuwin32 timer.asm
|
||||
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
|
||||
|
||||
#make tune86 for linux or any ELF format
|
||||
tune86l: tune.c
|
||||
nasm -f elf -DUSE_ELF timer.asm
|
||||
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
|
||||
|
||||
# spits out mersenne primes
|
||||
mersenne: mersenne.o
|
||||
$(CC) mersenne.o $(LIBNAME) -o mersenne
|
||||
|
||||
# fines DR safe primes for the given config
|
||||
drprime: drprime.o
|
||||
$(CC) drprime.o $(LIBNAME) -o drprime
|
||||
|
||||
# fines 2k safe primes for the given config
|
||||
2kprime: 2kprime.o
|
||||
$(CC) 2kprime.o $(LIBNAME) -o 2kprime
|
||||
|
||||
mont: mont.o
|
||||
$(CC) mont.o $(LIBNAME) -o mont
|
||||
|
||||
|
||||
clean:
|
||||
rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat \
|
||||
*.da *.dyn *.dpi *~
|
@ -1,67 +0,0 @@
|
||||
CC = icc
|
||||
|
||||
CFLAGS += -I../
|
||||
|
||||
# optimize for SPEED
|
||||
#
|
||||
# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
|
||||
# -ax? specifies make code specifically for ? but compatible with IA-32
|
||||
# -x? specifies compile solely for ? [not specifically IA-32 compatible]
|
||||
#
|
||||
# where ? is
|
||||
# K - PIII
|
||||
# W - first P4 [Williamette]
|
||||
# N - P4 Northwood
|
||||
# P - P4 Prescott
|
||||
# B - Blend of P4 and PM [mobile]
|
||||
#
|
||||
# Default to just generic max opts
|
||||
CFLAGS += -O3 -xP -ip
|
||||
|
||||
# default lib name (requires install with root)
|
||||
# LIBNAME=-ltommath
|
||||
|
||||
# libname when you can't install the lib with install
|
||||
LIBNAME=../libtommath.a
|
||||
|
||||
#provable primes
|
||||
pprime: pprime.o
|
||||
$(CC) pprime.o $(LIBNAME) -o pprime
|
||||
|
||||
# portable [well requires clock()] tuning app
|
||||
tune: tune.o
|
||||
$(CC) tune.o $(LIBNAME) -o tune
|
||||
|
||||
# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
|
||||
tune86: tune.c
|
||||
nasm -f coff timer.asm
|
||||
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
|
||||
|
||||
# for cygwin
|
||||
tune86c: tune.c
|
||||
nasm -f gnuwin32 timer.asm
|
||||
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86
|
||||
|
||||
#make tune86 for linux or any ELF format
|
||||
tune86l: tune.c
|
||||
nasm -f elf -DUSE_ELF timer.asm
|
||||
$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
|
||||
|
||||
# spits out mersenne primes
|
||||
mersenne: mersenne.o
|
||||
$(CC) mersenne.o $(LIBNAME) -o mersenne
|
||||
|
||||
# fines DR safe primes for the given config
|
||||
drprime: drprime.o
|
||||
$(CC) drprime.o $(LIBNAME) -o drprime
|
||||
|
||||
# fines 2k safe primes for the given config
|
||||
2kprime: 2kprime.o
|
||||
$(CC) 2kprime.o $(LIBNAME) -o 2kprime
|
||||
|
||||
mont: mont.o
|
||||
$(CC) mont.o $(LIBNAME) -o mont
|
||||
|
||||
|
||||
clean:
|
||||
rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat *.il
|
@ -1,23 +0,0 @@
|
||||
#MSVC Makefile
|
||||
#
|
||||
#Tom St Denis
|
||||
|
||||
CFLAGS = /I../ /Ox /DWIN32 /W3
|
||||
|
||||
pprime: pprime.obj
|
||||
cl pprime.obj ../tommath.lib
|
||||
|
||||
mersenne: mersenne.obj
|
||||
cl mersenne.obj ../tommath.lib
|
||||
|
||||
tune: tune.obj
|
||||
cl tune.obj ../tommath.lib
|
||||
|
||||
mont: mont.obj
|
||||
cl mont.obj ../tommath.lib
|
||||
|
||||
drprime: drprime.obj
|
||||
cl drprime.obj ../tommath.lib
|
||||
|
||||
2kprime: 2kprime.obj
|
||||
cl 2kprime.obj ../tommath.lib
|
@ -1,144 +0,0 @@
|
||||
/* Finds Mersenne primes using the Lucas-Lehmer test
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com
|
||||
*/
|
||||
#include <time.h>
|
||||
#include <tommath.h>
|
||||
|
||||
int
|
||||
is_mersenne (long s, int *pp)
|
||||
{
|
||||
mp_int n, u;
|
||||
int res, k;
|
||||
|
||||
*pp = 0;
|
||||
|
||||
if ((res = mp_init (&n)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&u)) != MP_OKAY) {
|
||||
goto LBL_N;
|
||||
}
|
||||
|
||||
/* n = 2^s - 1 */
|
||||
if ((res = mp_2expt(&n, s)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
|
||||
/* set u=4 */
|
||||
mp_set (&u, 4);
|
||||
|
||||
/* for k=1 to s-2 do */
|
||||
for (k = 1; k <= s - 2; k++) {
|
||||
/* u = u^2 - 2 mod n */
|
||||
if ((res = mp_sqr (&u, &u)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
if ((res = mp_sub_d (&u, 2, &u)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
|
||||
/* make sure u is positive */
|
||||
while (u.sign == MP_NEG) {
|
||||
if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
|
||||
/* reduce */
|
||||
if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
|
||||
goto LBL_MU;
|
||||
}
|
||||
}
|
||||
|
||||
/* if u == 0 then its prime */
|
||||
if (mp_iszero (&u) == 1) {
|
||||
mp_prime_is_prime(&n, 8, pp);
|
||||
if (*pp != 1) printf("FAILURE\n");
|
||||
}
|
||||
|
||||
res = MP_OKAY;
|
||||
LBL_MU:mp_clear (&u);
|
||||
LBL_N:mp_clear (&n);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* square root of a long < 65536 */
|
||||
long
|
||||
i_sqrt (long x)
|
||||
{
|
||||
long x1, x2;
|
||||
|
||||
x2 = 16;
|
||||
do {
|
||||
x1 = x2;
|
||||
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
|
||||
} while (x1 != x2);
|
||||
|
||||
if (x1 * x1 > x) {
|
||||
--x1;
|
||||
}
|
||||
|
||||
return x1;
|
||||
}
|
||||
|
||||
/* is the long prime by brute force */
|
||||
int
|
||||
isprime (long k)
|
||||
{
|
||||
long y, z;
|
||||
|
||||
y = i_sqrt (k);
|
||||
for (z = 2; z <= y; z++) {
|
||||
if ((k % z) == 0)
|
||||
return 0;
|
||||
}
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main (void)
|
||||
{
|
||||
int pp;
|
||||
long k;
|
||||
clock_t tt;
|
||||
|
||||
k = 3;
|
||||
|
||||
for (;;) {
|
||||
/* start time */
|
||||
tt = clock ();
|
||||
|
||||
/* test if 2^k - 1 is prime */
|
||||
if (is_mersenne (k, &pp) != MP_OKAY) {
|
||||
printf ("Whoa error\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (pp == 1) {
|
||||
/* count time */
|
||||
tt = clock () - tt;
|
||||
|
||||
/* display if prime */
|
||||
printf ("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
|
||||
}
|
||||
|
||||
/* goto next odd exponent */
|
||||
k += 2;
|
||||
|
||||
/* but make sure its prime */
|
||||
while (isprime (k) == 0) {
|
||||
k += 2;
|
||||
}
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,50 +0,0 @@
|
||||
/* tests the montgomery routines */
|
||||
#include <tommath.h>
|
||||
|
||||
int main(void)
|
||||
{
|
||||
mp_int modulus, R, p, pp;
|
||||
mp_digit mp;
|
||||
long x, y;
|
||||
|
||||
srand(time(NULL));
|
||||
mp_init_multi(&modulus, &R, &p, &pp, NULL);
|
||||
|
||||
/* loop through various sizes */
|
||||
for (x = 4; x < 256; x++) {
|
||||
printf("DIGITS == %3ld...", x); fflush(stdout);
|
||||
|
||||
/* make up the odd modulus */
|
||||
mp_rand(&modulus, x);
|
||||
modulus.dp[0] |= 1;
|
||||
|
||||
/* now find the R value */
|
||||
mp_montgomery_calc_normalization(&R, &modulus);
|
||||
mp_montgomery_setup(&modulus, &mp);
|
||||
|
||||
/* now run through a bunch tests */
|
||||
for (y = 0; y < 1000; y++) {
|
||||
mp_rand(&p, x/2); /* p = random */
|
||||
mp_mul(&p, &R, &pp); /* pp = R * p */
|
||||
mp_montgomery_reduce(&pp, &modulus, mp);
|
||||
|
||||
/* should be equal to p */
|
||||
if (mp_cmp(&pp, &p) != MP_EQ) {
|
||||
printf("FAILURE!\n");
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
printf("PASSED\n");
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,400 +0,0 @@
|
||||
/* Generates provable primes
|
||||
*
|
||||
* See http://gmail.com:8080/papers/pp.pdf for more info.
|
||||
*
|
||||
* Tom St Denis, tomstdenis@gmail.com, http://tom.gmail.com
|
||||
*/
|
||||
#include <time.h>
|
||||
#include "tommath.h"
|
||||
|
||||
int n_prime;
|
||||
FILE *primes;
|
||||
|
||||
/* fast square root */
|
||||
static mp_digit
|
||||
i_sqrt (mp_word x)
|
||||
{
|
||||
mp_word x1, x2;
|
||||
|
||||
x2 = x;
|
||||
do {
|
||||
x1 = x2;
|
||||
x2 = x1 - ((x1 * x1) - x) / (2 * x1);
|
||||
} while (x1 != x2);
|
||||
|
||||
if (x1 * x1 > x) {
|
||||
--x1;
|
||||
}
|
||||
|
||||
return x1;
|
||||
}
|
||||
|
||||
|
||||
/* generates a prime digit */
|
||||
static void gen_prime (void)
|
||||
{
|
||||
mp_digit r, x, y, next;
|
||||
FILE *out;
|
||||
|
||||
out = fopen("pprime.dat", "wb");
|
||||
|
||||
/* write first set of primes */
|
||||
r = 3; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 5; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 7; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 11; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 13; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 17; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 19; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 23; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 29; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
r = 31; fwrite(&r, 1, sizeof(mp_digit), out);
|
||||
|
||||
/* get square root, since if 'r' is composite its factors must be < than this */
|
||||
y = i_sqrt (r);
|
||||
next = (y + 1) * (y + 1);
|
||||
|
||||
for (;;) {
|
||||
do {
|
||||
r += 2; /* next candidate */
|
||||
r &= MP_MASK;
|
||||
if (r < 31) break;
|
||||
|
||||
/* update sqrt ? */
|
||||
if (next <= r) {
|
||||
++y;
|
||||
next = (y + 1) * (y + 1);
|
||||
}
|
||||
|
||||
/* loop if divisible by 3,5,7,11,13,17,19,23,29 */
|
||||
if ((r % 3) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 5) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 7) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 11) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 13) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 17) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 19) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 23) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
if ((r % 29) == 0) {
|
||||
x = 0;
|
||||
continue;
|
||||
}
|
||||
|
||||
/* now check if r is divisible by x + k={1,7,11,13,17,19,23,29} */
|
||||
for (x = 30; x <= y; x += 30) {
|
||||
if ((r % (x + 1)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 7)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 11)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 13)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 17)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 19)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 23)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
if ((r % (x + 29)) == 0) {
|
||||
x = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
} while (x == 0);
|
||||
if (r > 31) { fwrite(&r, 1, sizeof(mp_digit), out); printf("%9d\r", r); fflush(stdout); }
|
||||
if (r < 31) break;
|
||||
}
|
||||
|
||||
fclose(out);
|
||||
}
|
||||
|
||||
void load_tab(void)
|
||||
{
|
||||
primes = fopen("pprime.dat", "rb");
|
||||
if (primes == NULL) {
|
||||
gen_prime();
|
||||
primes = fopen("pprime.dat", "rb");
|
||||
}
|
||||
fseek(primes, 0, SEEK_END);
|
||||
n_prime = ftell(primes) / sizeof(mp_digit);
|
||||
}
|
||||
|
||||
mp_digit prime_digit(void)
|
||||
{
|
||||
int n;
|
||||
mp_digit d;
|
||||
|
||||
n = abs(rand()) % n_prime;
|
||||
fseek(primes, n * sizeof(mp_digit), SEEK_SET);
|
||||
fread(&d, 1, sizeof(mp_digit), primes);
|
||||
return d;
|
||||
}
|
||||
|
||||
|
||||
/* makes a prime of at least k bits */
|
||||
int
|
||||
pprime (int k, int li, mp_int * p, mp_int * q)
|
||||
{
|
||||
mp_int a, b, c, n, x, y, z, v;
|
||||
int res, ii;
|
||||
static const mp_digit bases[] = { 2, 3, 5, 7, 11, 13, 17, 19 };
|
||||
|
||||
/* single digit ? */
|
||||
if (k <= (int) DIGIT_BIT) {
|
||||
mp_set (p, prime_digit ());
|
||||
return MP_OKAY;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&c)) != MP_OKAY) {
|
||||
return res;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&v)) != MP_OKAY) {
|
||||
goto LBL_C;
|
||||
}
|
||||
|
||||
/* product of first 50 primes */
|
||||
if ((res =
|
||||
mp_read_radix (&v,
|
||||
"19078266889580195013601891820992757757219839668357012055907516904309700014933909014729740190",
|
||||
10)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&a)) != MP_OKAY) {
|
||||
goto LBL_V;
|
||||
}
|
||||
|
||||
/* set the prime */
|
||||
mp_set (&a, prime_digit ());
|
||||
|
||||
if ((res = mp_init (&b)) != MP_OKAY) {
|
||||
goto LBL_A;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&n)) != MP_OKAY) {
|
||||
goto LBL_B;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&x)) != MP_OKAY) {
|
||||
goto LBL_N;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&y)) != MP_OKAY) {
|
||||
goto LBL_X;
|
||||
}
|
||||
|
||||
if ((res = mp_init (&z)) != MP_OKAY) {
|
||||
goto LBL_Y;
|
||||
}
|
||||
|
||||
/* now loop making the single digit */
|
||||
while (mp_count_bits (&a) < k) {
|
||||
fprintf (stderr, "prime has %4d bits left\r", k - mp_count_bits (&a));
|
||||
fflush (stderr);
|
||||
top:
|
||||
mp_set (&b, prime_digit ());
|
||||
|
||||
/* now compute z = a * b * 2 */
|
||||
if ((res = mp_mul (&a, &b, &z)) != MP_OKAY) { /* z = a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if ((res = mp_copy (&z, &c)) != MP_OKAY) { /* c = a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if ((res = mp_mul_2 (&z, &z)) != MP_OKAY) { /* z = 2 * a * b */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* n = z + 1 */
|
||||
if ((res = mp_add_d (&z, 1, &n)) != MP_OKAY) { /* n = z + 1 */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* check (n, v) == 1 */
|
||||
if ((res = mp_gcd (&n, &v, &y)) != MP_OKAY) { /* y = (n, v) */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if (mp_cmp_d (&y, 1) != MP_EQ)
|
||||
goto top;
|
||||
|
||||
/* now try base x=bases[ii] */
|
||||
for (ii = 0; ii < li; ii++) {
|
||||
mp_set (&x, bases[ii]);
|
||||
|
||||
/* compute x^a mod n */
|
||||
if ((res = mp_exptmod (&x, &a, &n, &y)) != MP_OKAY) { /* y = x^a mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* now x^2a mod n */
|
||||
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2a mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* compute x^b mod n */
|
||||
if ((res = mp_exptmod (&x, &b, &n, &y)) != MP_OKAY) { /* y = x^b mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* now x^2b mod n */
|
||||
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2b mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* compute x^c mod n == x^ab mod n */
|
||||
if ((res = mp_exptmod (&x, &c, &n, &y)) != MP_OKAY) { /* y = x^ab mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* if y == 1 loop */
|
||||
if (mp_cmp_d (&y, 1) == MP_EQ)
|
||||
continue;
|
||||
|
||||
/* now compute (x^c mod n)^2 */
|
||||
if ((res = mp_sqrmod (&y, &n, &y)) != MP_OKAY) { /* y = x^2ab mod n */
|
||||
goto LBL_Z;
|
||||
}
|
||||
|
||||
/* y should be 1 */
|
||||
if (mp_cmp_d (&y, 1) != MP_EQ)
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
|
||||
/* no bases worked? */
|
||||
if (ii == li)
|
||||
goto top;
|
||||
|
||||
{
|
||||
char buf[4096];
|
||||
|
||||
mp_toradix(&n, buf, 10);
|
||||
printf("Certificate of primality for:\n%s\n\n", buf);
|
||||
mp_toradix(&a, buf, 10);
|
||||
printf("A == \n%s\n\n", buf);
|
||||
mp_toradix(&b, buf, 10);
|
||||
printf("B == \n%s\n\nG == %d\n", buf, bases[ii]);
|
||||
printf("----------------------------------------------------------------\n");
|
||||
}
|
||||
|
||||
/* a = n */
|
||||
mp_copy (&n, &a);
|
||||
}
|
||||
|
||||
/* get q to be the order of the large prime subgroup */
|
||||
mp_sub_d (&n, 1, q);
|
||||
mp_div_2 (q, q);
|
||||
mp_div (q, &b, q, NULL);
|
||||
|
||||
mp_exch (&n, p);
|
||||
|
||||
res = MP_OKAY;
|
||||
LBL_Z:mp_clear (&z);
|
||||
LBL_Y:mp_clear (&y);
|
||||
LBL_X:mp_clear (&x);
|
||||
LBL_N:mp_clear (&n);
|
||||
LBL_B:mp_clear (&b);
|
||||
LBL_A:mp_clear (&a);
|
||||
LBL_V:mp_clear (&v);
|
||||
LBL_C:mp_clear (&c);
|
||||
return res;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main (void)
|
||||
{
|
||||
mp_int p, q;
|
||||
char buf[4096];
|
||||
int k, li;
|
||||
clock_t t1;
|
||||
|
||||
srand (time (NULL));
|
||||
load_tab();
|
||||
|
||||
printf ("Enter # of bits: \n");
|
||||
fgets (buf, sizeof (buf), stdin);
|
||||
sscanf (buf, "%d", &k);
|
||||
|
||||
printf ("Enter number of bases to try (1 to 8):\n");
|
||||
fgets (buf, sizeof (buf), stdin);
|
||||
sscanf (buf, "%d", &li);
|
||||
|
||||
|
||||
mp_init (&p);
|
||||
mp_init (&q);
|
||||
|
||||
t1 = clock ();
|
||||
pprime (k, li, &p, &q);
|
||||
t1 = clock () - t1;
|
||||
|
||||
printf ("\n\nTook %ld ticks, %d bits\n", t1, mp_count_bits (&p));
|
||||
|
||||
mp_toradix (&p, buf, 10);
|
||||
printf ("P == %s\n", buf);
|
||||
mp_toradix (&q, buf, 10);
|
||||
printf ("Q == %s\n", buf);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,414 +0,0 @@
|
||||
Enter # of bits:
|
||||
Enter number of bases to try (1 to 8):
|
||||
Certificate of primality for:
|
||||
36360080703173363
|
||||
|
||||
A ==
|
||||
89963569
|
||||
|
||||
B ==
|
||||
202082249
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
4851595597739856136987139
|
||||
|
||||
A ==
|
||||
36360080703173363
|
||||
|
||||
B ==
|
||||
66715963
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
19550639734462621430325731591027
|
||||
|
||||
A ==
|
||||
4851595597739856136987139
|
||||
|
||||
B ==
|
||||
2014867
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
10409036141344317165691858509923818734539
|
||||
|
||||
A ==
|
||||
19550639734462621430325731591027
|
||||
|
||||
B ==
|
||||
266207047
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
1049829549988285012736475602118094726647504414203
|
||||
|
||||
A ==
|
||||
10409036141344317165691858509923818734539
|
||||
|
||||
B ==
|
||||
50428759
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
77194737385528288387712399596835459931920358844586615003
|
||||
|
||||
A ==
|
||||
1049829549988285012736475602118094726647504414203
|
||||
|
||||
B ==
|
||||
36765367
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
35663756695365208574443215955488689578374232732893628896541201763
|
||||
|
||||
A ==
|
||||
77194737385528288387712399596835459931920358844586615003
|
||||
|
||||
B ==
|
||||
230998627
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
16711831463502165169495622246023119698415848120292671294127567620396469803
|
||||
|
||||
A ==
|
||||
35663756695365208574443215955488689578374232732893628896541201763
|
||||
|
||||
B ==
|
||||
234297127
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
6163534781560285962890718925972249753147470953579266394395432475622345597103528739
|
||||
|
||||
A ==
|
||||
16711831463502165169495622246023119698415848120292671294127567620396469803
|
||||
|
||||
B ==
|
||||
184406323
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
|
||||
|
||||
A ==
|
||||
6163534781560285962890718925972249753147470953579266394395432475622345597103528739
|
||||
|
||||
B ==
|
||||
66054487
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
|
||||
|
||||
A ==
|
||||
814258256205243497704094951432575867360065658372158511036259934640748088306764553488803787
|
||||
|
||||
B ==
|
||||
108362239
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
|
||||
|
||||
A ==
|
||||
176469695533271657902814176811660357049007467856432383037590673407330246967781451723764079581998187
|
||||
|
||||
B ==
|
||||
127286707
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
|
||||
|
||||
A ==
|
||||
44924492859445516541759485198544012102424796403707253610035148063863073596051272171194806669756971406400419
|
||||
|
||||
B ==
|
||||
229284691
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
|
||||
|
||||
A ==
|
||||
20600996927219343383225424320134474929609459588323857796871086845924186191561749519858600696159932468024710985371059
|
||||
|
||||
B ==
|
||||
152800771
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
|
||||
|
||||
A ==
|
||||
6295696427695493110141186605837397185848992307978456138112526915330347715236378041486547994708748840844217371233735072572979
|
||||
|
||||
B ==
|
||||
246595759
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
|
||||
|
||||
A ==
|
||||
3104984078042317488749073016454213579257792635142218294052134804187631661145261015102617582090263808696699966840735333252107678792123
|
||||
|
||||
B ==
|
||||
4252063
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
|
||||
|
||||
A ==
|
||||
26405175827665701256325699315126705508919255051121452292124404943796947287968603975320562847910946802396632302209435206627913466015741799499
|
||||
|
||||
B ==
|
||||
210605419
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
|
||||
|
||||
A ==
|
||||
11122146237908413610034600609460545703591095894418599759742741406628055069007082998134905595800236452010905900391505454890446585211975124558601770163
|
||||
|
||||
B ==
|
||||
74170111
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
|
||||
|
||||
A ==
|
||||
1649861642047798890580354082088712649911849362201343649289384923147797960364736011515757482030049342943790127685185806092659832129486307035500638595572396187
|
||||
|
||||
B ==
|
||||
260016763
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
|
||||
|
||||
A ==
|
||||
857983367126266717607389719637086684134462613006415859877666235955788392464081914127715967940968197765042399904117392707518175220864852816390004264107201177394565363
|
||||
|
||||
B ==
|
||||
102563707
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
|
||||
|
||||
A ==
|
||||
175995909353623703257072120479340610010337144085688850745292031336724691277374210929188442230237711063783727092685448718515661641054886101716698390145283196296702450566161283
|
||||
|
||||
B ==
|
||||
137747527
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
|
||||
|
||||
A ==
|
||||
48486002551155667224487059713350447239190772068092630563272168418880661006593537218144160068395218642353495339720640699721703003648144463556291315694787862009052641640656933232794283
|
||||
|
||||
B ==
|
||||
135672847
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
|
||||
|
||||
A ==
|
||||
13156468011529105025061495011938518171328604045212410096476697450506055664012861932372156505805788068791146986282263016790631108386790291275939575123375304599622623328517354163964228279867403
|
||||
|
||||
B ==
|
||||
241523587
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
|
||||
|
||||
A ==
|
||||
6355194692790533601105154341731997464407930009404822926832136060319955058388106456084549316415200519472481147942263916585428906582726749131479465958107142228236909665306781538860053107680830113869123
|
||||
|
||||
B ==
|
||||
248388667
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
|
||||
|
||||
A ==
|
||||
3157116676535430302794438027544146642863331358530722860333745617571010460905857862561870488000265751138954271040017454405707755458702044884023184574412221802502351503929935224995314581932097706874819348858083
|
||||
|
||||
B ==
|
||||
61849651
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
|
||||
|
||||
A ==
|
||||
390533129219992506725320633489467713907837370444962163378727819939092929448752905310115311180032249230394348337568973177802874166228132778126338883671958897238722734394783244237133367055422297736215754829839364158067
|
||||
|
||||
B ==
|
||||
62201707
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
|
||||
|
||||
A ==
|
||||
48583654555070224891047847050732516652910250240135992225139515777200432486685999462997073444468380434359929499498804723793106565291183220444221080449740542884172281158126259373095216435009661050109711341419005972852770440739
|
||||
|
||||
B ==
|
||||
264832231
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
|
||||
|
||||
A ==
|
||||
25733035251905120039135866524384525138869748427727001128764704499071378939227862068500633813538831598776578372709963673670934388213622433800015759585470542686333039614931682098922935087822950084908715298627996115185849260703525317419
|
||||
|
||||
B ==
|
||||
54494047
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
|
||||
|
||||
A ==
|
||||
2804594464939948901906623499531073917980499195397462605359913717827014360538186518540781517129548650937632008683280555602633122170458773895504894807182664540529077836857897972175530148107545939211339044386106111633510166695386323426241809387
|
||||
|
||||
B ==
|
||||
131594179
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
|
||||
|
||||
A ==
|
||||
738136612083433720096707308165797114449914259256979340471077690416567237592465306112484843530074782721390528773594351482384711900456440808251196845265132086486672447136822046628407467459921823150600138073268385534588238548865012638209515923513516547
|
||||
|
||||
B ==
|
||||
266107603
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
|
||||
|
||||
A ==
|
||||
392847529056126766528615419937165193421166694172790666626558750047057558168124866940509180171236517681470100877687445134633784815352076138790217228749332398026714192707447855731679485746120589851992221508292976900578299504461333767437280988393026452846013683
|
||||
|
||||
B ==
|
||||
214408111
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
|
||||
|
||||
A ==
|
||||
168459393231883505975876919268398655632763956627405508859662408056221544310200546265681845397346956580604208064328814319465940958080244889692368602591598503944015835190587740756859842792554282496742843600573336023639256008687581291233481455395123454655488735304365627
|
||||
|
||||
B ==
|
||||
44122723
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
|
||||
|
||||
A ==
|
||||
14865774288636941404884923981945833072113667565310054952177860608355263252462409554658728941191929400198053290113492910272458441655458514080123870132092365833472436407455910185221474386718838138135065780840839893113912689594815485706154461164071775481134379794909690501684643
|
||||
|
||||
B ==
|
||||
40808563
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
|
||||
|
||||
A ==
|
||||
1213301773203241614897109856134894783021668292000023984098824423682568173639394290886185366993108292039068940333907505157813934962357206131450244004178619265868614859794316361031904412926604138893775068853175215502104744339658944443630407632290152772487455298652998368296998719996019
|
||||
|
||||
B ==
|
||||
77035759
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
|
||||
|
||||
A ==
|
||||
186935245989515158127969129347464851990429060640910951266513740972248428651109062997368144722015290092846666943896556191257222521203647606911446635194198213436423080005867489516421559330500722264446765608763224572386410155413161172707802334865729654109050873820610813855041667633843601286843
|
||||
|
||||
B ==
|
||||
222383587
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
|
||||
|
||||
A ==
|
||||
83142661079751490510739960019112406284111408348732592580459037404394946037094409915127399165633756159385609671956087845517678367844901424617866988187132480585966721962585586730693443536100138246516868613250009028187662080828012497191775172228832247706080044971423654632146928165751885302331924491683
|
||||
|
||||
B ==
|
||||
23407687
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
|
||||
|
||||
A ==
|
||||
3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
|
||||
|
||||
B ==
|
||||
213701827
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
|
||||
|
||||
Took 33057 ticks, 1048 bits
|
||||
P == 1663606652988091811284014366560171522582683318514519379924950390627250155440313691226744227787921928894551755219495501365555370027257568506349958010457682898612082048959464465369892842603765280317696116552850664773291371490339084156052244256635115997453399761029567033971998617303988376172539172702246575225837054723
|
||||
Q == 3892354773803809855317742245039794448230625839512638747643814927766738642436392673485997449586432241626440927010641564064764336402368634186618250134234189066179771240232458249806850838490410473462391401438160528157981942499581634732706904411807195259620779379274017704050790865030808501633772117217899534443
|
@ -1,205 +0,0 @@
|
||||
Enter # of bits:
|
||||
Enter number of bases to try (1 to 8):
|
||||
Certificate of primality for:
|
||||
85933926807634727
|
||||
|
||||
A ==
|
||||
253758023
|
||||
|
||||
B ==
|
||||
169322581
|
||||
|
||||
G == 5
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
23930198825086241462113799
|
||||
|
||||
A ==
|
||||
85933926807634727
|
||||
|
||||
B ==
|
||||
139236037
|
||||
|
||||
G == 11
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
6401844647261612602378676572510019
|
||||
|
||||
A ==
|
||||
23930198825086241462113799
|
||||
|
||||
B ==
|
||||
133760791
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
269731366027728777712034888684015329354259
|
||||
|
||||
A ==
|
||||
6401844647261612602378676572510019
|
||||
|
||||
B ==
|
||||
21066691
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
37942338209025571690075025099189467992329684223707
|
||||
|
||||
A ==
|
||||
269731366027728777712034888684015329354259
|
||||
|
||||
B ==
|
||||
70333567
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
15306904714258982484473490774101705363308327436988160248323
|
||||
|
||||
A ==
|
||||
37942338209025571690075025099189467992329684223707
|
||||
|
||||
B ==
|
||||
201712723
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
1616744757018513392810355191503853040357155275733333124624513530099
|
||||
|
||||
A ==
|
||||
15306904714258982484473490774101705363308327436988160248323
|
||||
|
||||
B ==
|
||||
52810963
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
464222094814208047161771036072622485188658077940154689939306386289983787983
|
||||
|
||||
A ==
|
||||
1616744757018513392810355191503853040357155275733333124624513530099
|
||||
|
||||
B ==
|
||||
143566909
|
||||
|
||||
G == 5
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
187429931674053784626487560729643601208757374994177258429930699354770049369025096447
|
||||
|
||||
A ==
|
||||
464222094814208047161771036072622485188658077940154689939306386289983787983
|
||||
|
||||
B ==
|
||||
201875281
|
||||
|
||||
G == 5
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
|
||||
|
||||
A ==
|
||||
187429931674053784626487560729643601208757374994177258429930699354770049369025096447
|
||||
|
||||
B ==
|
||||
268311523
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
|
||||
|
||||
A ==
|
||||
100579220846502621074093727119851331775052664444339632682598589456666938521976625305832917563
|
||||
|
||||
B ==
|
||||
5834287
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
|
||||
|
||||
A ==
|
||||
1173616081309758475197022137833792133815753368965945885089720153370737965497134878651384030219765163
|
||||
|
||||
B ==
|
||||
81567097
|
||||
|
||||
G == 5
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
|
||||
|
||||
A ==
|
||||
191456913489905913185935197655672585713573070349044195411728114905691721186574907738081340754373032735283623
|
||||
|
||||
B ==
|
||||
151095433
|
||||
|
||||
G == 7
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
|
||||
|
||||
A ==
|
||||
57856530489201750164178576399448868489243874083056587683743345599898489554401618943240901541005080049321706789987519
|
||||
|
||||
B ==
|
||||
119178679
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
|
||||
|
||||
A ==
|
||||
13790529750452576698109671710773784949185621244122040804792403407272729038377767162233653248852099545134831722512085881814803
|
||||
|
||||
B ==
|
||||
256552363
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
|
||||
|
||||
A ==
|
||||
7075985989000817742677547821106534174334812111605018857703825637170140040509067704269696198231266351631132464035671858077052876058979
|
||||
|
||||
B ==
|
||||
86720989
|
||||
|
||||
G == 5
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
|
||||
|
||||
A ==
|
||||
1227273006232588072907488910282307435921226646895131225407452056677899411162892829564455154080310937471747140942360789623819327234258162420463
|
||||
|
||||
B ==
|
||||
182015287
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
Certificate of primality for:
|
||||
5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
|
||||
|
||||
A ==
|
||||
446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
|
||||
|
||||
B ==
|
||||
5920567
|
||||
|
||||
G == 2
|
||||
----------------------------------------------------------------
|
||||
|
||||
|
||||
Took 3454 ticks, 521 bits
|
||||
P == 5290203010849586596974953717018896543907195901082056939587768479377028575911127944611236020459652034082251335583308070846379514569838984811187823420951275243
|
||||
Q == 446764896913554613686067036908702877942872355053329937790398156069936255759889884246832779737114032666318220500106499161852193765380831330106375235763
|
@ -1,37 +0,0 @@
|
||||
; x86 timer in NASM
|
||||
;
|
||||
; Tom St Denis, tomstdenis@iahu.ca
|
||||
[bits 32]
|
||||
[section .data]
|
||||
time dd 0, 0
|
||||
|
||||
[section .text]
|
||||
|
||||
%ifdef USE_ELF
|
||||
[global t_start]
|
||||
t_start:
|
||||
%else
|
||||
[global _t_start]
|
||||
_t_start:
|
||||
%endif
|
||||
push edx
|
||||
push eax
|
||||
rdtsc
|
||||
mov [time+0],edx
|
||||
mov [time+4],eax
|
||||
pop eax
|
||||
pop edx
|
||||
ret
|
||||
|
||||
%ifdef USE_ELF
|
||||
[global t_read]
|
||||
t_read:
|
||||
%else
|
||||
[global _t_read]
|
||||
_t_read:
|
||||
%endif
|
||||
rdtsc
|
||||
sub eax,[time+4]
|
||||
sbb edx,[time+0]
|
||||
ret
|
||||
|
@ -1,146 +0,0 @@
|
||||
/* Tune the Karatsuba parameters
|
||||
*
|
||||
* Tom St Denis, tstdenis82@gmail.com
|
||||
*/
|
||||
#include <tommath.h>
|
||||
#include <time.h>
|
||||
#include <stdint.h>
|
||||
|
||||
/* how many times todo each size mult. Depends on your computer. For slow computers
|
||||
* this can be low like 5 or 10. For fast [re: Athlon] should be 25 - 50 or so
|
||||
*/
|
||||
#define TIMES (1UL<<14UL)
|
||||
|
||||
#ifndef X86_TIMER
|
||||
|
||||
/* RDTSC from Scott Duplichan */
|
||||
static uint64_t TIMFUNC (void)
|
||||
{
|
||||
#if defined __GNUC__
|
||||
#if defined(__i386__) || defined(__x86_64__)
|
||||
/* version from http://www.mcs.anl.gov/~kazutomo/rdtsc.html
|
||||
* the old code always got a warning issued by gcc, clang did not complain...
|
||||
*/
|
||||
unsigned hi, lo;
|
||||
__asm__ __volatile__ ("rdtsc" : "=a"(lo), "=d"(hi));
|
||||
return ((uint64_t)lo)|( ((uint64_t)hi)<<32);
|
||||
#else /* gcc-IA64 version */
|
||||
unsigned long result;
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
while (__builtin_expect ((int) result == -1, 0))
|
||||
__asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
|
||||
return result;
|
||||
#endif
|
||||
|
||||
// Microsoft and Intel Windows compilers
|
||||
#elif defined _M_IX86
|
||||
__asm rdtsc
|
||||
#elif defined _M_AMD64
|
||||
return __rdtsc ();
|
||||
#elif defined _M_IA64
|
||||
#if defined __INTEL_COMPILER
|
||||
#include <ia64intrin.h>
|
||||
#endif
|
||||
return __getReg (3116);
|
||||
#else
|
||||
#error need rdtsc function for this build
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/* generic ISO C timer */
|
||||
uint64_t LBL_T;
|
||||
void t_start(void) { LBL_T = TIMFUNC(); }
|
||||
uint64_t t_read(void) { return TIMFUNC() - LBL_T; }
|
||||
|
||||
#else
|
||||
extern void t_start(void);
|
||||
extern uint64_t t_read(void);
|
||||
#endif
|
||||
|
||||
uint64_t time_mult(int size, int s)
|
||||
{
|
||||
unsigned long x;
|
||||
mp_int a, b, c;
|
||||
uint64_t t1;
|
||||
|
||||
mp_init (&a);
|
||||
mp_init (&b);
|
||||
mp_init (&c);
|
||||
|
||||
mp_rand (&a, size);
|
||||
mp_rand (&b, size);
|
||||
|
||||
if (s == 1) {
|
||||
KARATSUBA_MUL_CUTOFF = size;
|
||||
} else {
|
||||
KARATSUBA_MUL_CUTOFF = 100000;
|
||||
}
|
||||
|
||||
t_start();
|
||||
for (x = 0; x < TIMES; x++) {
|
||||
mp_mul(&a,&b,&c);
|
||||
}
|
||||
t1 = t_read();
|
||||
mp_clear (&a);
|
||||
mp_clear (&b);
|
||||
mp_clear (&c);
|
||||
return t1;
|
||||
}
|
||||
|
||||
uint64_t time_sqr(int size, int s)
|
||||
{
|
||||
unsigned long x;
|
||||
mp_int a, b;
|
||||
uint64_t t1;
|
||||
|
||||
mp_init (&a);
|
||||
mp_init (&b);
|
||||
|
||||
mp_rand (&a, size);
|
||||
|
||||
if (s == 1) {
|
||||
KARATSUBA_SQR_CUTOFF = size;
|
||||
} else {
|
||||
KARATSUBA_SQR_CUTOFF = 100000;
|
||||
}
|
||||
|
||||
t_start();
|
||||
for (x = 0; x < TIMES; x++) {
|
||||
mp_sqr(&a,&b);
|
||||
}
|
||||
t1 = t_read();
|
||||
mp_clear (&a);
|
||||
mp_clear (&b);
|
||||
return t1;
|
||||
}
|
||||
|
||||
int
|
||||
main (void)
|
||||
{
|
||||
uint64_t t1, t2;
|
||||
int x, y;
|
||||
|
||||
for (x = 8; ; x += 2) {
|
||||
t1 = time_mult(x, 0);
|
||||
t2 = time_mult(x, 1);
|
||||
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
|
||||
if (t2 < t1) break;
|
||||
}
|
||||
y = x;
|
||||
|
||||
for (x = 8; ; x += 2) {
|
||||
t1 = time_sqr(x, 0);
|
||||
t2 = time_sqr(x, 1);
|
||||
printf("%d: %9llu %9llu, %9llu\n", x, t1, t2, t2 - t1);
|
||||
if (t2 < t1) break;
|
||||
}
|
||||
printf("KARATSUBA_MUL_CUTOFF = %d\n", y);
|
||||
printf("KARATSUBA_SQR_CUTOFF = %d\n", x);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* ref: $Format:%D$ */
|
||||
/* git commit: $Format:%H$ */
|
||||
/* commit time: $Format:%ai$ */
|
@ -1,34 +0,0 @@
|
||||
#!/usr/bin/perl
|
||||
|
||||
# we want to filter every between START_INS and END_INS out and then insert crap from another file (this is fun)
|
||||
|
||||
use strict;
|
||||
use warnings;
|
||||
|
||||
open(my $src, '<', shift);
|
||||
open(my $ins, '<', shift);
|
||||
open(my $tmp, '>', 'tmp.delme');
|
||||
|
||||
my $l = 0;
|
||||
while (<$src>) {
|
||||
if ($_ =~ /START_INS/) {
|
||||
print {$tmp} $_;
|
||||
$l = 1;
|
||||
while (<$ins>) {
|
||||
print {$tmp} $_;
|
||||
}
|
||||
close $ins;
|
||||
} elsif ($_ =~ /END_INS/) {
|
||||
print {$tmp} $_;
|
||||
$l = 0;
|
||||
} elsif ($l == 0) {
|
||||
print {$tmp} $_;
|
||||
}
|
||||
}
|
||||
|
||||
close $tmp;
|
||||
close $src;
|
||||
|
||||
# ref: $Format:%D$
|
||||
# git commit: $Format:%H$
|
||||
# commit time: $Format:%ai$
|
@ -1,8 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
export a=`find . -maxdepth 1 -type f -name '*.c' | sort | sed -e 'sE\./EE' | sed -e 's/\.c/\.o/' | xargs`
|
||||
perl ./parsenames.pl OBJECTS "$a"
|
||||
|
||||
# ref: $Format:%D$
|
||||
# git commit: $Format:%H$
|
||||
# commit time: $Format:%ai$
|
@ -1,13 +0,0 @@
|
||||
To use the pretty graphs you have to first build/run the ltmtest from the root directory of the package.
|
||||
Todo this type
|
||||
|
||||
make timing ; ltmtest
|
||||
|
||||
in the root. It will run for a while [about ten minutes on most PCs] and produce a series of .log files in logs/.
|
||||
|
||||
After doing that run "gnuplot graphs.dem" to make the PNGs. If you managed todo that all so far just open index.html to view
|
||||
them all :-)
|
||||
|
||||
Have fun
|
||||
|
||||
Tom
|
@ -1,16 +0,0 @@
|
||||
480 87
|
||||
960 111
|
||||
1440 135
|
||||
1920 159
|
||||
2400 200
|
||||
2880 224
|
||||
3360 248
|
||||
3840 272
|
||||
4320 296
|
||||
4800 320
|
||||
5280 344
|
||||
5760 368
|
||||
6240 392
|
||||
6720 416
|
||||
7200 440
|
||||
7680 464
|
Binary file not shown.
Before Width: | Height: | Size: 6.1 KiB |
@ -1,7 +0,0 @@
|
||||
513 1435869
|
||||
769 3544970
|
||||
1025 7791638
|
||||
2049 46902238
|
||||
2561 85334899
|
||||
3073 141451412
|
||||
4097 308770310
|
Binary file not shown.
Before Width: | Height: | Size: 6.5 KiB |
@ -1,5 +0,0 @@
|
||||
607 2109225
|
||||
1279 10148314
|
||||
2203 34126877
|
||||
3217 82716424
|
||||
4253 161569606
|
@ -1,4 +0,0 @@
|
||||
1024 7705271
|
||||
2048 34286851
|
||||
4096 165207491
|
||||
521 1618631
|
@ -1,7 +0,0 @@
|
||||
532 1928550
|
||||
784 3763908
|
||||
1036 7564221
|
||||
1540 16566059
|
||||
2072 32283784
|
||||
3080 79851565
|
||||
4116 157843530
|
@ -1,17 +0,0 @@
|
||||
set terminal png
|
||||
set size 1.75
|
||||
set ylabel "Cycles per Operation"
|
||||
set xlabel "Operand size (bits)"
|
||||
|
||||
set output "addsub.png"
|
||||
plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
|
||||
|
||||
set output "mult.png"
|
||||
plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
|
||||
|
||||
set output "expt.png"
|
||||
plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)", 'expt_2k.log' smooth bezier title "Exptmod (2k Reduction)"
|
||||
|
||||
set output "invmod.png"
|
||||
plot 'invmod.log' smooth bezier title "Modular Inverse"
|
||||
|
@ -1,27 +0,0 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>LibTomMath Log Plots</title>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<h1>Addition and Subtraction</h1>
|
||||
<center><img src=addsub.png></center>
|
||||
<hr>
|
||||
|
||||
<h1>Multipliers</h1>
|
||||
<center><img src=mult.png></center>
|
||||
<hr>
|
||||
|
||||
<h1>Exptmod</h1>
|
||||
<center><img src=expt.png></center>
|
||||
<hr>
|
||||
|
||||
<h1>Modular Inverse</h1>
|
||||
<center><img src=invmod.png></center>
|
||||
<hr>
|
||||
|
||||
</body>
|
||||
</html>
|
||||
/* $Source: /cvs/libtom/libtommath/logs/index.html,v $ */
|
||||
/* $Revision: 1.2 $ */
|
||||
/* $Date: 2005/05/05 14:38:47 $ */
|
Binary file not shown.
Before Width: | Height: | Size: 4.8 KiB |
@ -1,84 +0,0 @@
|
||||
271 555
|
||||
390 855
|
||||
508 1161
|
||||
631 1605
|
||||
749 2117
|
||||
871 2687
|
||||
991 3329
|
||||
1108 4084
|
||||
1231 4786
|
||||
1351 5624
|
||||
1470 6392
|
||||
1586 7364
|
||||
1710 8218
|
||||
1830 9255
|
||||
1951 10217
|
||||
2067 11461
|
||||
2191 12463
|
||||
2308 13677
|
||||
2430 14800
|
||||
2551 16232
|
||||
2671 17460
|
||||
2791 18899
|
||||
2902 20247
|
||||
3028 21902
|
||||
3151 23240
|
||||
3267 24927
|
||||
3391 26441
|
||||
3511 28277
|
||||
3631 29838
|
||||
3749 31751
|
||||
3869 33673
|
||||
3989 35431
|
||||
4111 37518
|
||||
4231 39426
|
||||
4349 41504
|
||||
4471 43567
|
||||
4591 45786
|
||||
4711 47876
|
||||
4831 50299
|
||||
4951 52427
|
||||
5071 54785
|
||||
5189 57241
|
||||
5307 59730
|
||||
5431 62194
|
||||
5551 64761
|
||||
5670 67322
|
||||
5789 70073
|
||||
5907 72663
|
||||
6030 75437
|
||||
6151 78242
|
||||
6268 81202
|
||||
6389 83948
|
||||
6509 86985
|
||||
6631 89903
|
||||
6747 93184
|
||||
6869 96044
|
||||
6991 99286
|
||||
7109 102395
|
||||
7229 105917
|
||||
7351 108940
|
||||
7470 112490
|
||||
7589 115702
|
||||
7711 119508
|
||||
7831 122632
|
||||
7951 126410
|
||||
8071 129808
|
||||
8190 133895
|
||||
8311 137146
|
||||
8431 141218
|
||||
8549 144732
|
||||
8667 149131
|
||||
8790 152462
|
||||
8911 156754
|
||||
9030 160479
|
||||
9149 165138
|
||||
9271 168601
|
||||
9391 173185
|
||||
9511 176988
|
||||
9627 181976
|
||||
9751 185539
|
||||
9870 190388
|
||||
9991 194335
|
||||
10110 199605
|
||||
10228 203298
|
Binary file not shown.
Before Width: | Height: | Size: 6.6 KiB |
@ -1,84 +0,0 @@
|
||||
271 560
|
||||
391 870
|
||||
511 1159
|
||||
631 1605
|
||||
750 2111
|
||||
871 2737
|
||||
991 3361
|
||||
1111 4054
|
||||
1231 4778
|
||||
1351 5600
|
||||
1471 6404
|
||||
1591 7323
|
||||
1710 8255
|
||||
1831 9239
|
||||
1948 10257
|
||||
2070 11397
|
||||
2190 12531
|
||||
2308 13665
|
||||
2429 14870
|
||||
2550 16175
|
||||
2671 17539
|
||||
2787 18879
|
||||
2911 20350
|
||||
3031 21807
|
||||
3150 23415
|
||||
3270 24897
|
||||
3388 26567
|
||||
3511 28205
|
||||
3627 30076
|
||||
3751 31744
|
||||
3869 33657
|
||||
3991 35425
|
||||
4111 37522
|
||||
4229 39363
|
||||
4351 41503
|
||||
4470 43491
|
||||
4590 45827
|
||||
4711 47795
|
||||
4828 50166
|
||||
4951 52318
|
||||
5070 54911
|
||||
5191 57036
|
||||
5308 58237
|
||||
5431 60248
|
||||
5551 62678
|
||||
5671 64786
|
||||
5791 67294
|
||||
5908 69343
|
||||
6031 71607
|
||||
6151 74166
|
||||
6271 76590
|
||||
6391 78734
|
||||
6511 81175
|
||||
6631 83742
|
||||
6750 86403
|
||||
6868 88873
|
||||
6990 91150
|
||||
7110 94211
|
||||
7228 96922
|
||||
7351 99445
|
||||
7469 102216
|
||||
7589 104968
|
||||
7711 108113
|
||||
7827 110758
|
||||
7950 113714
|
||||
8071 116511
|
||||
8186 119643
|
||||
8310 122679
|
||||
8425 125581
|
||||
8551 128715
|
||||
8669 131778
|
||||
8788 135116
|
||||
8910 138138
|
||||
9031 141628
|
||||
9148 144754
|
||||
9268 148367
|
||||
9391 151551
|
||||
9511 155033
|
||||
9631 158652
|
||||
9751 162125
|
||||
9871 165248
|
||||
9988 168627
|
||||
10111 172427
|
||||
10231 176412
|
@ -1,84 +0,0 @@
|
||||
265 562
|
||||
389 882
|
||||
509 1207
|
||||
631 1572
|
||||
750 1990
|
||||
859 2433
|
||||
991 2894
|
||||
1109 3555
|
||||
1230 4228
|
||||
1350 5018
|
||||
1471 5805
|
||||
1591 6579
|
||||
1709 7415
|
||||
1829 8329
|
||||
1949 9225
|
||||
2071 10139
|
||||
2188 11239
|
||||
2309 12178
|
||||
2431 13212
|
||||
2551 14294
|
||||
2671 15551
|
||||
2791 16512
|
||||
2911 17718
|
||||
3030 18876
|
||||
3150 20259
|
||||
3270 21374
|
||||
3391 22650
|
||||
3511 23948
|
||||
3631 25493
|
||||
3750 26756
|
||||
3870 28225
|
||||
3989 29705
|
||||
4110 31409
|
||||
4230 32834
|
||||
4351 34327
|
||||
4471 35818
|
||||
4591 37636
|
||||
4711 39228
|
||||
4830 40868
|
||||
4949 42393
|
||||
5070 44541
|
||||
5191 46269
|
||||
5310 48162
|
||||
5429 49728
|
||||
5548 51985
|
||||
5671 53948
|
||||
5791 55885
|
||||
5910 57584
|
||||
6031 60082
|
||||
6150 62239
|
||||
6270 64309
|
||||
6390 66014
|
||||
6511 68766
|
||||
6631 71012
|
||||
6750 73172
|
||||
6871 74952
|
||||
6991 77909
|
||||
7111 80371
|
||||
7231 82666
|
||||
7351 84531
|
||||
7469 87698
|
||||
7589 90318
|
||||
7711 225384
|
||||
7830 232428
|
||||
7950 240009
|
||||
8070 246522
|
||||
8190 253662
|
||||
8310 260961
|
||||
8431 269253
|
||||
8549 275743
|
||||
8671 283769
|
||||
8789 290811
|
||||
8911 300034
|
||||
9030 306873
|
||||
9149 315085
|
||||
9270 323944
|
||||
9390 332390
|
||||
9508 337519
|
||||
9631 348986
|
||||
9749 356904
|
||||
9871 367013
|
||||
9989 373831
|
||||
10108 381033
|
||||
10230 393475
|
@ -1,84 +0,0 @@
|
||||
271 560
|
||||
388 878
|
||||
511 1179
|
||||
629 1625
|
||||
751 1988
|
||||
871 2423
|
||||
989 2896
|
||||
1111 3561
|
||||
1231 4209
|
||||
1350 5015
|
||||
1470 5804
|
||||
1591 6556
|
||||
1709 7420
|
||||
1831 8263
|
||||
1951 9173
|
||||
2070 10153
|
||||
2191 11229
|
||||
2310 12167
|
||||
2431 13211
|
||||
2550 14309
|
||||
2671 15524
|
||||
2788 16525
|
||||
2910 17712
|
||||
3028 18822
|
||||
3148 20220
|
||||
3271 21343
|
||||
3391 22652
|
||||
3511 23944
|
||||
3630 25485
|
||||
3750 26778
|
||||
3868 28201
|
||||
3990 29653
|
||||
4111 31393
|
||||
4225 32841
|
||||
4350 34328
|
||||
4471 35786
|
||||
4590 37652
|
||||
4711 39245
|
||||
4830 40876
|
||||
4951 42433
|
||||
5068 44547
|
||||
5191 46321
|
||||
5311 48140
|
||||
5430 49727
|
||||
5550 52034
|
||||
5671 53954
|
||||
5791 55921
|
||||
5908 57597
|
||||
6031 60084
|
||||
6148 62226
|
||||
6270 64295
|
||||
6390 66045
|
||||
6511 68779
|
||||
6629 71003
|
||||
6751 73169
|
||||
6871 74992
|
||||
6991 77895
|
||||
7110 80376
|
||||
7231 82628
|
||||
7351 84468
|
||||
7470 87664
|
||||
7591 90284
|
||||
7711 91352
|
||||
7828 93995
|
||||
7950 96276
|
||||
8071 98691
|
||||
8190 101256
|
||||
8308 103631
|
||||
8431 105222
|
||||
8550 108343
|
||||
8671 110281
|
||||
8787 112764
|
||||
8911 115397
|
||||
9031 117690
|
||||
9151 120266
|
||||
9271 122715
|
||||
9391 124624
|
||||
9510 127937
|
||||
9630 130313
|
||||
9750 132914
|
||||
9871 136129
|
||||
9991 138517
|
||||
10108 141525
|
||||
10231 144225
|
@ -1,16 +0,0 @@
|
||||
480 94
|
||||
960 116
|
||||
1440 140
|
||||
1920 164
|
||||
2400 205
|
||||
2880 229
|
||||
3360 253
|
||||
3840 277
|
||||
4320 299
|
||||
4800 321
|
||||
5280 345
|
||||
5760 371
|
||||
6240 395
|
||||
6720 419
|
||||
7200 441
|
||||
7680 465
|
@ -1,46 +0,0 @@
|
||||
#
|
||||
# Borland C++Builder Makefile (makefile.bcc)
|
||||
#
|
||||
|
||||
|
||||
LIB = tlib
|
||||
CC = bcc32
|
||||
CFLAGS = -c -O2 -I.
|
||||
|
||||
#START_INS
|
||||
OBJECTS=bncore.obj bn_error.obj bn_fast_mp_invmod.obj bn_fast_mp_montgomery_reduce.obj bn_fast_s_mp_mul_digs.obj \
|
||||
bn_fast_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj \
|
||||
bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
|
||||
bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj \
|
||||
bn_mp_div.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj bn_mp_dr_setup.obj bn_mp_exch.obj \
|
||||
bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj \
|
||||
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj \
|
||||
bn_mp_grow.obj bn_mp_import.obj bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj \
|
||||
bn_mp_init_set_int.obj bn_mp_init_size.obj bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj \
|
||||
bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj bn_mp_karatsuba_sqr.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod_2d.obj \
|
||||
bn_mp_mod.obj bn_mp_mod_d.obj bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj \
|
||||
bn_mp_montgomery_setup.obj bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_neg.obj \
|
||||
bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_is_divisible.obj \
|
||||
bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \
|
||||
bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj \
|
||||
bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce_2k.obj \
|
||||
bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj bn_mp_reduce.obj \
|
||||
bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj bn_mp_set_int.obj \
|
||||
bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj \
|
||||
bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_toom_mul.obj \
|
||||
bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj \
|
||||
bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj \
|
||||
bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj bn_s_mp_mul_high_digs.obj \
|
||||
bn_s_mp_sqr.obj bn_s_mp_sub.obj
|
||||
|
||||
#END_INS
|
||||
|
||||
HEADERS=tommath.h tommath_class.h tommath_superclass.h
|
||||
|
||||
TARGET = libtommath.lib
|
||||
|
||||
$(TARGET): $(OBJECTS)
|
||||
|
||||
.c.obj:
|
||||
$(CC) $(CFLAGS) $<
|
||||
$(LIB) $(TARGET) -+$@
|
@ -1,57 +0,0 @@
|
||||
#Makefile for Cygwin-GCC
|
||||
#
|
||||
#This makefile will build a Windows DLL [doesn't require cygwin to run] in the file
|
||||
#libtommath.dll. The import library is in libtommath.dll.a. Remember to add
|
||||
#"-Wl,--enable-auto-import" to your client build to avoid the auto-import warnings
|
||||
#
|
||||
#Tom St Denis
|
||||
CFLAGS += -I./ -Wall -W -Wshadow -O3 -funroll-loops -mno-cygwin
|
||||
|
||||
#x86 optimizations [should be valid for any GCC install though]
|
||||
CFLAGS += -fomit-frame-pointer
|
||||
|
||||
default: windll
|
||||
|
||||
#START_INS
|
||||
OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
|
||||
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
|
||||
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
|
||||
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \
|
||||
bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \
|
||||
bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \
|
||||
bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \
|
||||
bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \
|
||||
bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \
|
||||
bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \
|
||||
bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \
|
||||
bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \
|
||||
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
|
||||
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \
|
||||
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \
|
||||
bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \
|
||||
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \
|
||||
bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \
|
||||
bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \
|
||||
bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
|
||||
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \
|
||||
bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \
|
||||
bn_s_mp_sqr.o bn_s_mp_sub.o
|
||||
|
||||
#END_INS
|
||||
|
||||
HEADERS=tommath.h tommath_class.h tommath_superclass.h
|
||||
|
||||
# make a Windows DLL via Cygwin
|
||||
windll: $(OBJECTS)
|
||||
gcc -mno-cygwin -mdll -o libtommath.dll -Wl,--out-implib=libtommath.dll.a -Wl,--export-all-symbols *.o
|
||||
ranlib libtommath.dll.a
|
||||
|
||||
# build the test program using the windows DLL
|
||||
test: $(OBJECTS) windll
|
||||
gcc $(CFLAGS) demo/demo.c libtommath.dll.a -Wl,--enable-auto-import -o test -s
|
||||
cd mtest ; $(CC) -O3 -fomit-frame-pointer -funroll-loops mtest.c -o mtest -s
|
||||
|
||||
/* $Source: /cvs/libtom/libtommath/makefile.cygwin_dll,v $ */
|
||||
/* $Revision: 1.2 $ */
|
||||
/* $Date: 2005/05/05 14:38:45 $ */
|
@ -1,117 +0,0 @@
|
||||
#Makefile for ICC
|
||||
#
|
||||
#Tom St Denis
|
||||
CC=icc
|
||||
|
||||
CFLAGS += -I./
|
||||
|
||||
# optimize for SPEED
|
||||
#
|
||||
# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
|
||||
# -ax? specifies make code specifically for ? but compatible with IA-32
|
||||
# -x? specifies compile solely for ? [not specifically IA-32 compatible]
|
||||
#
|
||||
# where ? is
|
||||
# K - PIII
|
||||
# W - first P4 [Williamette]
|
||||
# N - P4 Northwood
|
||||
# P - P4 Prescott
|
||||
# B - Blend of P4 and PM [mobile]
|
||||
#
|
||||
# Default to just generic max opts
|
||||
CFLAGS += -O3 -xP -ip
|
||||
|
||||
#install as this user
|
||||
USER=root
|
||||
GROUP=root
|
||||
|
||||
default: libtommath.a
|
||||
|
||||
#default files to install
|
||||
LIBNAME=libtommath.a
|
||||
|
||||
#LIBPATH-The directory for libtomcrypt to be installed to.
|
||||
#INCPATH-The directory to install the header files for libtommath.
|
||||
#DATAPATH-The directory to install the pdf docs.
|
||||
DESTDIR=
|
||||
LIBPATH=/usr/lib
|
||||
INCPATH=/usr/include
|
||||
DATAPATH=/usr/share/doc/libtommath/pdf
|
||||
|
||||
#START_INS
|
||||
OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
|
||||
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
|
||||
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
|
||||
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \
|
||||
bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \
|
||||
bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \
|
||||
bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \
|
||||
bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \
|
||||
bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \
|
||||
bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \
|
||||
bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \
|
||||
bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \
|
||||
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
|
||||
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \
|
||||
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \
|
||||
bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \
|
||||
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \
|
||||
bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \
|
||||
bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \
|
||||
bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
|
||||
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \
|
||||
bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \
|
||||
bn_s_mp_sqr.o bn_s_mp_sub.o
|
||||
|
||||
#END_INS
|
||||
|
||||
HEADERS=tommath.h tommath_class.h tommath_superclass.h
|
||||
|
||||
libtommath.a: $(OBJECTS)
|
||||
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
|
||||
ranlib libtommath.a
|
||||
|
||||
#make a profiled library (takes a while!!!)
|
||||
#
|
||||
# This will build the library with profile generation
|
||||
# then run the test demo and rebuild the library.
|
||||
#
|
||||
# So far I've seen improvements in the MP math
|
||||
profiled:
|
||||
make -f makefile.icc CFLAGS="$(CFLAGS) -prof_gen -DTESTING" timing
|
||||
./ltmtest
|
||||
rm -f *.a *.o ltmtest
|
||||
make -f makefile.icc CFLAGS="$(CFLAGS) -prof_use"
|
||||
|
||||
#make a single object profiled library
|
||||
profiled_single:
|
||||
perl gen.pl
|
||||
$(CC) $(CFLAGS) -prof_gen -DTESTING -c mpi.c -o mpi.o
|
||||
$(CC) $(CFLAGS) -DTESTING -DTIMER demo/demo.c mpi.o -o ltmtest
|
||||
./ltmtest
|
||||
rm -f *.o ltmtest
|
||||
$(CC) $(CFLAGS) -prof_use -ip -DTESTING -c mpi.c -o mpi.o
|
||||
$(AR) $(ARFLAGS) libtommath.a mpi.o
|
||||
ranlib libtommath.a
|
||||
|
||||
install: libtommath.a
|
||||
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(LIBPATH)
|
||||
install -d -g $(GROUP) -o $(USER) $(DESTDIR)$(INCPATH)
|
||||
install -g $(GROUP) -o $(USER) $(LIBNAME) $(DESTDIR)$(LIBPATH)
|
||||
install -g $(GROUP) -o $(USER) $(HEADERS) $(DESTDIR)$(INCPATH)
|
||||
|
||||
test: libtommath.a demo/demo.o
|
||||
$(CC) demo/demo.o libtommath.a -o test
|
||||
|
||||
mtest: test
|
||||
cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest
|
||||
|
||||
timing: libtommath.a
|
||||
$(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest
|
||||
|
||||
clean:
|
||||
rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
|
||||
*.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.il etc/*.il *.dyn
|
||||
cd etc ; make clean
|
||||
cd pics ; make clean
|
@ -1,40 +0,0 @@
|
||||
#MSVC Makefile
|
||||
#
|
||||
#Tom St Denis
|
||||
|
||||
CFLAGS = /I. /Ox /DWIN32 /W3 /Fo$@
|
||||
|
||||
default: library
|
||||
|
||||
#START_INS
|
||||
OBJECTS=bncore.obj bn_error.obj bn_fast_mp_invmod.obj bn_fast_mp_montgomery_reduce.obj bn_fast_s_mp_mul_digs.obj \
|
||||
bn_fast_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_mp_2expt.obj bn_mp_abs.obj bn_mp_add.obj bn_mp_add_d.obj \
|
||||
bn_mp_addmod.obj bn_mp_and.obj bn_mp_clamp.obj bn_mp_clear.obj bn_mp_clear_multi.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
|
||||
bn_mp_cmp_mag.obj bn_mp_cnt_lsb.obj bn_mp_copy.obj bn_mp_count_bits.obj bn_mp_div_2.obj bn_mp_div_2d.obj bn_mp_div_3.obj \
|
||||
bn_mp_div.obj bn_mp_div_d.obj bn_mp_dr_is_modulus.obj bn_mp_dr_reduce.obj bn_mp_dr_setup.obj bn_mp_exch.obj \
|
||||
bn_mp_export.obj bn_mp_expt_d.obj bn_mp_expt_d_ex.obj bn_mp_exptmod.obj bn_mp_exptmod_fast.obj bn_mp_exteuclid.obj \
|
||||
bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_gcd.obj bn_mp_get_int.obj bn_mp_get_long.obj bn_mp_get_long_long.obj \
|
||||
bn_mp_grow.obj bn_mp_import.obj bn_mp_init.obj bn_mp_init_copy.obj bn_mp_init_multi.obj bn_mp_init_set.obj \
|
||||
bn_mp_init_set_int.obj bn_mp_init_size.obj bn_mp_invmod.obj bn_mp_invmod_slow.obj bn_mp_is_square.obj \
|
||||
bn_mp_jacobi.obj bn_mp_karatsuba_mul.obj bn_mp_karatsuba_sqr.obj bn_mp_lcm.obj bn_mp_lshd.obj bn_mp_mod_2d.obj \
|
||||
bn_mp_mod.obj bn_mp_mod_d.obj bn_mp_montgomery_calc_normalization.obj bn_mp_montgomery_reduce.obj \
|
||||
bn_mp_montgomery_setup.obj bn_mp_mul_2.obj bn_mp_mul_2d.obj bn_mp_mul.obj bn_mp_mul_d.obj bn_mp_mulmod.obj bn_mp_neg.obj \
|
||||
bn_mp_n_root.obj bn_mp_n_root_ex.obj bn_mp_or.obj bn_mp_prime_fermat.obj bn_mp_prime_is_divisible.obj \
|
||||
bn_mp_prime_is_prime.obj bn_mp_prime_miller_rabin.obj bn_mp_prime_next_prime.obj \
|
||||
bn_mp_prime_rabin_miller_trials.obj bn_mp_prime_random_ex.obj bn_mp_radix_size.obj bn_mp_radix_smap.obj \
|
||||
bn_mp_rand.obj bn_mp_read_radix.obj bn_mp_read_signed_bin.obj bn_mp_read_unsigned_bin.obj bn_mp_reduce_2k.obj \
|
||||
bn_mp_reduce_2k_l.obj bn_mp_reduce_2k_setup.obj bn_mp_reduce_2k_setup_l.obj bn_mp_reduce.obj \
|
||||
bn_mp_reduce_is_2k.obj bn_mp_reduce_is_2k_l.obj bn_mp_reduce_setup.obj bn_mp_rshd.obj bn_mp_set.obj bn_mp_set_int.obj \
|
||||
bn_mp_set_long.obj bn_mp_set_long_long.obj bn_mp_shrink.obj bn_mp_signed_bin_size.obj bn_mp_sqr.obj bn_mp_sqrmod.obj \
|
||||
bn_mp_sqrt.obj bn_mp_sqrtmod_prime.obj bn_mp_sub.obj bn_mp_sub_d.obj bn_mp_submod.obj bn_mp_toom_mul.obj \
|
||||
bn_mp_toom_sqr.obj bn_mp_toradix.obj bn_mp_toradix_n.obj bn_mp_to_signed_bin.obj bn_mp_to_signed_bin_n.obj \
|
||||
bn_mp_to_unsigned_bin.obj bn_mp_to_unsigned_bin_n.obj bn_mp_unsigned_bin_size.obj bn_mp_xor.obj bn_mp_zero.obj \
|
||||
bn_prime_tab.obj bn_reverse.obj bn_s_mp_add.obj bn_s_mp_exptmod.obj bn_s_mp_mul_digs.obj bn_s_mp_mul_high_digs.obj \
|
||||
bn_s_mp_sqr.obj bn_s_mp_sub.obj
|
||||
|
||||
#END_INS
|
||||
|
||||
HEADERS=tommath.h tommath_class.h tommath_superclass.h
|
||||
|
||||
library: $(OBJECTS)
|
||||
lib /out:tommath.lib $(OBJECTS)
|
@ -1,88 +0,0 @@
|
||||
#Makefile for GCC
|
||||
#
|
||||
#Tom St Denis
|
||||
|
||||
#default files to install
|
||||
ifndef LIBNAME
|
||||
LIBNAME=libtommath.la
|
||||
endif
|
||||
|
||||
include makefile_include.mk
|
||||
|
||||
|
||||
ifndef LT
|
||||
ifeq ($(PLATFORM), Darwin)
|
||||
LT:=glibtool
|
||||
else
|
||||
LT:=libtool
|
||||
endif
|
||||
endif
|
||||
LTCOMPILE = $(LT) --mode=compile --tag=CC $(CC)
|
||||
|
||||
LCOV_ARGS=--directory .libs --directory .
|
||||
|
||||
#START_INS
|
||||
OBJECTS=bncore.o bn_error.o bn_fast_mp_invmod.o bn_fast_mp_montgomery_reduce.o bn_fast_s_mp_mul_digs.o \
|
||||
bn_fast_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_mp_2expt.o bn_mp_abs.o bn_mp_add.o bn_mp_add_d.o \
|
||||
bn_mp_addmod.o bn_mp_and.o bn_mp_clamp.o bn_mp_clear.o bn_mp_clear_multi.o bn_mp_cmp.o bn_mp_cmp_d.o \
|
||||
bn_mp_cmp_mag.o bn_mp_cnt_lsb.o bn_mp_copy.o bn_mp_count_bits.o bn_mp_div_2.o bn_mp_div_2d.o bn_mp_div_3.o \
|
||||
bn_mp_div.o bn_mp_div_d.o bn_mp_dr_is_modulus.o bn_mp_dr_reduce.o bn_mp_dr_setup.o bn_mp_exch.o \
|
||||
bn_mp_export.o bn_mp_expt_d.o bn_mp_expt_d_ex.o bn_mp_exptmod.o bn_mp_exptmod_fast.o bn_mp_exteuclid.o \
|
||||
bn_mp_fread.o bn_mp_fwrite.o bn_mp_gcd.o bn_mp_get_int.o bn_mp_get_long.o bn_mp_get_long_long.o \
|
||||
bn_mp_grow.o bn_mp_import.o bn_mp_init.o bn_mp_init_copy.o bn_mp_init_multi.o bn_mp_init_set.o \
|
||||
bn_mp_init_set_int.o bn_mp_init_size.o bn_mp_invmod.o bn_mp_invmod_slow.o bn_mp_is_square.o \
|
||||
bn_mp_jacobi.o bn_mp_karatsuba_mul.o bn_mp_karatsuba_sqr.o bn_mp_lcm.o bn_mp_lshd.o bn_mp_mod_2d.o \
|
||||
bn_mp_mod.o bn_mp_mod_d.o bn_mp_montgomery_calc_normalization.o bn_mp_montgomery_reduce.o \
|
||||
bn_mp_montgomery_setup.o bn_mp_mul_2.o bn_mp_mul_2d.o bn_mp_mul.o bn_mp_mul_d.o bn_mp_mulmod.o bn_mp_neg.o \
|
||||
bn_mp_n_root.o bn_mp_n_root_ex.o bn_mp_or.o bn_mp_prime_fermat.o bn_mp_prime_is_divisible.o \
|
||||
bn_mp_prime_is_prime.o bn_mp_prime_miller_rabin.o bn_mp_prime_next_prime.o \
|
||||
bn_mp_prime_rabin_miller_trials.o bn_mp_prime_random_ex.o bn_mp_radix_size.o bn_mp_radix_smap.o \
|
||||
bn_mp_rand.o bn_mp_read_radix.o bn_mp_read_signed_bin.o bn_mp_read_unsigned_bin.o bn_mp_reduce_2k.o \
|
||||
bn_mp_reduce_2k_l.o bn_mp_reduce_2k_setup.o bn_mp_reduce_2k_setup_l.o bn_mp_reduce.o \
|
||||
bn_mp_reduce_is_2k.o bn_mp_reduce_is_2k_l.o bn_mp_reduce_setup.o bn_mp_rshd.o bn_mp_set.o bn_mp_set_int.o \
|
||||
bn_mp_set_long.o bn_mp_set_long_long.o bn_mp_shrink.o bn_mp_signed_bin_size.o bn_mp_sqr.o bn_mp_sqrmod.o \
|
||||
bn_mp_sqrt.o bn_mp_sqrtmod_prime.o bn_mp_sub.o bn_mp_sub_d.o bn_mp_submod.o bn_mp_toom_mul.o \
|
||||
bn_mp_toom_sqr.o bn_mp_toradix.o bn_mp_toradix_n.o bn_mp_to_signed_bin.o bn_mp_to_signed_bin_n.o \
|
||||
bn_mp_to_unsigned_bin.o bn_mp_to_unsigned_bin_n.o bn_mp_unsigned_bin_size.o bn_mp_xor.o bn_mp_zero.o \
|
||||
bn_prime_tab.o bn_reverse.o bn_s_mp_add.o bn_s_mp_exptmod.o bn_s_mp_mul_digs.o bn_s_mp_mul_high_digs.o \
|
||||
bn_s_mp_sqr.o bn_s_mp_sub.o
|
||||
|
||||
#END_INS
|
||||
|
||||
objs: $(OBJECTS)
|
||||
|
||||
.c.o:
|
||||
$(LTCOMPILE) $(CFLAGS) $(LDFLAGS) -o $@ -c $<
|
||||
|
||||
LOBJECTS = $(OBJECTS:.o=.lo)
|
||||
|
||||
$(LIBNAME): $(OBJECTS)
|
||||
$(LT) --mode=link --tag=CC $(CC) $(LDFLAGS) $(LOBJECTS) -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO)
|
||||
|
||||
install: $(LIBNAME)
|
||||
install -d $(DESTDIR)$(LIBPATH)
|
||||
install -d $(DESTDIR)$(INCPATH)
|
||||
$(LT) --mode=install install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME)
|
||||
install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH)
|
||||
sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION_PC),' libtommath.pc.in > libtommath.pc
|
||||
install -d $(DESTDIR)$(LIBPATH)/pkgconfig
|
||||
install -m 644 libtommath.pc $(DESTDIR)$(LIBPATH)/pkgconfig/
|
||||
|
||||
uninstall:
|
||||
$(LT) --mode=uninstall rm $(DESTDIR)$(LIBPATH)/$(LIBNAME)
|
||||
rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%)
|
||||
rm $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc
|
||||
|
||||
test: $(LIBNAME) demo/demo.o
|
||||
$(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o
|
||||
$(LT) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME)
|
||||
|
||||
test_standalone: $(LIBNAME) demo/demo.o
|
||||
$(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o
|
||||
$(LT) --mode=link $(CC) $(LDFLAGS) -o test demo/demo.o $(LIBNAME)
|
||||
|
||||
mtest:
|
||||
cd mtest ; $(CC) $(CFLAGS) $(LDFLAGS) mtest.c -o mtest
|
||||
|
||||
timing: $(LIBNAME)
|
||||
$(LT) --mode=link $(CC) $(CFLAGS) $(LDFLAGS) -DTIMER demo/timing.c $(LIBNAME) -o ltmtest
|
@ -1,4 +0,0 @@
|
||||
#!/bin/bash
|
||||
if cvs log $1 >/dev/null 2>/dev/null; then exit 0; else echo "$1 shouldn't be here" ; exit 1; fi
|
||||
|
||||
|
@ -1,24 +0,0 @@
|
||||
const float s_logv_2[] = {
|
||||
0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0 1 2 3 */
|
||||
0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
|
||||
0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
|
||||
0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
|
||||
0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
|
||||
0.231378213, 0.227670249, 0.224243824, 0.221064729, /* 20 21 22 23 */
|
||||
0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
|
||||
0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
|
||||
0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
|
||||
0.193426404, 0.191958720, 0.190551412, 0.189200360, /* 36 37 38 39 */
|
||||
0.187901825, 0.186652411, 0.185449023, 0.184288833, /* 40 41 42 43 */
|
||||
0.183169251, 0.182087900, 0.181042597, 0.180031327, /* 44 45 46 47 */
|
||||
0.179052232, 0.178103594, 0.177183820, 0.176291434, /* 48 49 50 51 */
|
||||
0.175425064, 0.174583430, 0.173765343, 0.172969690, /* 52 53 54 55 */
|
||||
0.172195434, 0.171441601, 0.170707280, 0.169991616, /* 56 57 58 59 */
|
||||
0.169293808, 0.168613099, 0.167948779, 0.167300179, /* 60 61 62 63 */
|
||||
0.166666667
|
||||
};
|
||||
|
||||
|
||||
/* $Source$ */
|
||||
/* $Revision$ */
|
||||
/* $Date$ */
|
@ -1,90 +0,0 @@
|
||||
/* Default configuration for MPI library */
|
||||
/* $Id$ */
|
||||
|
||||
#ifndef MPI_CONFIG_H_
|
||||
#define MPI_CONFIG_H_
|
||||
|
||||
/*
|
||||
For boolean options,
|
||||
0 = no
|
||||
1 = yes
|
||||
|
||||
Other options are documented individually.
|
||||
|
||||
*/
|
||||
|
||||
#ifndef MP_IOFUNC
|
||||
#define MP_IOFUNC 0 /* include mp_print() ? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_MODARITH
|
||||
#define MP_MODARITH 1 /* include modular arithmetic ? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_NUMTH
|
||||
#define MP_NUMTH 1 /* include number theoretic functions? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_LOGTAB
|
||||
#define MP_LOGTAB 1 /* use table of logs instead of log()? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_MEMSET
|
||||
#define MP_MEMSET 1 /* use memset() to zero buffers? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_MEMCPY
|
||||
#define MP_MEMCPY 1 /* use memcpy() to copy buffers? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_CRYPTO
|
||||
#define MP_CRYPTO 1 /* erase memory on free? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_ARGCHK
|
||||
/*
|
||||
0 = no parameter checks
|
||||
1 = runtime checks, continue execution and return an error to caller
|
||||
2 = assertions; dump core on parameter errors
|
||||
*/
|
||||
#define MP_ARGCHK 2 /* how to check input arguments */
|
||||
#endif
|
||||
|
||||
#ifndef MP_DEBUG
|
||||
#define MP_DEBUG 0 /* print diagnostic output? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_DEFPREC
|
||||
#define MP_DEFPREC 64 /* default precision, in digits */
|
||||
#endif
|
||||
|
||||
#ifndef MP_MACRO
|
||||
#define MP_MACRO 1 /* use macros for frequent calls? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_SQUARE
|
||||
#define MP_SQUARE 1 /* use separate squaring code? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_PTAB_SIZE
|
||||
/*
|
||||
When building mpprime.c, we build in a table of small prime
|
||||
values to use for primality testing. The more you include,
|
||||
the more space they take up. See primes.c for the possible
|
||||
values (currently 16, 32, 64, 128, 256, and 6542)
|
||||
*/
|
||||
#define MP_PTAB_SIZE 128 /* how many built-in primes? */
|
||||
#endif
|
||||
|
||||
#ifndef MP_COMPAT_MACROS
|
||||
#define MP_COMPAT_MACROS 1 /* define compatibility macros? */
|
||||
#endif
|
||||
|
||||
#endif /* ifndef MPI_CONFIG_H_ */
|
||||
|
||||
|
||||
/* crc==3287762869, version==2, Sat Feb 02 06:43:53 2002 */
|
||||
|
||||
/* $Source$ */
|
||||
/* $Revision$ */
|
||||
/* $Date$ */
|
@ -1,20 +0,0 @@
|
||||
/* Type definitions generated by 'types.pl' */
|
||||
typedef char mp_sign;
|
||||
typedef unsigned short mp_digit; /* 2 byte type */
|
||||
typedef unsigned int mp_word; /* 4 byte type */
|
||||
typedef unsigned int mp_size;
|
||||
typedef int mp_err;
|
||||
|
||||
#define MP_DIGIT_BIT (CHAR_BIT*sizeof(mp_digit))
|
||||
#define MP_DIGIT_MAX USHRT_MAX
|
||||
#define MP_WORD_BIT (CHAR_BIT*sizeof(mp_word))
|
||||
#define MP_WORD_MAX UINT_MAX
|
||||
|
||||
#define MP_DIGIT_SIZE 2
|
||||
#define DIGIT_FMT "%04X"
|
||||
#define RADIX (MP_DIGIT_MAX+1)
|
||||
|
||||
|
||||
/* $Source$ */
|
||||
/* $Revision$ */
|
||||
/* $Date$ */
|
File diff suppressed because it is too large
Load Diff
@ -1,231 +0,0 @@
|
||||
/*
|
||||
mpi.h
|
||||
|
||||
by Michael J. Fromberger <sting@linguist.dartmouth.edu>
|
||||
Copyright (C) 1998 Michael J. Fromberger, All Rights Reserved
|
||||
|
||||
Arbitrary precision integer arithmetic library
|
||||
|
||||
$Id$
|
||||
*/
|
||||
|
||||
#ifndef _H_MPI_
|
||||
#define _H_MPI_
|
||||
|
||||
#include "mpi-config.h"
|
||||
|
||||
#define MP_LT -1
|
||||
#define MP_EQ 0
|
||||
#define MP_GT 1
|
||||
|
||||
#if MP_DEBUG
|
||||
#undef MP_IOFUNC
|
||||
#define MP_IOFUNC 1
|
||||
#endif
|
||||
|
||||
#if MP_IOFUNC
|
||||
#include <stdio.h>
|
||||
#include <ctype.h>
|
||||
#endif
|
||||
|
||||
#include <limits.h>
|
||||
|
||||
#define MP_NEG 1
|
||||
#define MP_ZPOS 0
|
||||
|
||||
/* Included for compatibility... */
|
||||
#define NEG MP_NEG
|
||||
#define ZPOS MP_ZPOS
|
||||
|
||||
#define MP_OKAY 0 /* no error, all is well */
|
||||
#define MP_YES 0 /* yes (boolean result) */
|
||||
#define MP_NO -1 /* no (boolean result) */
|
||||
#define MP_MEM -2 /* out of memory */
|
||||
#define MP_RANGE -3 /* argument out of range */
|
||||
#define MP_BADARG -4 /* invalid parameter */
|
||||
#define MP_UNDEF -5 /* answer is undefined */
|
||||
#define MP_LAST_CODE MP_UNDEF
|
||||
|
||||
#include "mpi-types.h"
|
||||
|
||||
/* Included for compatibility... */
|
||||
#define DIGIT_BIT MP_DIGIT_BIT
|
||||
#define DIGIT_MAX MP_DIGIT_MAX
|
||||
|
||||
/* Macros for accessing the mp_int internals */
|
||||
#define SIGN(MP) ((MP)->sign)
|
||||
#define USED(MP) ((MP)->used)
|
||||
#define ALLOC(MP) ((MP)->alloc)
|
||||
#define DIGITS(MP) ((MP)->dp)
|
||||
#define DIGIT(MP,N) (MP)->dp[(N)]
|
||||
|
||||
#if MP_ARGCHK == 1
|
||||
#define ARGCHK(X,Y) {if(!(X)){return (Y);}}
|
||||
#elif MP_ARGCHK == 2
|
||||
#include <assert.h>
|
||||
#define ARGCHK(X,Y) assert(X)
|
||||
#else
|
||||
#define ARGCHK(X,Y) /* */
|
||||
#endif
|
||||
|
||||
/* This defines the maximum I/O base (minimum is 2) */
|
||||
#define MAX_RADIX 64
|
||||
|
||||
typedef struct {
|
||||
mp_sign sign; /* sign of this quantity */
|
||||
mp_size alloc; /* how many digits allocated */
|
||||
mp_size used; /* how many digits used */
|
||||
mp_digit *dp; /* the digits themselves */
|
||||
} mp_int;
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Default precision */
|
||||
|
||||
unsigned int mp_get_prec(void);
|
||||
void mp_set_prec(unsigned int prec);
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Memory management */
|
||||
|
||||
mp_err mp_init(mp_int *mp);
|
||||
mp_err mp_init_array(mp_int mp[], int count);
|
||||
mp_err mp_init_size(mp_int *mp, mp_size prec);
|
||||
mp_err mp_init_copy(mp_int *mp, mp_int *from);
|
||||
mp_err mp_copy(mp_int *from, mp_int *to);
|
||||
void mp_exch(mp_int *mp1, mp_int *mp2);
|
||||
void mp_clear(mp_int *mp);
|
||||
void mp_clear_array(mp_int mp[], int count);
|
||||
void mp_zero(mp_int *mp);
|
||||
void mp_set(mp_int *mp, mp_digit d);
|
||||
mp_err mp_set_int(mp_int *mp, long z);
|
||||
mp_err mp_shrink(mp_int *a);
|
||||
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Single digit arithmetic */
|
||||
|
||||
mp_err mp_add_d(mp_int *a, mp_digit d, mp_int *b);
|
||||
mp_err mp_sub_d(mp_int *a, mp_digit d, mp_int *b);
|
||||
mp_err mp_mul_d(mp_int *a, mp_digit d, mp_int *b);
|
||||
mp_err mp_mul_2(mp_int *a, mp_int *c);
|
||||
mp_err mp_div_d(mp_int *a, mp_digit d, mp_int *q, mp_digit *r);
|
||||
mp_err mp_div_2(mp_int *a, mp_int *c);
|
||||
mp_err mp_expt_d(mp_int *a, mp_digit d, mp_int *c);
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Sign manipulations */
|
||||
|
||||
mp_err mp_abs(mp_int *a, mp_int *b);
|
||||
mp_err mp_neg(mp_int *a, mp_int *b);
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Full arithmetic */
|
||||
|
||||
mp_err mp_add(mp_int *a, mp_int *b, mp_int *c);
|
||||
mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c);
|
||||
mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c);
|
||||
mp_err mp_mul_2d(mp_int *a, mp_digit d, mp_int *c);
|
||||
#if MP_SQUARE
|
||||
mp_err mp_sqr(mp_int *a, mp_int *b);
|
||||
#else
|
||||
#define mp_sqr(a, b) mp_mul(a, a, b)
|
||||
#endif
|
||||
mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r);
|
||||
mp_err mp_div_2d(mp_int *a, mp_digit d, mp_int *q, mp_int *r);
|
||||
mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c);
|
||||
mp_err mp_2expt(mp_int *a, mp_digit k);
|
||||
mp_err mp_sqrt(mp_int *a, mp_int *b);
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Modular arithmetic */
|
||||
|
||||
#if MP_MODARITH
|
||||
mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c);
|
||||
mp_err mp_mod_d(mp_int *a, mp_digit d, mp_digit *c);
|
||||
mp_err mp_addmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
|
||||
mp_err mp_submod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
|
||||
mp_err mp_mulmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
|
||||
#if MP_SQUARE
|
||||
mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c);
|
||||
#else
|
||||
#define mp_sqrmod(a, m, c) mp_mulmod(a, a, m, c)
|
||||
#endif
|
||||
mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c);
|
||||
mp_err mp_exptmod_d(mp_int *a, mp_digit d, mp_int *m, mp_int *c);
|
||||
#endif /* MP_MODARITH */
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Comparisons */
|
||||
|
||||
int mp_cmp_z(mp_int *a);
|
||||
int mp_cmp_d(mp_int *a, mp_digit d);
|
||||
int mp_cmp(mp_int *a, mp_int *b);
|
||||
int mp_cmp_mag(mp_int *a, mp_int *b);
|
||||
int mp_cmp_int(mp_int *a, long z);
|
||||
int mp_isodd(mp_int *a);
|
||||
int mp_iseven(mp_int *a);
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Number theoretic */
|
||||
|
||||
#if MP_NUMTH
|
||||
mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c);
|
||||
mp_err mp_lcm(mp_int *a, mp_int *b, mp_int *c);
|
||||
mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y);
|
||||
mp_err mp_invmod(mp_int *a, mp_int *m, mp_int *c);
|
||||
#endif /* end MP_NUMTH */
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Input and output */
|
||||
|
||||
#if MP_IOFUNC
|
||||
void mp_print(mp_int *mp, FILE *ofp);
|
||||
#endif /* end MP_IOFUNC */
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Base conversion */
|
||||
|
||||
#define BITS 1
|
||||
#define BYTES CHAR_BIT
|
||||
|
||||
mp_err mp_read_signed_bin(mp_int *mp, unsigned char *str, int len);
|
||||
int mp_signed_bin_size(mp_int *mp);
|
||||
mp_err mp_to_signed_bin(mp_int *mp, unsigned char *str);
|
||||
|
||||
mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len);
|
||||
int mp_unsigned_bin_size(mp_int *mp);
|
||||
mp_err mp_to_unsigned_bin(mp_int *mp, unsigned char *str);
|
||||
|
||||
int mp_count_bits(mp_int *mp);
|
||||
|
||||
#if MP_COMPAT_MACROS
|
||||
#define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
|
||||
#define mp_raw_size(mp) mp_signed_bin_size(mp)
|
||||
#define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
|
||||
#define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
|
||||
#define mp_mag_size(mp) mp_unsigned_bin_size(mp)
|
||||
#define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
|
||||
#endif
|
||||
|
||||
mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix);
|
||||
int mp_radix_size(mp_int *mp, int radix);
|
||||
int mp_value_radix_size(int num, int qty, int radix);
|
||||
mp_err mp_toradix(mp_int *mp, char *str, int radix);
|
||||
|
||||
int mp_char2value(char ch, int r);
|
||||
|
||||
#define mp_tobinary(M, S) mp_toradix((M), (S), 2)
|
||||
#define mp_tooctal(M, S) mp_toradix((M), (S), 8)
|
||||
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
|
||||
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
|
||||
|
||||
/*------------------------------------------------------------------------*/
|
||||
/* Error strings */
|
||||
|
||||
const char *mp_strerror(mp_err ec);
|
||||
|
||||
#endif /* end _H_MPI_ */
|
||||
|
||||
/* $Source$ */
|
||||
/* $Revision$ */
|
||||
/* $Date$ */
|
@ -1,374 +0,0 @@
|
||||
/* makes a bignum test harness with NUM tests per operation
|
||||
*
|
||||
* the output is made in the following format [one parameter per line]
|
||||
|
||||
operation
|
||||
operand1
|
||||
operand2
|
||||
[... operandN]
|
||||
result1
|
||||
result2
|
||||
[... resultN]
|
||||
|
||||
So for example "a * b mod n" would be
|
||||
|
||||
mulmod
|
||||
a
|
||||
b
|
||||
n
|
||||
a*b mod n
|
||||
|
||||
e.g. if a=3, b=4 n=11 then
|
||||
|
||||
mulmod
|
||||
3
|
||||
4
|
||||
11
|
||||
1
|
||||
|
||||
*/
|
||||
|
||||
#ifdef MP_8BIT
|
||||
#define THE_MASK 127
|
||||
#else
|
||||
#define THE_MASK 32767
|
||||
#endif
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <time.h>
|
||||
#include "mpi.c"
|
||||
|
||||
#ifdef LTM_MTEST_REAL_RAND
|
||||
#define getRandChar() fgetc(rng)
|
||||
FILE *rng;
|
||||
#else
|
||||
#define getRandChar() (rand()&0xFF)
|
||||
#endif
|
||||
|
||||
void rand_num(mp_int *a)
|
||||
{
|
||||
int size;
|
||||
unsigned char buf[2048];
|
||||
size_t sz;
|
||||
|
||||
size = 1 + ((getRandChar()<<8) + getRandChar()) % 101;
|
||||
buf[0] = (getRandChar()&1)?1:0;
|
||||
#ifdef LTM_MTEST_REAL_RAND
|
||||
sz = fread(buf+1, 1, size, rng);
|
||||
#else
|
||||
sz = 1;
|
||||
while (sz < (unsigned)size) {
|
||||
buf[sz] = getRandChar();
|
||||
++sz;
|
||||
}
|
||||
#endif
|
||||
if (sz != (unsigned)size) {
|
||||
fprintf(stderr, "\nWarning: fread failed\n\n");
|
||||
}
|
||||
while (buf[1] == 0) buf[1] = getRandChar();
|
||||
mp_read_raw(a, buf, 1+size);
|
||||
}
|
||||
|
||||
void rand_num2(mp_int *a)
|
||||
{
|
||||
int size;
|
||||
unsigned char buf[2048];
|
||||
size_t sz;
|
||||
|
||||
size = 10 + ((getRandChar()<<8) + getRandChar()) % 101;
|
||||
buf[0] = (getRandChar()&1)?1:0;
|
||||
#ifdef LTM_MTEST_REAL_RAND
|
||||
sz = fread(buf+1, 1, size, rng);
|
||||
#else
|
||||
sz = 1;
|
||||
while (sz < (unsigned)size) {
|
||||
buf[sz] = getRandChar();
|
||||
++sz;
|
||||
}
|
||||
#endif
|
||||
if (sz != (unsigned)size) {
|
||||
fprintf(stderr, "\nWarning: fread failed\n\n");
|
||||
}
|
||||
while (buf[1] == 0) buf[1] = getRandChar();
|
||||
mp_read_raw(a, buf, 1+size);
|
||||
}
|
||||
|
||||
#define mp_to64(a, b) mp_toradix(a, b, 64)
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int n, tmp;
|
||||
long long max;
|
||||
mp_int a, b, c, d, e;
|
||||
#ifdef MTEST_NO_FULLSPEED
|
||||
clock_t t1;
|
||||
#endif
|
||||
char buf[4096];
|
||||
|
||||
mp_init(&a);
|
||||
mp_init(&b);
|
||||
mp_init(&c);
|
||||
mp_init(&d);
|
||||
mp_init(&e);
|
||||
|
||||
if (argc > 1) {
|
||||
max = strtol(argv[1], NULL, 0);
|
||||
if (max < 0) {
|
||||
if (max > -64) {
|
||||
max = (1 << -(max)) + 1;
|
||||
} else {
|
||||
max = 1;
|
||||
}
|
||||
} else if (max == 0) {
|
||||
max = 1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
max = 0;
|
||||
}
|
||||
|
||||
|
||||
/* initial (2^n - 1)^2 testing, makes sure the comba multiplier works [it has the new carry code] */
|
||||
/*
|
||||
mp_set(&a, 1);
|
||||
for (n = 1; n < 8192; n++) {
|
||||
mp_mul(&a, &a, &c);
|
||||
printf("mul\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%s\n", buf, buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
|
||||
mp_add_d(&a, 1, &a);
|
||||
mp_mul_2(&a, &a);
|
||||
mp_sub_d(&a, 1, &a);
|
||||
}
|
||||
*/
|
||||
|
||||
#ifdef LTM_MTEST_REAL_RAND
|
||||
rng = fopen("/dev/urandom", "rb");
|
||||
if (rng == NULL) {
|
||||
rng = fopen("/dev/random", "rb");
|
||||
if (rng == NULL) {
|
||||
fprintf(stderr, "\nWarning: stdin used as random source\n\n");
|
||||
rng = stdin;
|
||||
}
|
||||
}
|
||||
#else
|
||||
srand(23);
|
||||
#endif
|
||||
|
||||
#ifdef MTEST_NO_FULLSPEED
|
||||
t1 = clock();
|
||||
#endif
|
||||
for (;;) {
|
||||
#ifdef MTEST_NO_FULLSPEED
|
||||
if (clock() - t1 > CLOCKS_PER_SEC) {
|
||||
sleep(2);
|
||||
t1 = clock();
|
||||
}
|
||||
#endif
|
||||
n = getRandChar() % 15;
|
||||
|
||||
if (max != 0) {
|
||||
--max;
|
||||
if (max == 0)
|
||||
n = 255;
|
||||
}
|
||||
|
||||
if (n == 0) {
|
||||
/* add tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_add(&a, &b, &c);
|
||||
printf("add\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 1) {
|
||||
/* sub tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_sub(&a, &b, &c);
|
||||
printf("sub\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 2) {
|
||||
/* mul tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_mul(&a, &b, &c);
|
||||
printf("mul\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 3) {
|
||||
/* div tests */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
mp_div(&a, &b, &c, &d);
|
||||
printf("div\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&d, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 4) {
|
||||
/* sqr tests */
|
||||
rand_num(&a);
|
||||
mp_sqr(&a, &b);
|
||||
printf("sqr\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 5) {
|
||||
/* mul_2d test */
|
||||
rand_num(&a);
|
||||
mp_copy(&a, &b);
|
||||
n = getRandChar() & 63;
|
||||
mp_mul_2d(&b, n, &b);
|
||||
mp_to64(&a, buf);
|
||||
printf("mul2d\n");
|
||||
printf("%s\n", buf);
|
||||
printf("%d\n", n);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 6) {
|
||||
/* div_2d test */
|
||||
rand_num(&a);
|
||||
mp_copy(&a, &b);
|
||||
n = getRandChar() & 63;
|
||||
mp_div_2d(&b, n, &b, NULL);
|
||||
mp_to64(&a, buf);
|
||||
printf("div2d\n");
|
||||
printf("%s\n", buf);
|
||||
printf("%d\n", n);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 7) {
|
||||
/* gcd test */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
a.sign = MP_ZPOS;
|
||||
b.sign = MP_ZPOS;
|
||||
mp_gcd(&a, &b, &c);
|
||||
printf("gcd\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 8) {
|
||||
/* lcm test */
|
||||
rand_num(&a);
|
||||
rand_num(&b);
|
||||
a.sign = MP_ZPOS;
|
||||
b.sign = MP_ZPOS;
|
||||
mp_lcm(&a, &b, &c);
|
||||
printf("lcm\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 9) {
|
||||
/* exptmod test */
|
||||
rand_num2(&a);
|
||||
rand_num2(&b);
|
||||
rand_num2(&c);
|
||||
// if (c.dp[0]&1) mp_add_d(&c, 1, &c);
|
||||
a.sign = b.sign = c.sign = 0;
|
||||
mp_exptmod(&a, &b, &c, &d);
|
||||
printf("expt\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&d, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 10) {
|
||||
/* invmod test */
|
||||
do {
|
||||
rand_num2(&a);
|
||||
rand_num2(&b);
|
||||
b.sign = MP_ZPOS;
|
||||
a.sign = MP_ZPOS;
|
||||
mp_gcd(&a, &b, &c);
|
||||
} while (mp_cmp_d(&c, 1) != 0 || mp_cmp_d(&b, 1) == 0);
|
||||
mp_invmod(&a, &b, &c);
|
||||
printf("invmod\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&c, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 11) {
|
||||
rand_num(&a);
|
||||
mp_mul_2(&a, &a);
|
||||
mp_div_2(&a, &b);
|
||||
printf("div2\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 12) {
|
||||
rand_num2(&a);
|
||||
mp_mul_2(&a, &b);
|
||||
printf("mul2\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n", buf);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 13) {
|
||||
rand_num2(&a);
|
||||
tmp = abs(rand()) & THE_MASK;
|
||||
mp_add_d(&a, tmp, &b);
|
||||
printf("add_d\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%d\n", buf, tmp);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 14) {
|
||||
rand_num2(&a);
|
||||
tmp = abs(rand()) & THE_MASK;
|
||||
mp_sub_d(&a, tmp, &b);
|
||||
printf("sub_d\n");
|
||||
mp_to64(&a, buf);
|
||||
printf("%s\n%d\n", buf, tmp);
|
||||
mp_to64(&b, buf);
|
||||
printf("%s\n", buf);
|
||||
} else if (n == 255) {
|
||||
printf("exit\n");
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
#ifdef LTM_MTEST_REAL_RAND
|
||||
fclose(rng);
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* $Source$ */
|
||||
/* $Revision$ */
|
||||
/* $Date$ */
|
@ -1,28 +0,0 @@
|
||||
#!/usr/bin/perl
|
||||
#
|
||||
# Splits the list of files and outputs for makefile type files
|
||||
# wrapped at 80 chars
|
||||
#
|
||||
# Tom St Denis
|
||||
use strict;
|
||||
use warnings;
|
||||
|
||||
my @a = split ' ', $ARGV[1];
|
||||
my $b = $ARGV[0] . '=';
|
||||
my $len = length $b;
|
||||
print $b;
|
||||
foreach my $obj (@a) {
|
||||
$len = $len + length $obj;
|
||||
$obj =~ s/\*/\$/;
|
||||
if ($len > 100) {
|
||||
printf "\\\n";
|
||||
$len = length $obj;
|
||||
}
|
||||
print $obj . ' ';
|
||||
}
|
||||
|
||||
print "\n\n";
|
||||
|
||||
# ref: $Format:%D$
|
||||
# git commit: $Format:%H$
|
||||
# commit time: $Format:%ai$
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1,35 +0,0 @@
|
||||
# makes the images... yeah
|
||||
|
||||
default: pses
|
||||
|
||||
design_process.ps: design_process.tif
|
||||
tiff2ps -s -e design_process.tif > design_process.ps
|
||||
|
||||
sliding_window.ps: sliding_window.tif
|
||||
tiff2ps -s -e sliding_window.tif > sliding_window.ps
|
||||
|
||||
expt_state.ps: expt_state.tif
|
||||
tiff2ps -s -e expt_state.tif > expt_state.ps
|
||||
|
||||
primality.ps: primality.tif
|
||||
tiff2ps -s -e primality.tif > primality.ps
|
||||
|
||||
design_process.pdf: design_process.ps
|
||||
epstopdf design_process.ps
|
||||
|
||||
sliding_window.pdf: sliding_window.ps
|
||||
epstopdf sliding_window.ps
|
||||
|
||||
expt_state.pdf: expt_state.ps
|
||||
epstopdf expt_state.ps
|
||||
|
||||
primality.pdf: primality.ps
|
||||
epstopdf primality.ps
|
||||
|
||||
|
||||
pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
|
||||
pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
|
||||
|
||||
clean:
|
||||
rm -rf *.ps *.pdf .xvpics
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user