mirror of
http://galexander.org/git/simplesshd.git
synced 2025-01-04 04:00:55 +00:00
104 lines
2.4 KiB
C
104 lines
2.4 KiB
C
|
#include <tommath.h>
|
||
|
#ifdef BN_MP_PRIME_MILLER_RABIN_C
|
||
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||
|
*
|
||
|
* LibTomMath is a library that provides multiple-precision
|
||
|
* integer arithmetic as well as number theoretic functionality.
|
||
|
*
|
||
|
* The library was designed directly after the MPI library by
|
||
|
* Michael Fromberger but has been written from scratch with
|
||
|
* additional optimizations in place.
|
||
|
*
|
||
|
* The library is free for all purposes without any express
|
||
|
* guarantee it works.
|
||
|
*
|
||
|
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
|
||
|
*/
|
||
|
|
||
|
/* Miller-Rabin test of "a" to the base of "b" as described in
|
||
|
* HAC pp. 139 Algorithm 4.24
|
||
|
*
|
||
|
* Sets result to 0 if definitely composite or 1 if probably prime.
|
||
|
* Randomly the chance of error is no more than 1/4 and often
|
||
|
* very much lower.
|
||
|
*/
|
||
|
int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
|
||
|
{
|
||
|
mp_int n1, y, r;
|
||
|
int s, j, err;
|
||
|
|
||
|
/* default */
|
||
|
*result = MP_NO;
|
||
|
|
||
|
/* ensure b > 1 */
|
||
|
if (mp_cmp_d(b, 1) != MP_GT) {
|
||
|
return MP_VAL;
|
||
|
}
|
||
|
|
||
|
/* get n1 = a - 1 */
|
||
|
if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
|
||
|
return err;
|
||
|
}
|
||
|
if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) {
|
||
|
goto LBL_N1;
|
||
|
}
|
||
|
|
||
|
/* set 2**s * r = n1 */
|
||
|
if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) {
|
||
|
goto LBL_N1;
|
||
|
}
|
||
|
|
||
|
/* count the number of least significant bits
|
||
|
* which are zero
|
||
|
*/
|
||
|
s = mp_cnt_lsb(&r);
|
||
|
|
||
|
/* now divide n - 1 by 2**s */
|
||
|
if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) {
|
||
|
goto LBL_R;
|
||
|
}
|
||
|
|
||
|
/* compute y = b**r mod a */
|
||
|
if ((err = mp_init (&y)) != MP_OKAY) {
|
||
|
goto LBL_R;
|
||
|
}
|
||
|
if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) {
|
||
|
goto LBL_Y;
|
||
|
}
|
||
|
|
||
|
/* if y != 1 and y != n1 do */
|
||
|
if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
|
||
|
j = 1;
|
||
|
/* while j <= s-1 and y != n1 */
|
||
|
while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
|
||
|
if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
|
||
|
goto LBL_Y;
|
||
|
}
|
||
|
|
||
|
/* if y == 1 then composite */
|
||
|
if (mp_cmp_d (&y, 1) == MP_EQ) {
|
||
|
goto LBL_Y;
|
||
|
}
|
||
|
|
||
|
++j;
|
||
|
}
|
||
|
|
||
|
/* if y != n1 then composite */
|
||
|
if (mp_cmp (&y, &n1) != MP_EQ) {
|
||
|
goto LBL_Y;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* probably prime now */
|
||
|
*result = MP_YES;
|
||
|
LBL_Y:mp_clear (&y);
|
||
|
LBL_R:mp_clear (&r);
|
||
|
LBL_N1:mp_clear (&n1);
|
||
|
return err;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* $Source: /cvs/libtom/libtommath/bn_mp_prime_miller_rabin.c,v $ */
|
||
|
/* $Revision: 1.3 $ */
|
||
|
/* $Date: 2006/03/31 14:18:44 $ */
|