1
0
mirror of http://galexander.org/git/simplesshd.git synced 2025-01-07 13:40:54 +00:00
simplesshd/rsync/io.c

2385 lines
63 KiB
C
Raw Normal View History

/*
* Socket and pipe I/O utilities used in rsync.
*
* Copyright (C) 1996-2001 Andrew Tridgell
* Copyright (C) 1996 Paul Mackerras
* Copyright (C) 2001, 2002 Martin Pool <mbp@samba.org>
* Copyright (C) 2003-2014 Wayne Davison
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, visit the http://fsf.org website.
*/
/* Rsync provides its own multiplexing system, which is used to send
* stderr and stdout over a single socket.
*
* For historical reasons this is off during the start of the
* connection, but it's switched on quite early using
* io_start_multiplex_out() and io_start_multiplex_in(). */
#include "rsync.h"
#include "ifuncs.h"
#include "inums.h"
/** If no timeout is specified then use a 60 second select timeout */
#define SELECT_TIMEOUT 60
extern int bwlimit;
extern size_t bwlimit_writemax;
extern int io_timeout;
extern int am_server;
extern int am_sender;
extern int am_receiver;
extern int am_generator;
extern int msgs2stderr;
extern int inc_recurse;
extern int io_error;
extern int eol_nulls;
extern int flist_eof;
extern int file_total;
extern int file_old_total;
extern int list_only;
extern int read_batch;
extern int compat_flags;
extern int protect_args;
extern int checksum_seed;
extern int protocol_version;
extern int remove_source_files;
extern int preserve_hard_links;
extern BOOL extra_flist_sending_enabled;
extern BOOL flush_ok_after_signal;
extern struct stats stats;
extern struct file_list *cur_flist;
#ifdef ICONV_OPTION
extern int filesfrom_convert;
extern iconv_t ic_send, ic_recv;
#endif
int csum_length = SHORT_SUM_LENGTH; /* initial value */
int allowed_lull = 0;
int batch_fd = -1;
int msgdone_cnt = 0;
int forward_flist_data = 0;
BOOL flist_receiving_enabled = False;
/* Ignore an EOF error if non-zero. See whine_about_eof(). */
int kluge_around_eof = 0;
int got_kill_signal = -1; /* is set to 0 only after multiplexed I/O starts */
int sock_f_in = -1;
int sock_f_out = -1;
int64 total_data_read = 0;
int64 total_data_written = 0;
static struct {
xbuf in, out, msg;
int in_fd;
int out_fd; /* Both "out" and "msg" go to this fd. */
int in_multiplexed;
unsigned out_empty_len;
size_t raw_data_header_pos; /* in the out xbuf */
size_t raw_flushing_ends_before; /* in the out xbuf */
size_t raw_input_ends_before; /* in the in xbuf */
} iobuf = { .in_fd = -1, .out_fd = -1 };
static time_t last_io_in;
static time_t last_io_out;
static int write_batch_monitor_in = -1;
static int write_batch_monitor_out = -1;
static int ff_forward_fd = -1;
static int ff_reenable_multiplex = -1;
static char ff_lastchar = '\0';
static xbuf ff_xb = EMPTY_XBUF;
#ifdef ICONV_OPTION
static xbuf iconv_buf = EMPTY_XBUF;
#endif
static int select_timeout = SELECT_TIMEOUT;
static int active_filecnt = 0;
static OFF_T active_bytecnt = 0;
static int first_message = 1;
static char int_byte_extra[64] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* (00 - 3F)/4 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* (40 - 7F)/4 */
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* (80 - BF)/4 */
2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, /* (C0 - FF)/4 */
};
/* Our I/O buffers are sized with no bits on in the lowest byte of the "size"
* (indeed, our rounding of sizes in 1024-byte units assures more than this).
* This allows the code that is storing bytes near the physical end of a
* circular buffer to temporarily reduce the buffer's size (in order to make
* some storing idioms easier), while also making it simple to restore the
* buffer's actual size when the buffer's "pos" wraps around to the start (we
* just round the buffer's size up again). */
#define IOBUF_WAS_REDUCED(siz) ((siz) & 0xFF)
#define IOBUF_RESTORE_SIZE(siz) (((siz) | 0xFF) + 1)
#define IN_MULTIPLEXED (iobuf.in_multiplexed != 0)
#define IN_MULTIPLEXED_AND_READY (iobuf.in_multiplexed > 0)
#define OUT_MULTIPLEXED (iobuf.out_empty_len != 0)
#define PIO_NEED_INPUT (1<<0) /* The *_NEED_* flags are mutually exclusive. */
#define PIO_NEED_OUTROOM (1<<1)
#define PIO_NEED_MSGROOM (1<<2)
#define PIO_CONSUME_INPUT (1<<4) /* Must becombined with PIO_NEED_INPUT. */
#define PIO_INPUT_AND_CONSUME (PIO_NEED_INPUT | PIO_CONSUME_INPUT)
#define PIO_NEED_FLAGS (PIO_NEED_INPUT | PIO_NEED_OUTROOM | PIO_NEED_MSGROOM)
#define REMOTE_OPTION_ERROR "rsync: on remote machine: -"
#define REMOTE_OPTION_ERROR2 ": unknown option"
#define FILESFROM_BUFLEN 2048
enum festatus { FES_SUCCESS, FES_REDO, FES_NO_SEND };
static flist_ndx_list redo_list, hlink_list;
static void read_a_msg(void);
static void drain_multiplex_messages(void);
static void sleep_for_bwlimit(int bytes_written);
static void check_timeout(BOOL allow_keepalive, int keepalive_flags)
{
time_t t, chk;
/* On the receiving side, the generator is now the one that decides
* when a timeout has occurred. When it is sifting through a lot of
* files looking for work, it will be sending keep-alive messages to
* the sender, and even though the receiver won't be sending/receiving
* anything (not even keep-alive messages), the successful writes to
* the sender will keep things going. If the receiver is actively
* receiving data, it will ensure that the generator knows that it is
* not idle by sending the generator keep-alive messages (since the
* generator might be blocked trying to send checksums, it needs to
* know that the receiver is active). Thus, as long as one or the
* other is successfully doing work, the generator will not timeout. */
if (!io_timeout)
return;
t = time(NULL);
if (allow_keepalive) {
/* This may put data into iobuf.msg w/o flushing. */
maybe_send_keepalive(t, keepalive_flags);
}
if (!last_io_in)
last_io_in = t;
if (am_receiver)
return;
chk = MAX(last_io_out, last_io_in);
if (t - chk >= io_timeout) {
if (am_server)
msgs2stderr = 1;
rprintf(FERROR, "[%s] io timeout after %d seconds -- exiting\n",
who_am_i(), (int)(t-chk));
exit_cleanup(RERR_TIMEOUT);
}
}
/* It's almost always an error to get an EOF when we're trying to read from the
* network, because the protocol is (for the most part) self-terminating.
*
* There is one case for the receiver when it is at the end of the transfer
* (hanging around reading any keep-alive packets that might come its way): if
* the sender dies before the generator's kill-signal comes through, we can end
* up here needing to loop until the kill-signal arrives. In this situation,
* kluge_around_eof will be < 0.
*
* There is another case for older protocol versions (< 24) where the module
* listing was not terminated, so we must ignore an EOF error in that case and
* exit. In this situation, kluge_around_eof will be > 0. */
static NORETURN void whine_about_eof(BOOL allow_kluge)
{
if (kluge_around_eof && allow_kluge) {
int i;
if (kluge_around_eof > 0)
exit_cleanup(0);
/* If we're still here after 10 seconds, exit with an error. */
for (i = 10*1000/20; i--; )
msleep(20);
}
rprintf(FERROR, RSYNC_NAME ": connection unexpectedly closed "
"(%s bytes received so far) [%s]\n",
big_num(stats.total_read), who_am_i());
exit_cleanup(RERR_STREAMIO);
}
/* Do a safe read, handling any needed looping and error handling.
* Returns the count of the bytes read, which will only be different
* from "len" if we encountered an EOF. This routine is not used on
* the socket except very early in the transfer. */
static size_t safe_read(int fd, char *buf, size_t len)
{
size_t got = 0;
assert(fd != iobuf.in_fd);
while (1) {
struct timeval tv;
fd_set r_fds, e_fds;
int cnt;
FD_ZERO(&r_fds);
FD_SET(fd, &r_fds);
FD_ZERO(&e_fds);
FD_SET(fd, &e_fds);
tv.tv_sec = select_timeout;
tv.tv_usec = 0;
cnt = select(fd+1, &r_fds, NULL, &e_fds, &tv);
if (cnt <= 0) {
if (cnt < 0 && errno == EBADF) {
rsyserr(FERROR, errno, "safe_read select failed [%s]",
who_am_i());
exit_cleanup(RERR_FILEIO);
}
check_timeout(1, MSK_ALLOW_FLUSH);
continue;
}
/*if (FD_ISSET(fd, &e_fds))
rprintf(FINFO, "select exception on fd %d\n", fd); */
if (FD_ISSET(fd, &r_fds)) {
int n = read(fd, buf + got, len - got);
if (DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] safe_read(%d)=%ld\n", who_am_i(), fd, (long)n);
if (n == 0)
break;
if (n < 0) {
if (errno == EINTR)
continue;
rsyserr(FERROR, errno, "safe_read failed to read %ld bytes [%s]",
(long)len, who_am_i());
exit_cleanup(RERR_STREAMIO);
}
if ((got += (size_t)n) == len)
break;
}
}
return got;
}
static const char *what_fd_is(int fd)
{
static char buf[20];
if (fd == sock_f_out)
return "socket";
else if (fd == iobuf.out_fd)
return "message fd";
else if (fd == batch_fd)
return "batch file";
else {
snprintf(buf, sizeof buf, "fd %d", fd);
return buf;
}
}
/* Do a safe write, handling any needed looping and error handling.
* Returns only if everything was successfully written. This routine
* is not used on the socket except very early in the transfer. */
static void safe_write(int fd, const char *buf, size_t len)
{
int n;
assert(fd != iobuf.out_fd);
n = write(fd, buf, len);
if ((size_t)n == len)
return;
if (n < 0) {
if (errno != EINTR && errno != EWOULDBLOCK && errno != EAGAIN) {
write_failed:
rsyserr(FERROR, errno,
"safe_write failed to write %ld bytes to %s [%s]",
(long)len, what_fd_is(fd), who_am_i());
exit_cleanup(RERR_STREAMIO);
}
} else {
buf += n;
len -= n;
}
while (len) {
struct timeval tv;
fd_set w_fds;
int cnt;
FD_ZERO(&w_fds);
FD_SET(fd, &w_fds);
tv.tv_sec = select_timeout;
tv.tv_usec = 0;
cnt = select(fd + 1, NULL, &w_fds, NULL, &tv);
if (cnt <= 0) {
if (cnt < 0 && errno == EBADF) {
rsyserr(FERROR, errno, "safe_write select failed on %s [%s]",
what_fd_is(fd), who_am_i());
exit_cleanup(RERR_FILEIO);
}
if (io_timeout)
maybe_send_keepalive(time(NULL), MSK_ALLOW_FLUSH);
continue;
}
if (FD_ISSET(fd, &w_fds)) {
n = write(fd, buf, len);
if (n < 0) {
if (errno == EINTR)
continue;
goto write_failed;
}
buf += n;
len -= n;
}
}
}
/* This is only called when files-from data is known to be available. We read
* a chunk of data and put it into the output buffer. */
static void forward_filesfrom_data(void)
{
int len;
len = read(ff_forward_fd, ff_xb.buf + ff_xb.len, ff_xb.size - ff_xb.len);
if (len <= 0) {
if (len == 0 || errno != EINTR) {
/* Send end-of-file marker */
ff_forward_fd = -1;
write_buf(iobuf.out_fd, "\0\0", ff_lastchar ? 2 : 1);
free_xbuf(&ff_xb);
if (ff_reenable_multiplex >= 0)
io_start_multiplex_out(ff_reenable_multiplex);
}
return;
}
if (DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] files-from read=%ld\n", who_am_i(), (long)len);
#ifdef ICONV_OPTION
len += ff_xb.len;
#endif
if (!eol_nulls) {
char *s = ff_xb.buf + len;
/* Transform CR and/or LF into '\0' */
while (s-- > ff_xb.buf) {
if (*s == '\n' || *s == '\r')
*s = '\0';
}
}
if (ff_lastchar)
ff_xb.pos = 0;
else {
char *s = ff_xb.buf;
/* Last buf ended with a '\0', so don't let this buf start with one. */
while (len && *s == '\0')
s++, len--;
ff_xb.pos = s - ff_xb.buf;
}
#ifdef ICONV_OPTION
if (filesfrom_convert && len) {
char *sob = ff_xb.buf + ff_xb.pos, *s = sob;
char *eob = sob + len;
int flags = ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_CIRCULAR_OUT;
if (ff_lastchar == '\0')
flags |= ICB_INIT;
/* Convert/send each null-terminated string separately, skipping empties. */
while (s != eob) {
if (*s++ == '\0') {
ff_xb.len = s - sob - 1;
if (iconvbufs(ic_send, &ff_xb, &iobuf.out, flags) < 0)
exit_cleanup(RERR_PROTOCOL); /* impossible? */
write_buf(iobuf.out_fd, s-1, 1); /* Send the '\0'. */
while (s != eob && *s == '\0')
s++;
sob = s;
ff_xb.pos = sob - ff_xb.buf;
flags |= ICB_INIT;
}
}
if ((ff_xb.len = s - sob) == 0)
ff_lastchar = '\0';
else {
/* Handle a partial string specially, saving any incomplete chars. */
flags &= ~ICB_INCLUDE_INCOMPLETE;
if (iconvbufs(ic_send, &ff_xb, &iobuf.out, flags) < 0) {
if (errno == E2BIG)
exit_cleanup(RERR_PROTOCOL); /* impossible? */
if (ff_xb.pos)
memmove(ff_xb.buf, ff_xb.buf + ff_xb.pos, ff_xb.len);
}
ff_lastchar = 'x'; /* Anything non-zero. */
}
} else
#endif
if (len) {
char *f = ff_xb.buf + ff_xb.pos;
char *t = ff_xb.buf;
char *eob = f + len;
/* Eliminate any multi-'\0' runs. */
while (f != eob) {
if (!(*t++ = *f++)) {
while (f != eob && *f == '\0')
f++;
}
}
ff_lastchar = f[-1];
if ((len = t - ff_xb.buf) != 0) {
/* This will not circle back to perform_io() because we only get
* called when there is plenty of room in the output buffer. */
write_buf(iobuf.out_fd, ff_xb.buf, len);
}
}
}
void reduce_iobuf_size(xbuf *out, size_t new_size)
{
if (new_size < out->size) {
/* Avoid weird buffer interactions by only outputting this to stderr. */
if (msgs2stderr && DEBUG_GTE(IO, 4)) {
const char *name = out == &iobuf.out ? "iobuf.out"
: out == &iobuf.msg ? "iobuf.msg"
: NULL;
if (name) {
rprintf(FINFO, "[%s] reduced size of %s (-%d)\n",
who_am_i(), name, (int)(out->size - new_size));
}
}
out->size = new_size;
}
}
void restore_iobuf_size(xbuf *out)
{
if (IOBUF_WAS_REDUCED(out->size)) {
size_t new_size = IOBUF_RESTORE_SIZE(out->size);
/* Avoid weird buffer interactions by only outputting this to stderr. */
if (msgs2stderr && DEBUG_GTE(IO, 4)) {
const char *name = out == &iobuf.out ? "iobuf.out"
: out == &iobuf.msg ? "iobuf.msg"
: NULL;
if (name) {
rprintf(FINFO, "[%s] restored size of %s (+%d)\n",
who_am_i(), name, (int)(new_size - out->size));
}
}
out->size = new_size;
}
}
static void handle_kill_signal(BOOL flush_ok)
{
got_kill_signal = -1;
flush_ok_after_signal = flush_ok;
exit_cleanup(RERR_SIGNAL);
}
/* Perform buffered input and/or output until specified conditions are met.
* When given a "needed" read or write request, this returns without doing any
* I/O if the needed input bytes or write space is already available. Once I/O
* is needed, this will try to do whatever reading and/or writing is currently
* possible, up to the maximum buffer allowances, no matter if this is a read
* or write request. However, the I/O stops as soon as the required input
* bytes or output space is available. If this is not a read request, the
* routine may also do some advantageous reading of messages from a multiplexed
* input source (which ensures that we don't jam up with everyone in their
* "need to write" code and nobody reading the accumulated data that would make
* writing possible).
*
* The iobuf.in, .out and .msg buffers are all circular. Callers need to be
* aware that some data copies will need to be split when the bytes wrap around
* from the end to the start. In order to help make writing into the output
* buffers easier for some operations (such as the use of SIVAL() into the
* buffer) a buffer may be temporarily shortened by a small amount, but the
* original size will be automatically restored when the .pos wraps to the
* start. See also the 3 raw_* iobuf vars that are used in the handling of
* MSG_DATA bytes as they are read-from/written-into the buffers.
*
* When writing, we flush data in the following priority order:
*
* 1. Finish writing any in-progress MSG_DATA sequence from iobuf.out.
*
* 2. Write out all the messages from the message buf (if iobuf.msg is active).
* Yes, this means that a PIO_NEED_OUTROOM call will completely flush any
* messages before getting to the iobuf.out flushing (except for rule 1).
*
* 3. Write out the raw data from iobuf.out, possibly filling in the multiplexed
* MSG_DATA header that was pre-allocated (when output is multiplexed).
*
* TODO: items for possible future work:
*
* - Make this routine able to read the generator-to-receiver batch flow?
*
* Unlike the old routines that this replaces, it is OK to read ahead as far as
* we can because the read_a_msg() routine now reads its bytes out of the input
* buffer. In the old days, only raw data was in the input buffer, and any
* unused raw data in the buf would prevent the reading of socket data. */
static char *perform_io(size_t needed, int flags)
{
fd_set r_fds, e_fds, w_fds;
struct timeval tv;
int cnt, max_fd;
size_t empty_buf_len = 0;
xbuf *out;
char *data;
if (iobuf.in.len == 0 && iobuf.in.pos != 0) {
if (iobuf.raw_input_ends_before)
iobuf.raw_input_ends_before -= iobuf.in.pos;
iobuf.in.pos = 0;
}
switch (flags & PIO_NEED_FLAGS) {
case PIO_NEED_INPUT:
/* We never resize the circular input buffer. */
if (iobuf.in.size < needed) {
rprintf(FERROR, "need to read %ld bytes, iobuf.in.buf is only %ld bytes.\n",
(long)needed, (long)iobuf.in.size);
exit_cleanup(RERR_PROTOCOL);
}
if (msgs2stderr && DEBUG_GTE(IO, 3)) {
rprintf(FINFO, "[%s] perform_io(%ld, %sinput)\n",
who_am_i(), (long)needed, flags & PIO_CONSUME_INPUT ? "consume&" : "");
}
break;
case PIO_NEED_OUTROOM:
/* We never resize the circular output buffer. */
if (iobuf.out.size - iobuf.out_empty_len < needed) {
fprintf(stderr, "need to write %ld bytes, iobuf.out.buf is only %ld bytes.\n",
(long)needed, (long)(iobuf.out.size - iobuf.out_empty_len));
exit_cleanup(RERR_PROTOCOL);
}
if (msgs2stderr && DEBUG_GTE(IO, 3)) {
rprintf(FINFO, "[%s] perform_io(%ld, outroom) needs to flush %ld\n",
who_am_i(), (long)needed,
iobuf.out.len + needed > iobuf.out.size
? (long)(iobuf.out.len + needed - iobuf.out.size) : 0L);
}
break;
case PIO_NEED_MSGROOM:
/* We never resize the circular message buffer. */
if (iobuf.msg.size < needed) {
fprintf(stderr, "need to write %ld bytes, iobuf.msg.buf is only %ld bytes.\n",
(long)needed, (long)iobuf.msg.size);
exit_cleanup(RERR_PROTOCOL);
}
if (msgs2stderr && DEBUG_GTE(IO, 3)) {
rprintf(FINFO, "[%s] perform_io(%ld, msgroom) needs to flush %ld\n",
who_am_i(), (long)needed,
iobuf.msg.len + needed > iobuf.msg.size
? (long)(iobuf.msg.len + needed - iobuf.msg.size) : 0L);
}
break;
case 0:
if (msgs2stderr && DEBUG_GTE(IO, 3))
rprintf(FINFO, "[%s] perform_io(%ld, %d)\n", who_am_i(), (long)needed, flags);
break;
default:
exit_cleanup(RERR_UNSUPPORTED);
}
while (1) {
switch (flags & PIO_NEED_FLAGS) {
case PIO_NEED_INPUT:
if (iobuf.in.len >= needed)
goto double_break;
break;
case PIO_NEED_OUTROOM:
/* Note that iobuf.out_empty_len doesn't factor into this check
* because iobuf.out.len already holds any needed header len. */
if (iobuf.out.len + needed <= iobuf.out.size)
goto double_break;
break;
case PIO_NEED_MSGROOM:
if (iobuf.msg.len + needed <= iobuf.msg.size)
goto double_break;
break;
}
max_fd = -1;
FD_ZERO(&r_fds);
FD_ZERO(&e_fds);
if (iobuf.in_fd >= 0 && iobuf.in.size - iobuf.in.len) {
if (!read_batch || batch_fd >= 0) {
FD_SET(iobuf.in_fd, &r_fds);
FD_SET(iobuf.in_fd, &e_fds);
}
if (iobuf.in_fd > max_fd)
max_fd = iobuf.in_fd;
}
/* Only do more filesfrom processing if there is enough room in the out buffer. */
if (ff_forward_fd >= 0 && iobuf.out.size - iobuf.out.len > FILESFROM_BUFLEN*2) {
FD_SET(ff_forward_fd, &r_fds);
if (ff_forward_fd > max_fd)
max_fd = ff_forward_fd;
}
FD_ZERO(&w_fds);
if (iobuf.out_fd >= 0) {
if (iobuf.raw_flushing_ends_before
|| (!iobuf.msg.len && iobuf.out.len > iobuf.out_empty_len && !(flags & PIO_NEED_MSGROOM))) {
if (OUT_MULTIPLEXED && !iobuf.raw_flushing_ends_before) {
/* The iobuf.raw_flushing_ends_before value can point off the end
* of the iobuf.out buffer for a while, for easier subtracting. */
iobuf.raw_flushing_ends_before = iobuf.out.pos + iobuf.out.len;
SIVAL(iobuf.out.buf + iobuf.raw_data_header_pos, 0,
((MPLEX_BASE + (int)MSG_DATA)<<24) + iobuf.out.len - 4);
if (msgs2stderr && DEBUG_GTE(IO, 1)) {
rprintf(FINFO, "[%s] send_msg(%d, %ld)\n",
who_am_i(), (int)MSG_DATA, (long)iobuf.out.len - 4);
}
/* reserve room for the next MSG_DATA header */
iobuf.raw_data_header_pos = iobuf.raw_flushing_ends_before;
if (iobuf.raw_data_header_pos >= iobuf.out.size)
iobuf.raw_data_header_pos -= iobuf.out.size;
else if (iobuf.raw_data_header_pos + 4 > iobuf.out.size) {
/* The 4-byte header won't fit at the end of the buffer,
* so we'll temporarily reduce the output buffer's size
* and put the header at the start of the buffer. */
reduce_iobuf_size(&iobuf.out, iobuf.raw_data_header_pos);
iobuf.raw_data_header_pos = 0;
}
/* Yes, it is possible for this to make len > size for a while. */
iobuf.out.len += 4;
}
empty_buf_len = iobuf.out_empty_len;
out = &iobuf.out;
} else if (iobuf.msg.len) {
empty_buf_len = 0;
out = &iobuf.msg;
} else
out = NULL;
if (out) {
FD_SET(iobuf.out_fd, &w_fds);
if (iobuf.out_fd > max_fd)
max_fd = iobuf.out_fd;
}
} else
out = NULL;
if (max_fd < 0) {
switch (flags & PIO_NEED_FLAGS) {
case PIO_NEED_INPUT:
iobuf.in.len = 0;
if (kluge_around_eof == 2)
exit_cleanup(0);
if (iobuf.in_fd == -2)
whine_about_eof(True);
rprintf(FERROR, "error in perform_io: no fd for input.\n");
exit_cleanup(RERR_PROTOCOL);
case PIO_NEED_OUTROOM:
case PIO_NEED_MSGROOM:
msgs2stderr = 1;
drain_multiplex_messages();
if (iobuf.out_fd == -2)
whine_about_eof(True);
rprintf(FERROR, "error in perform_io: no fd for output.\n");
exit_cleanup(RERR_PROTOCOL);
default:
/* No stated needs, so I guess this is OK. */
break;
}
break;
}
if (got_kill_signal > 0)
handle_kill_signal(True);
if (extra_flist_sending_enabled) {
if (file_total - file_old_total < MAX_FILECNT_LOOKAHEAD && IN_MULTIPLEXED_AND_READY)
tv.tv_sec = 0;
else {
extra_flist_sending_enabled = False;
tv.tv_sec = select_timeout;
}
} else
tv.tv_sec = select_timeout;
tv.tv_usec = 0;
cnt = select(max_fd + 1, &r_fds, &w_fds, &e_fds, &tv);
if (cnt <= 0) {
if (cnt < 0 && errno == EBADF) {
msgs2stderr = 1;
exit_cleanup(RERR_SOCKETIO);
}
if (extra_flist_sending_enabled) {
extra_flist_sending_enabled = False;
send_extra_file_list(sock_f_out, -1);
extra_flist_sending_enabled = !flist_eof;
} else
check_timeout((flags & PIO_NEED_INPUT) != 0, 0);
FD_ZERO(&r_fds); /* Just in case... */
FD_ZERO(&w_fds);
}
if (iobuf.in_fd >= 0 && FD_ISSET(iobuf.in_fd, &r_fds)) {
size_t len, pos = iobuf.in.pos + iobuf.in.len;
int n;
if (pos >= iobuf.in.size) {
pos -= iobuf.in.size;
len = iobuf.in.size - iobuf.in.len;
} else
len = iobuf.in.size - pos;
if ((n = read(iobuf.in_fd, iobuf.in.buf + pos, len)) <= 0) {
if (n == 0) {
/* Signal that input has become invalid. */
if (!read_batch || batch_fd < 0 || am_generator)
iobuf.in_fd = -2;
batch_fd = -1;
continue;
}
if (errno == EINTR || errno == EWOULDBLOCK || errno == EAGAIN)
n = 0;
else {
/* Don't write errors on a dead socket. */
if (iobuf.in_fd == sock_f_in) {
if (am_sender)
msgs2stderr = 1;
rsyserr(FERROR_SOCKET, errno, "read error");
} else
rsyserr(FERROR, errno, "read error");
exit_cleanup(RERR_SOCKETIO);
}
}
if (msgs2stderr && DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] recv=%ld\n", who_am_i(), (long)n);
if (io_timeout) {
last_io_in = time(NULL);
if (flags & PIO_NEED_INPUT)
maybe_send_keepalive(last_io_in, 0);
}
stats.total_read += n;
iobuf.in.len += n;
}
if (out && FD_ISSET(iobuf.out_fd, &w_fds)) {
size_t len = iobuf.raw_flushing_ends_before ? iobuf.raw_flushing_ends_before - out->pos : out->len;
int n;
if (bwlimit_writemax && len > bwlimit_writemax)
len = bwlimit_writemax;
if (out->pos + len > out->size)
len = out->size - out->pos;
if ((n = write(iobuf.out_fd, out->buf + out->pos, len)) <= 0) {
if (errno == EINTR || errno == EWOULDBLOCK || errno == EAGAIN)
n = 0;
else {
/* Don't write errors on a dead socket. */
msgs2stderr = 1;
iobuf.out_fd = -2;
iobuf.out.len = iobuf.msg.len = iobuf.raw_flushing_ends_before = 0;
rsyserr(FERROR_SOCKET, errno, "[%s] write error", who_am_i());
drain_multiplex_messages();
exit_cleanup(RERR_SOCKETIO);
}
}
if (msgs2stderr && DEBUG_GTE(IO, 2)) {
rprintf(FINFO, "[%s] %s sent=%ld\n",
who_am_i(), out == &iobuf.out ? "out" : "msg", (long)n);
}
if (io_timeout)
last_io_out = time(NULL);
stats.total_written += n;
if (bwlimit_writemax)
sleep_for_bwlimit(n);
if ((out->pos += n) == out->size) {
if (iobuf.raw_flushing_ends_before)
iobuf.raw_flushing_ends_before -= out->size;
out->pos = 0;
restore_iobuf_size(out);
} else if (out->pos == iobuf.raw_flushing_ends_before)
iobuf.raw_flushing_ends_before = 0;
if ((out->len -= n) == empty_buf_len) {
out->pos = 0;
restore_iobuf_size(out);
if (empty_buf_len)
iobuf.raw_data_header_pos = 0;
}
}
if (got_kill_signal > 0)
handle_kill_signal(True);
/* We need to help prevent deadlock by doing what reading
* we can whenever we are here trying to write. */
if (IN_MULTIPLEXED_AND_READY && !(flags & PIO_NEED_INPUT)) {
while (!iobuf.raw_input_ends_before && iobuf.in.len > 512)
read_a_msg();
if (flist_receiving_enabled && iobuf.in.len > 512)
wait_for_receiver(); /* generator only */
}
if (ff_forward_fd >= 0 && FD_ISSET(ff_forward_fd, &r_fds)) {
/* This can potentially flush all output and enable
* multiplexed output, so keep this last in the loop
* and be sure to not cache anything that would break
* such a change. */
forward_filesfrom_data();
}
}
double_break:
if (got_kill_signal > 0)
handle_kill_signal(True);
data = iobuf.in.buf + iobuf.in.pos;
if (flags & PIO_CONSUME_INPUT) {
iobuf.in.len -= needed;
iobuf.in.pos += needed;
if (iobuf.in.pos == iobuf.raw_input_ends_before)
iobuf.raw_input_ends_before = 0;
if (iobuf.in.pos >= iobuf.in.size) {
iobuf.in.pos -= iobuf.in.size;
if (iobuf.raw_input_ends_before)
iobuf.raw_input_ends_before -= iobuf.in.size;
}
}
return data;
}
static void raw_read_buf(char *buf, size_t len)
{
size_t pos = iobuf.in.pos;
char *data = perform_io(len, PIO_INPUT_AND_CONSUME);
if (iobuf.in.pos <= pos && len) {
size_t siz = len - iobuf.in.pos;
memcpy(buf, data, siz);
memcpy(buf + siz, iobuf.in.buf, iobuf.in.pos);
} else
memcpy(buf, data, len);
}
static int32 raw_read_int(void)
{
char *data, buf[4];
if (iobuf.in.size - iobuf.in.pos >= 4)
data = perform_io(4, PIO_INPUT_AND_CONSUME);
else
raw_read_buf(data = buf, 4);
return IVAL(data, 0);
}
void noop_io_until_death(void)
{
char buf[1024];
if (!iobuf.in.buf || !iobuf.out.buf || iobuf.in_fd < 0 || iobuf.out_fd < 0 || kluge_around_eof)
return;
kluge_around_eof = 2;
/* Setting an I/O timeout ensures that if something inexplicably weird
* happens, we won't hang around forever. */
if (!io_timeout)
set_io_timeout(60);
while (1)
read_buf(iobuf.in_fd, buf, sizeof buf);
}
/* Buffer a message for the multiplexed output stream. Is not used for (normal) MSG_DATA. */
int send_msg(enum msgcode code, const char *buf, size_t len, int convert)
{
char *hdr;
size_t needed, pos;
BOOL want_debug = DEBUG_GTE(IO, 1) && convert >= 0 && (msgs2stderr || code != MSG_INFO);
if (!OUT_MULTIPLEXED)
return 0;
if (want_debug)
rprintf(FINFO, "[%s] send_msg(%d, %ld)\n", who_am_i(), (int)code, (long)len);
/* When checking for enough free space for this message, we need to
* make sure that there is space for the 4-byte header, plus we'll
* assume that we may waste up to 3 bytes (if the header doesn't fit
* at the physical end of the buffer). */
#ifdef ICONV_OPTION
if (convert > 0 && ic_send == (iconv_t)-1)
convert = 0;
if (convert > 0) {
/* Ensuring double-size room leaves space for maximal conversion expansion. */
needed = len*2 + 4 + 3;
} else
#endif
needed = len + 4 + 3;
if (iobuf.msg.len + needed > iobuf.msg.size)
perform_io(needed, PIO_NEED_MSGROOM);
pos = iobuf.msg.pos + iobuf.msg.len; /* Must be set after any flushing. */
if (pos >= iobuf.msg.size)
pos -= iobuf.msg.size;
else if (pos + 4 > iobuf.msg.size) {
/* The 4-byte header won't fit at the end of the buffer,
* so we'll temporarily reduce the message buffer's size
* and put the header at the start of the buffer. */
reduce_iobuf_size(&iobuf.msg, pos);
pos = 0;
}
hdr = iobuf.msg.buf + pos;
iobuf.msg.len += 4; /* Allocate room for the coming header bytes. */
#ifdef ICONV_OPTION
if (convert > 0) {
xbuf inbuf;
INIT_XBUF(inbuf, (char*)buf, len, (size_t)-1);
len = iobuf.msg.len;
iconvbufs(ic_send, &inbuf, &iobuf.msg,
ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_CIRCULAR_OUT | ICB_INIT);
if (inbuf.len > 0) {
rprintf(FERROR, "overflowed iobuf.msg buffer in send_msg");
exit_cleanup(RERR_UNSUPPORTED);
}
len = iobuf.msg.len - len;
} else
#endif
{
size_t siz;
if ((pos += 4) == iobuf.msg.size)
pos = 0;
/* Handle a split copy if we wrap around the end of the circular buffer. */
if (pos >= iobuf.msg.pos && (siz = iobuf.msg.size - pos) < len) {
memcpy(iobuf.msg.buf + pos, buf, siz);
memcpy(iobuf.msg.buf, buf + siz, len - siz);
} else
memcpy(iobuf.msg.buf + pos, buf, len);
iobuf.msg.len += len;
}
SIVAL(hdr, 0, ((MPLEX_BASE + (int)code)<<24) + len);
if (want_debug && convert > 0)
rprintf(FINFO, "[%s] converted msg len=%ld\n", who_am_i(), (long)len);
return 1;
}
void send_msg_int(enum msgcode code, int num)
{
char numbuf[4];
if (DEBUG_GTE(IO, 1))
rprintf(FINFO, "[%s] send_msg_int(%d, %d)\n", who_am_i(), (int)code, num);
SIVAL(numbuf, 0, num);
send_msg(code, numbuf, 4, -1);
}
static void got_flist_entry_status(enum festatus status, int ndx)
{
struct file_list *flist = flist_for_ndx(ndx, "got_flist_entry_status");
if (remove_source_files) {
active_filecnt--;
active_bytecnt -= F_LENGTH(flist->files[ndx - flist->ndx_start]);
}
if (inc_recurse)
flist->in_progress--;
switch (status) {
case FES_SUCCESS:
if (remove_source_files)
send_msg_int(MSG_SUCCESS, ndx);
/* FALL THROUGH */
case FES_NO_SEND:
#ifdef SUPPORT_HARD_LINKS
if (preserve_hard_links) {
struct file_struct *file = flist->files[ndx - flist->ndx_start];
if (F_IS_HLINKED(file)) {
if (status == FES_NO_SEND)
flist_ndx_push(&hlink_list, -2); /* indicates a failure follows */
flist_ndx_push(&hlink_list, ndx);
if (inc_recurse)
flist->in_progress++;
}
}
#endif
break;
case FES_REDO:
if (read_batch) {
if (inc_recurse)
flist->in_progress++;
break;
}
if (inc_recurse)
flist->to_redo++;
flist_ndx_push(&redo_list, ndx);
break;
}
}
/* Note the fds used for the main socket (which might really be a pipe
* for a local transfer, but we can ignore that). */
void io_set_sock_fds(int f_in, int f_out)
{
sock_f_in = f_in;
sock_f_out = f_out;
}
void set_io_timeout(int secs)
{
io_timeout = secs;
allowed_lull = (io_timeout + 1) / 2;
if (!io_timeout || allowed_lull > SELECT_TIMEOUT)
select_timeout = SELECT_TIMEOUT;
else
select_timeout = allowed_lull;
if (read_batch)
allowed_lull = 0;
}
static void check_for_d_option_error(const char *msg)
{
static char rsync263_opts[] = "BCDHIKLPRSTWabceghlnopqrtuvxz";
char *colon;
int saw_d = 0;
if (*msg != 'r'
|| strncmp(msg, REMOTE_OPTION_ERROR, sizeof REMOTE_OPTION_ERROR - 1) != 0)
return;
msg += sizeof REMOTE_OPTION_ERROR - 1;
if (*msg == '-' || (colon = strchr(msg, ':')) == NULL
|| strncmp(colon, REMOTE_OPTION_ERROR2, sizeof REMOTE_OPTION_ERROR2 - 1) != 0)
return;
for ( ; *msg != ':'; msg++) {
if (*msg == 'd')
saw_d = 1;
else if (*msg == 'e')
break;
else if (strchr(rsync263_opts, *msg) == NULL)
return;
}
if (saw_d) {
rprintf(FWARNING,
"*** Try using \"--old-d\" if remote rsync is <= 2.6.3 ***\n");
}
}
/* This is used by the generator to limit how many file transfers can
* be active at once when --remove-source-files is specified. Without
* this, sender-side deletions were mostly happening at the end. */
void increment_active_files(int ndx, int itemizing, enum logcode code)
{
while (1) {
/* TODO: tune these limits? */
int limit = active_bytecnt >= 128*1024 ? 10 : 50;
if (active_filecnt < limit)
break;
check_for_finished_files(itemizing, code, 0);
if (active_filecnt < limit)
break;
wait_for_receiver();
}
active_filecnt++;
active_bytecnt += F_LENGTH(cur_flist->files[ndx - cur_flist->ndx_start]);
}
int get_redo_num(void)
{
return flist_ndx_pop(&redo_list);
}
int get_hlink_num(void)
{
return flist_ndx_pop(&hlink_list);
}
/* When we're the receiver and we have a local --files-from list of names
* that needs to be sent over the socket to the sender, we have to do two
* things at the same time: send the sender a list of what files we're
* processing and read the incoming file+info list from the sender. We do
* this by making recv_file_list() call forward_filesfrom_data(), which
* will ensure that we forward data to the sender until we get some data
* for recv_file_list() to use. */
void start_filesfrom_forwarding(int fd)
{
if (protocol_version < 31 && OUT_MULTIPLEXED) {
/* Older protocols send the files-from data w/o packaging
* it in multiplexed I/O packets, so temporarily switch
* to buffered I/O to match this behavior. */
iobuf.msg.pos = iobuf.msg.len = 0; /* Be extra sure no messages go out. */
ff_reenable_multiplex = io_end_multiplex_out(MPLX_TO_BUFFERED);
}
ff_forward_fd = fd;
alloc_xbuf(&ff_xb, FILESFROM_BUFLEN);
}
/* Read a line into the "buf" buffer. */
int read_line(int fd, char *buf, size_t bufsiz, int flags)
{
char ch, *s, *eob;
#ifdef ICONV_OPTION
if (flags & RL_CONVERT && iconv_buf.size < bufsiz)
realloc_xbuf(&iconv_buf, bufsiz + 1024);
#endif
start:
#ifdef ICONV_OPTION
s = flags & RL_CONVERT ? iconv_buf.buf : buf;
#else
s = buf;
#endif
eob = s + bufsiz - 1;
while (1) {
/* We avoid read_byte() for files because files can return an EOF. */
if (fd == iobuf.in_fd)
ch = read_byte(fd);
else if (safe_read(fd, &ch, 1) == 0)
break;
if (flags & RL_EOL_NULLS ? ch == '\0' : (ch == '\r' || ch == '\n')) {
/* Skip empty lines if dumping comments. */
if (flags & RL_DUMP_COMMENTS && s == buf)
continue;
break;
}
if (s < eob)
*s++ = ch;
}
*s = '\0';
if (flags & RL_DUMP_COMMENTS && (*buf == '#' || *buf == ';'))
goto start;
#ifdef ICONV_OPTION
if (flags & RL_CONVERT) {
xbuf outbuf;
INIT_XBUF(outbuf, buf, 0, bufsiz);
iconv_buf.pos = 0;
iconv_buf.len = s - iconv_buf.buf;
iconvbufs(ic_recv, &iconv_buf, &outbuf,
ICB_INCLUDE_BAD | ICB_INCLUDE_INCOMPLETE | ICB_INIT);
outbuf.buf[outbuf.len] = '\0';
return outbuf.len;
}
#endif
return s - buf;
}
void read_args(int f_in, char *mod_name, char *buf, size_t bufsiz, int rl_nulls,
char ***argv_p, int *argc_p, char **request_p)
{
int maxargs = MAX_ARGS;
int dot_pos = 0, argc = 0, request_len = 0;
char **argv, *p;
int rl_flags = (rl_nulls ? RL_EOL_NULLS : 0);
#ifdef ICONV_OPTION
rl_flags |= (protect_args && ic_recv != (iconv_t)-1 ? RL_CONVERT : 0);
#endif
if (!(argv = new_array(char *, maxargs)))
out_of_memory("read_args");
if (mod_name && !protect_args)
argv[argc++] = "rsyncd";
if (request_p)
*request_p = NULL;
while (1) {
if (read_line(f_in, buf, bufsiz, rl_flags) == 0)
break;
if (argc == maxargs-1) {
maxargs += MAX_ARGS;
if (!(argv = realloc_array(argv, char *, maxargs)))
out_of_memory("read_args");
}
if (dot_pos) {
if (request_p && request_len < 1024) {
int len = strlen(buf);
if (request_len)
request_p[0][request_len++] = ' ';
if (!(*request_p = realloc_array(*request_p, char, request_len + len + 1)))
out_of_memory("read_args");
memcpy(*request_p + request_len, buf, len + 1);
request_len += len;
}
if (mod_name)
glob_expand_module(mod_name, buf, &argv, &argc, &maxargs);
else
glob_expand(buf, &argv, &argc, &maxargs);
} else {
if (!(p = strdup(buf)))
out_of_memory("read_args");
argv[argc++] = p;
if (*p == '.' && p[1] == '\0')
dot_pos = argc;
}
}
argv[argc] = NULL;
glob_expand(NULL, NULL, NULL, NULL);
*argc_p = argc;
*argv_p = argv;
}
BOOL io_start_buffering_out(int f_out)
{
if (msgs2stderr && DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] io_start_buffering_out(%d)\n", who_am_i(), f_out);
if (iobuf.out.buf) {
if (iobuf.out_fd == -1)
iobuf.out_fd = f_out;
else
assert(f_out == iobuf.out_fd);
return False;
}
alloc_xbuf(&iobuf.out, ROUND_UP_1024(IO_BUFFER_SIZE * 2));
iobuf.out_fd = f_out;
return True;
}
BOOL io_start_buffering_in(int f_in)
{
if (msgs2stderr && DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] io_start_buffering_in(%d)\n", who_am_i(), f_in);
if (iobuf.in.buf) {
if (iobuf.in_fd == -1)
iobuf.in_fd = f_in;
else
assert(f_in == iobuf.in_fd);
return False;
}
alloc_xbuf(&iobuf.in, ROUND_UP_1024(IO_BUFFER_SIZE));
iobuf.in_fd = f_in;
return True;
}
void io_end_buffering_in(BOOL free_buffers)
{
if (msgs2stderr && DEBUG_GTE(IO, 2)) {
rprintf(FINFO, "[%s] io_end_buffering_in(IOBUF_%s_BUFS)\n",
who_am_i(), free_buffers ? "FREE" : "KEEP");
}
if (free_buffers)
free_xbuf(&iobuf.in);
else
iobuf.in.pos = iobuf.in.len = 0;
iobuf.in_fd = -1;
}
void io_end_buffering_out(BOOL free_buffers)
{
if (msgs2stderr && DEBUG_GTE(IO, 2)) {
rprintf(FINFO, "[%s] io_end_buffering_out(IOBUF_%s_BUFS)\n",
who_am_i(), free_buffers ? "FREE" : "KEEP");
}
io_flush(FULL_FLUSH);
if (free_buffers) {
free_xbuf(&iobuf.out);
free_xbuf(&iobuf.msg);
}
iobuf.out_fd = -1;
}
void maybe_flush_socket(int important)
{
if (flist_eof && iobuf.out.buf && iobuf.out.len > iobuf.out_empty_len
&& (important || time(NULL) - last_io_out >= 5))
io_flush(NORMAL_FLUSH);
}
/* Older rsync versions used to send either a MSG_NOOP (protocol 30) or a
* raw-data-based keep-alive (protocol 29), both of which implied forwarding of
* the message through the sender. Since the new timeout method does not need
* any forwarding, we just send an empty MSG_DATA message, which works with all
* rsync versions. This avoids any message forwarding, and leaves the raw-data
* stream alone (since we can never be quite sure if that stream is in the
* right state for a keep-alive message). */
void maybe_send_keepalive(time_t now, int flags)
{
if (flags & MSK_ACTIVE_RECEIVER)
last_io_in = now; /* Fudge things when we're working hard on the files. */
/* Early in the transfer (before the receiver forks) the receiving side doesn't
* care if it hasn't sent data in a while as long as it is receiving data (in
* fact, a pre-3.1.0 rsync would die if we tried to send it a keep alive during
* this time). So, if we're an early-receiving proc, just return and let the
* incoming data determine if we timeout. */
if (!am_sender && !am_receiver && !am_generator)
return;
if (now - last_io_out >= allowed_lull) {
/* The receiver is special: it only sends keep-alive messages if it is
* actively receiving data. Otherwise, it lets the generator timeout. */
if (am_receiver && now - last_io_in >= io_timeout)
return;
if (!iobuf.msg.len && iobuf.out.len == iobuf.out_empty_len)
send_msg(MSG_DATA, "", 0, 0);
if (!(flags & MSK_ALLOW_FLUSH)) {
/* Let the caller worry about writing out the data. */
} else if (iobuf.msg.len)
perform_io(iobuf.msg.size - iobuf.msg.len + 1, PIO_NEED_MSGROOM);
else if (iobuf.out.len > iobuf.out_empty_len)
io_flush(NORMAL_FLUSH);
}
}
void start_flist_forward(int ndx)
{
write_int(iobuf.out_fd, ndx);
forward_flist_data = 1;
}
void stop_flist_forward(void)
{
forward_flist_data = 0;
}
/* Read a message from a multiplexed source. */
static void read_a_msg(void)
{
char data[BIGPATHBUFLEN];
int tag, val;
size_t msg_bytes;
/* This ensures that perform_io() does not try to do any message reading
* until we've read all of the data for this message. We should also
* try to avoid calling things that will cause data to be written via
* perform_io() prior to this being reset to 1. */
iobuf.in_multiplexed = -1;
tag = raw_read_int();
msg_bytes = tag & 0xFFFFFF;
tag = (tag >> 24) - MPLEX_BASE;
if (DEBUG_GTE(IO, 1) && msgs2stderr)
rprintf(FINFO, "[%s] got msg=%d, len=%ld\n", who_am_i(), (int)tag, (long)msg_bytes);
switch (tag) {
case MSG_DATA:
assert(iobuf.raw_input_ends_before == 0);
/* Though this does not yet read the data, we do mark where in
* the buffer the msg data will end once it is read. It is
* possible that this points off the end of the buffer, in
* which case the gradual reading of the input stream will
* cause this value to wrap around and eventually become real. */
if (msg_bytes)
iobuf.raw_input_ends_before = iobuf.in.pos + msg_bytes;
iobuf.in_multiplexed = 1;
break;
case MSG_STATS:
if (msg_bytes != sizeof stats.total_read || !am_generator)
goto invalid_msg;
raw_read_buf((char*)&stats.total_read, sizeof stats.total_read);
iobuf.in_multiplexed = 1;
break;
case MSG_REDO:
if (msg_bytes != 4 || !am_generator)
goto invalid_msg;
val = raw_read_int();
iobuf.in_multiplexed = 1;
got_flist_entry_status(FES_REDO, val);
break;
case MSG_IO_ERROR:
if (msg_bytes != 4)
goto invalid_msg;
val = raw_read_int();
iobuf.in_multiplexed = 1;
io_error |= val;
if (am_receiver)
send_msg_int(MSG_IO_ERROR, val);
break;
case MSG_IO_TIMEOUT:
if (msg_bytes != 4 || am_server || am_generator)
goto invalid_msg;
val = raw_read_int();
iobuf.in_multiplexed = 1;
if (!io_timeout || io_timeout > val) {
if (INFO_GTE(MISC, 2))
rprintf(FINFO, "Setting --timeout=%d to match server\n", val);
set_io_timeout(val);
}
break;
case MSG_NOOP:
/* Support protocol-30 keep-alive method. */
if (msg_bytes != 0)
goto invalid_msg;
iobuf.in_multiplexed = 1;
if (am_sender)
maybe_send_keepalive(time(NULL), MSK_ALLOW_FLUSH);
break;
case MSG_DELETED:
if (msg_bytes >= sizeof data)
goto overflow;
if (am_generator) {
raw_read_buf(data, msg_bytes);
iobuf.in_multiplexed = 1;
send_msg(MSG_DELETED, data, msg_bytes, 1);
break;
}
#ifdef ICONV_OPTION
if (ic_recv != (iconv_t)-1) {
xbuf outbuf, inbuf;
char ibuf[512];
int add_null = 0;
int flags = ICB_INCLUDE_BAD | ICB_INIT;
INIT_CONST_XBUF(outbuf, data);
INIT_XBUF(inbuf, ibuf, 0, (size_t)-1);
while (msg_bytes) {
size_t len = msg_bytes > sizeof ibuf - inbuf.len ? sizeof ibuf - inbuf.len : msg_bytes;
raw_read_buf(ibuf + inbuf.len, len);
inbuf.pos = 0;
inbuf.len += len;
if (!(msg_bytes -= len) && !ibuf[inbuf.len-1])
inbuf.len--, add_null = 1;
if (iconvbufs(ic_send, &inbuf, &outbuf, flags) < 0) {
if (errno == E2BIG)
goto overflow;
/* Buffer ended with an incomplete char, so move the
* bytes to the start of the buffer and continue. */
memmove(ibuf, ibuf + inbuf.pos, inbuf.len);
}
flags &= ~ICB_INIT;
}
if (add_null) {
if (outbuf.len == outbuf.size)
goto overflow;
outbuf.buf[outbuf.len++] = '\0';
}
msg_bytes = outbuf.len;
} else
#endif
raw_read_buf(data, msg_bytes);
iobuf.in_multiplexed = 1;
/* A directory name was sent with the trailing null */
if (msg_bytes > 0 && !data[msg_bytes-1])
log_delete(data, S_IFDIR);
else {
data[msg_bytes] = '\0';
log_delete(data, S_IFREG);
}
break;
case MSG_SUCCESS:
if (msg_bytes != 4) {
invalid_msg:
rprintf(FERROR, "invalid multi-message %d:%lu [%s%s]\n",
tag, (unsigned long)msg_bytes, who_am_i(),
inc_recurse ? "/inc" : "");
exit_cleanup(RERR_STREAMIO);
}
val = raw_read_int();
iobuf.in_multiplexed = 1;
if (am_generator)
got_flist_entry_status(FES_SUCCESS, val);
else
successful_send(val);
break;
case MSG_NO_SEND:
if (msg_bytes != 4)
goto invalid_msg;
val = raw_read_int();
iobuf.in_multiplexed = 1;
if (am_generator)
got_flist_entry_status(FES_NO_SEND, val);
else
send_msg_int(MSG_NO_SEND, val);
break;
case MSG_ERROR_SOCKET:
case MSG_ERROR_UTF8:
case MSG_CLIENT:
case MSG_LOG:
if (!am_generator)
goto invalid_msg;
if (tag == MSG_ERROR_SOCKET)
msgs2stderr = 1;
/* FALL THROUGH */
case MSG_INFO:
case MSG_ERROR:
case MSG_ERROR_XFER:
case MSG_WARNING:
if (msg_bytes >= sizeof data) {
overflow:
rprintf(FERROR,
"multiplexing overflow %d:%lu [%s%s]\n",
tag, (unsigned long)msg_bytes, who_am_i(),
inc_recurse ? "/inc" : "");
exit_cleanup(RERR_STREAMIO);
}
raw_read_buf(data, msg_bytes);
/* We don't set in_multiplexed value back to 1 before writing this message
* because the write might loop back and read yet another message, over and
* over again, while waiting for room to put the message in the msg buffer. */
rwrite((enum logcode)tag, data, msg_bytes, !am_generator);
iobuf.in_multiplexed = 1;
if (first_message) {
if (list_only && !am_sender && tag == 1 && msg_bytes < sizeof data) {
data[msg_bytes] = '\0';
check_for_d_option_error(data);
}
first_message = 0;
}
break;
case MSG_ERROR_EXIT:
if (msg_bytes == 4)
val = raw_read_int();
else if (msg_bytes == 0)
val = 0;
else
goto invalid_msg;
iobuf.in_multiplexed = 1;
if (DEBUG_GTE(EXIT, 3))
rprintf(FINFO, "[%s] got MSG_ERROR_EXIT with %ld bytes\n", who_am_i(), (long)msg_bytes);
if (msg_bytes == 0) {
if (!am_sender && !am_generator) {
if (DEBUG_GTE(EXIT, 3)) {
rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT (len 0)\n",
who_am_i());
}
send_msg(MSG_ERROR_EXIT, "", 0, 0);
io_flush(FULL_FLUSH);
}
} else if (protocol_version >= 31) {
if (am_generator || am_receiver) {
if (DEBUG_GTE(EXIT, 3)) {
rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT with exit_code %d\n",
who_am_i(), val);
}
send_msg_int(MSG_ERROR_EXIT, val);
} else {
if (DEBUG_GTE(EXIT, 3)) {
rprintf(FINFO, "[%s] sending MSG_ERROR_EXIT (len 0)\n",
who_am_i());
}
send_msg(MSG_ERROR_EXIT, "", 0, 0);
}
}
/* Send a negative linenum so that we don't end up
* with a duplicate exit message. */
_exit_cleanup(val, __FILE__, 0 - __LINE__);
default:
rprintf(FERROR, "unexpected tag %d [%s%s]\n",
tag, who_am_i(), inc_recurse ? "/inc" : "");
exit_cleanup(RERR_STREAMIO);
}
assert(iobuf.in_multiplexed > 0);
}
static void drain_multiplex_messages(void)
{
while (IN_MULTIPLEXED_AND_READY && iobuf.in.len) {
if (iobuf.raw_input_ends_before) {
size_t raw_len = iobuf.raw_input_ends_before - iobuf.in.pos;
iobuf.raw_input_ends_before = 0;
if (raw_len >= iobuf.in.len) {
iobuf.in.len = 0;
break;
}
iobuf.in.len -= raw_len;
if ((iobuf.in.pos += raw_len) >= iobuf.in.size)
iobuf.in.pos -= iobuf.in.size;
}
read_a_msg();
}
}
void wait_for_receiver(void)
{
if (!iobuf.raw_input_ends_before)
read_a_msg();
if (iobuf.raw_input_ends_before) {
int ndx = read_int(iobuf.in_fd);
if (ndx < 0) {
switch (ndx) {
case NDX_FLIST_EOF:
flist_eof = 1;
if (DEBUG_GTE(FLIST, 3))
rprintf(FINFO, "[%s] flist_eof=1\n", who_am_i());
break;
case NDX_DONE:
msgdone_cnt++;
break;
default:
exit_cleanup(RERR_STREAMIO);
}
} else {
struct file_list *flist;
flist_receiving_enabled = False;
if (DEBUG_GTE(FLIST, 2)) {
rprintf(FINFO, "[%s] receiving flist for dir %d\n",
who_am_i(), ndx);
}
flist = recv_file_list(iobuf.in_fd);
flist->parent_ndx = ndx;
#ifdef SUPPORT_HARD_LINKS
if (preserve_hard_links)
match_hard_links(flist);
#endif
flist_receiving_enabled = True;
}
}
}
unsigned short read_shortint(int f)
{
char b[2];
read_buf(f, b, 2);
return (UVAL(b, 1) << 8) + UVAL(b, 0);
}
int32 read_int(int f)
{
char b[4];
int32 num;
read_buf(f, b, 4);
num = IVAL(b, 0);
#if SIZEOF_INT32 > 4
if (num & (int32)0x80000000)
num |= ~(int32)0xffffffff;
#endif
return num;
}
int32 read_varint(int f)
{
union {
char b[5];
int32 x;
} u;
uchar ch;
int extra;
u.x = 0;
ch = read_byte(f);
extra = int_byte_extra[ch / 4];
if (extra) {
uchar bit = ((uchar)1<<(8-extra));
if (extra >= (int)sizeof u.b) {
rprintf(FERROR, "Overflow in read_varint()\n");
exit_cleanup(RERR_STREAMIO);
}
read_buf(f, u.b, extra);
u.b[extra] = ch & (bit-1);
} else
u.b[0] = ch;
#if CAREFUL_ALIGNMENT
u.x = IVAL(u.b,0);
#endif
#if SIZEOF_INT32 > 4
if (u.x & (int32)0x80000000)
u.x |= ~(int32)0xffffffff;
#endif
return u.x;
}
int64 read_varlong(int f, uchar min_bytes)
{
union {
char b[9];
int64 x;
} u;
char b2[8];
int extra;
#if SIZEOF_INT64 < 8
memset(u.b, 0, 8);
#else
u.x = 0;
#endif
read_buf(f, b2, min_bytes);
memcpy(u.b, b2+1, min_bytes-1);
extra = int_byte_extra[CVAL(b2, 0) / 4];
if (extra) {
uchar bit = ((uchar)1<<(8-extra));
if (min_bytes + extra > (int)sizeof u.b) {
rprintf(FERROR, "Overflow in read_varlong()\n");
exit_cleanup(RERR_STREAMIO);
}
read_buf(f, u.b + min_bytes - 1, extra);
u.b[min_bytes + extra - 1] = CVAL(b2, 0) & (bit-1);
#if SIZEOF_INT64 < 8
if (min_bytes + extra > 5 || u.b[4] || CVAL(u.b,3) & 0x80) {
rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
exit_cleanup(RERR_UNSUPPORTED);
}
#endif
} else
u.b[min_bytes + extra - 1] = CVAL(b2, 0);
#if SIZEOF_INT64 < 8
u.x = IVAL(u.b,0);
#elif CAREFUL_ALIGNMENT
u.x = IVAL64(u.b,0);
#endif
return u.x;
}
int64 read_longint(int f)
{
#if SIZEOF_INT64 >= 8
char b[9];
#endif
int32 num = read_int(f);
if (num != (int32)0xffffffff)
return num;
#if SIZEOF_INT64 < 8
rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
exit_cleanup(RERR_UNSUPPORTED);
#else
read_buf(f, b, 8);
return IVAL(b,0) | (((int64)IVAL(b,4))<<32);
#endif
}
void read_buf(int f, char *buf, size_t len)
{
if (f != iobuf.in_fd) {
if (safe_read(f, buf, len) != len)
whine_about_eof(False); /* Doesn't return. */
goto batch_copy;
}
if (!IN_MULTIPLEXED) {
raw_read_buf(buf, len);
total_data_read += len;
if (forward_flist_data)
write_buf(iobuf.out_fd, buf, len);
batch_copy:
if (f == write_batch_monitor_in)
safe_write(batch_fd, buf, len);
return;
}
while (1) {
size_t siz;
while (!iobuf.raw_input_ends_before)
read_a_msg();
siz = MIN(len, iobuf.raw_input_ends_before - iobuf.in.pos);
if (siz >= iobuf.in.size)
siz = iobuf.in.size;
raw_read_buf(buf, siz);
total_data_read += siz;
if (forward_flist_data)
write_buf(iobuf.out_fd, buf, siz);
if (f == write_batch_monitor_in)
safe_write(batch_fd, buf, siz);
if ((len -= siz) == 0)
break;
buf += siz;
}
}
void read_sbuf(int f, char *buf, size_t len)
{
read_buf(f, buf, len);
buf[len] = '\0';
}
uchar read_byte(int f)
{
uchar c;
read_buf(f, (char*)&c, 1);
return c;
}
int read_vstring(int f, char *buf, int bufsize)
{
int len = read_byte(f);
if (len & 0x80)
len = (len & ~0x80) * 0x100 + read_byte(f);
if (len >= bufsize) {
rprintf(FERROR, "over-long vstring received (%d > %d)\n",
len, bufsize - 1);
return -1;
}
if (len)
read_buf(f, buf, len);
buf[len] = '\0';
return len;
}
/* Populate a sum_struct with values from the socket. This is
* called by both the sender and the receiver. */
void read_sum_head(int f, struct sum_struct *sum)
{
int32 max_blength = protocol_version < 30 ? OLD_MAX_BLOCK_SIZE : MAX_BLOCK_SIZE;
sum->count = read_int(f);
if (sum->count < 0) {
rprintf(FERROR, "Invalid checksum count %ld [%s]\n",
(long)sum->count, who_am_i());
exit_cleanup(RERR_PROTOCOL);
}
sum->blength = read_int(f);
if (sum->blength < 0 || sum->blength > max_blength) {
rprintf(FERROR, "Invalid block length %ld [%s]\n",
(long)sum->blength, who_am_i());
exit_cleanup(RERR_PROTOCOL);
}
sum->s2length = protocol_version < 27 ? csum_length : (int)read_int(f);
if (sum->s2length < 0 || sum->s2length > MAX_DIGEST_LEN) {
rprintf(FERROR, "Invalid checksum length %d [%s]\n",
sum->s2length, who_am_i());
exit_cleanup(RERR_PROTOCOL);
}
sum->remainder = read_int(f);
if (sum->remainder < 0 || sum->remainder > sum->blength) {
rprintf(FERROR, "Invalid remainder length %ld [%s]\n",
(long)sum->remainder, who_am_i());
exit_cleanup(RERR_PROTOCOL);
}
}
/* Send the values from a sum_struct over the socket. Set sum to
* NULL if there are no checksums to send. This is called by both
* the generator and the sender. */
void write_sum_head(int f, struct sum_struct *sum)
{
static struct sum_struct null_sum;
if (sum == NULL)
sum = &null_sum;
write_int(f, sum->count);
write_int(f, sum->blength);
if (protocol_version >= 27)
write_int(f, sum->s2length);
write_int(f, sum->remainder);
}
/* Sleep after writing to limit I/O bandwidth usage.
*
* @todo Rather than sleeping after each write, it might be better to
* use some kind of averaging. The current algorithm seems to always
* use a bit less bandwidth than specified, because it doesn't make up
* for slow periods. But arguably this is a feature. In addition, we
* ought to take the time used to write the data into account.
*
* During some phases of big transfers (file FOO is uptodate) this is
* called with a small bytes_written every time. As the kernel has to
* round small waits up to guarantee that we actually wait at least the
* requested number of microseconds, this can become grossly inaccurate.
* We therefore keep track of the bytes we've written over time and only
* sleep when the accumulated delay is at least 1 tenth of a second. */
static void sleep_for_bwlimit(int bytes_written)
{
static struct timeval prior_tv;
static long total_written = 0;
struct timeval tv, start_tv;
long elapsed_usec, sleep_usec;
#define ONE_SEC 1000000L /* # of microseconds in a second */
total_written += bytes_written;
gettimeofday(&start_tv, NULL);
if (prior_tv.tv_sec) {
elapsed_usec = (start_tv.tv_sec - prior_tv.tv_sec) * ONE_SEC
+ (start_tv.tv_usec - prior_tv.tv_usec);
total_written -= (int64)elapsed_usec * bwlimit / (ONE_SEC/1024);
if (total_written < 0)
total_written = 0;
}
sleep_usec = total_written * (ONE_SEC/1024) / bwlimit;
if (sleep_usec < ONE_SEC / 10) {
prior_tv = start_tv;
return;
}
tv.tv_sec = sleep_usec / ONE_SEC;
tv.tv_usec = sleep_usec % ONE_SEC;
select(0, NULL, NULL, NULL, &tv);
gettimeofday(&prior_tv, NULL);
elapsed_usec = (prior_tv.tv_sec - start_tv.tv_sec) * ONE_SEC
+ (prior_tv.tv_usec - start_tv.tv_usec);
total_written = (sleep_usec - elapsed_usec) * bwlimit / (ONE_SEC/1024);
}
void io_flush(int flush_it_all)
{
if (iobuf.out.len > iobuf.out_empty_len) {
if (flush_it_all) /* FULL_FLUSH: flush everything in the output buffers */
perform_io(iobuf.out.size - iobuf.out_empty_len, PIO_NEED_OUTROOM);
else /* NORMAL_FLUSH: flush at least 1 byte */
perform_io(iobuf.out.size - iobuf.out.len + 1, PIO_NEED_OUTROOM);
}
if (iobuf.msg.len)
perform_io(iobuf.msg.size, PIO_NEED_MSGROOM);
}
void write_shortint(int f, unsigned short x)
{
char b[2];
b[0] = (char)x;
b[1] = (char)(x >> 8);
write_buf(f, b, 2);
}
void write_int(int f, int32 x)
{
char b[4];
SIVAL(b, 0, x);
write_buf(f, b, 4);
}
void write_varint(int f, int32 x)
{
char b[5];
uchar bit;
int cnt = 4;
SIVAL(b, 1, x);
while (cnt > 1 && b[cnt] == 0)
cnt--;
bit = ((uchar)1<<(7-cnt+1));
if (CVAL(b, cnt) >= bit) {
cnt++;
*b = ~(bit-1);
} else if (cnt > 1)
*b = b[cnt] | ~(bit*2-1);
else
*b = b[cnt];
write_buf(f, b, cnt);
}
void write_varlong(int f, int64 x, uchar min_bytes)
{
char b[9];
uchar bit;
int cnt = 8;
#if SIZEOF_INT64 >= 8
SIVAL64(b, 1, x);
#else
SIVAL(b, 1, x);
if (x <= 0x7FFFFFFF && x >= 0)
memset(b + 5, 0, 4);
else {
rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
exit_cleanup(RERR_UNSUPPORTED);
}
#endif
while (cnt > min_bytes && b[cnt] == 0)
cnt--;
bit = ((uchar)1<<(7-cnt+min_bytes));
if (CVAL(b, cnt) >= bit) {
cnt++;
*b = ~(bit-1);
} else if (cnt > min_bytes)
*b = b[cnt] | ~(bit*2-1);
else
*b = b[cnt];
write_buf(f, b, cnt);
}
/*
* Note: int64 may actually be a 32-bit type if ./configure couldn't find any
* 64-bit types on this platform.
*/
void write_longint(int f, int64 x)
{
char b[12], * const s = b+4;
SIVAL(s, 0, x);
if (x <= 0x7FFFFFFF && x >= 0) {
write_buf(f, s, 4);
return;
}
#if SIZEOF_INT64 < 8
rprintf(FERROR, "Integer overflow: attempted 64-bit offset\n");
exit_cleanup(RERR_UNSUPPORTED);
#else
memset(b, 0xFF, 4);
SIVAL(s, 4, x >> 32);
write_buf(f, b, 12);
#endif
}
void write_bigbuf(int f, const char *buf, size_t len)
{
size_t half_max = (iobuf.out.size - iobuf.out_empty_len) / 2;
while (len > half_max + 1024) {
write_buf(f, buf, half_max);
buf += half_max;
len -= half_max;
}
write_buf(f, buf, len);
}
void write_buf(int f, const char *buf, size_t len)
{
size_t pos, siz;
if (f != iobuf.out_fd) {
safe_write(f, buf, len);
goto batch_copy;
}
if (iobuf.out.len + len > iobuf.out.size)
perform_io(len, PIO_NEED_OUTROOM);
pos = iobuf.out.pos + iobuf.out.len; /* Must be set after any flushing. */
if (pos >= iobuf.out.size)
pos -= iobuf.out.size;
/* Handle a split copy if we wrap around the end of the circular buffer. */
if (pos >= iobuf.out.pos && (siz = iobuf.out.size - pos) < len) {
memcpy(iobuf.out.buf + pos, buf, siz);
memcpy(iobuf.out.buf, buf + siz, len - siz);
} else
memcpy(iobuf.out.buf + pos, buf, len);
iobuf.out.len += len;
total_data_written += len;
batch_copy:
if (f == write_batch_monitor_out)
safe_write(batch_fd, buf, len);
}
/* Write a string to the connection */
void write_sbuf(int f, const char *buf)
{
write_buf(f, buf, strlen(buf));
}
void write_byte(int f, uchar c)
{
write_buf(f, (char *)&c, 1);
}
void write_vstring(int f, const char *str, int len)
{
uchar lenbuf[3], *lb = lenbuf;
if (len > 0x7F) {
if (len > 0x7FFF) {
rprintf(FERROR,
"attempting to send over-long vstring (%d > %d)\n",
len, 0x7FFF);
exit_cleanup(RERR_PROTOCOL);
}
*lb++ = len / 0x100 + 0x80;
}
*lb = len;
write_buf(f, (char*)lenbuf, lb - lenbuf + 1);
if (len)
write_buf(f, str, len);
}
/* Send a file-list index using a byte-reduction method. */
void write_ndx(int f, int32 ndx)
{
static int32 prev_positive = -1, prev_negative = 1;
int32 diff, cnt = 0;
char b[6];
if (protocol_version < 30 || read_batch) {
write_int(f, ndx);
return;
}
/* Send NDX_DONE as a single-byte 0 with no side effects. Send
* negative nums as a positive after sending a leading 0xFF. */
if (ndx >= 0) {
diff = ndx - prev_positive;
prev_positive = ndx;
} else if (ndx == NDX_DONE) {
*b = 0;
write_buf(f, b, 1);
return;
} else {
b[cnt++] = (char)0xFF;
ndx = -ndx;
diff = ndx - prev_negative;
prev_negative = ndx;
}
/* A diff of 1 - 253 is sent as a one-byte diff; a diff of 254 - 32767
* or 0 is sent as a 0xFE + a two-byte diff; otherwise we send 0xFE
* & all 4 bytes of the (non-negative) num with the high-bit set. */
if (diff < 0xFE && diff > 0)
b[cnt++] = (char)diff;
else if (diff < 0 || diff > 0x7FFF) {
b[cnt++] = (char)0xFE;
b[cnt++] = (char)((ndx >> 24) | 0x80);
b[cnt++] = (char)ndx;
b[cnt++] = (char)(ndx >> 8);
b[cnt++] = (char)(ndx >> 16);
} else {
b[cnt++] = (char)0xFE;
b[cnt++] = (char)(diff >> 8);
b[cnt++] = (char)diff;
}
write_buf(f, b, cnt);
}
/* Receive a file-list index using a byte-reduction method. */
int32 read_ndx(int f)
{
static int32 prev_positive = -1, prev_negative = 1;
int32 *prev_ptr, num;
char b[4];
if (protocol_version < 30)
return read_int(f);
read_buf(f, b, 1);
if (CVAL(b, 0) == 0xFF) {
read_buf(f, b, 1);
prev_ptr = &prev_negative;
} else if (CVAL(b, 0) == 0)
return NDX_DONE;
else
prev_ptr = &prev_positive;
if (CVAL(b, 0) == 0xFE) {
read_buf(f, b, 2);
if (CVAL(b, 0) & 0x80) {
b[3] = CVAL(b, 0) & ~0x80;
b[0] = b[1];
read_buf(f, b+1, 2);
num = IVAL(b, 0);
} else
num = (UVAL(b,0)<<8) + UVAL(b,1) + *prev_ptr;
} else
num = UVAL(b, 0) + *prev_ptr;
*prev_ptr = num;
if (prev_ptr == &prev_negative)
num = -num;
return num;
}
/* Read a line of up to bufsiz-1 characters into buf. Strips
* the (required) trailing newline and all carriage returns.
* Returns 1 for success; 0 for I/O error or truncation. */
int read_line_old(int fd, char *buf, size_t bufsiz, int eof_ok)
{
assert(fd != iobuf.in_fd);
bufsiz--; /* leave room for the null */
while (bufsiz > 0) {
if (safe_read(fd, buf, 1) == 0) {
if (eof_ok)
break;
return 0;
}
if (*buf == '\0')
return 0;
if (*buf == '\n')
break;
if (*buf != '\r') {
buf++;
bufsiz--;
}
}
*buf = '\0';
return bufsiz > 0;
}
void io_printf(int fd, const char *format, ...)
{
va_list ap;
char buf[BIGPATHBUFLEN];
int len;
va_start(ap, format);
len = vsnprintf(buf, sizeof buf, format, ap);
va_end(ap);
if (len < 0)
exit_cleanup(RERR_PROTOCOL);
if (len > (int)sizeof buf) {
rprintf(FERROR, "io_printf() was too long for the buffer.\n");
exit_cleanup(RERR_PROTOCOL);
}
write_sbuf(fd, buf);
}
/* Setup for multiplexing a MSG_* stream with the data stream. */
void io_start_multiplex_out(int fd)
{
io_flush(FULL_FLUSH);
if (msgs2stderr && DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] io_start_multiplex_out(%d)\n", who_am_i(), fd);
if (!iobuf.msg.buf)
alloc_xbuf(&iobuf.msg, ROUND_UP_1024(IO_BUFFER_SIZE));
iobuf.out_empty_len = 4; /* See also OUT_MULTIPLEXED */
io_start_buffering_out(fd);
got_kill_signal = 0;
iobuf.raw_data_header_pos = iobuf.out.pos + iobuf.out.len;
iobuf.out.len += 4;
}
/* Setup for multiplexing a MSG_* stream with the data stream. */
void io_start_multiplex_in(int fd)
{
if (msgs2stderr && DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] io_start_multiplex_in(%d)\n", who_am_i(), fd);
iobuf.in_multiplexed = 1; /* See also IN_MULTIPLEXED */
io_start_buffering_in(fd);
}
int io_end_multiplex_in(int mode)
{
int ret = iobuf.in_multiplexed ? iobuf.in_fd : -1;
if (msgs2stderr && DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] io_end_multiplex_in(mode=%d)\n", who_am_i(), mode);
iobuf.in_multiplexed = 0;
if (mode == MPLX_SWITCHING)
iobuf.raw_input_ends_before = 0;
else
assert(iobuf.raw_input_ends_before == 0);
if (mode != MPLX_TO_BUFFERED)
io_end_buffering_in(mode);
return ret;
}
int io_end_multiplex_out(int mode)
{
int ret = iobuf.out_empty_len ? iobuf.out_fd : -1;
if (msgs2stderr && DEBUG_GTE(IO, 2))
rprintf(FINFO, "[%s] io_end_multiplex_out(mode=%d)\n", who_am_i(), mode);
if (mode != MPLX_TO_BUFFERED)
io_end_buffering_out(mode);
else
io_flush(FULL_FLUSH);
iobuf.out.len = 0;
iobuf.out_empty_len = 0;
if (got_kill_signal > 0) /* Just in case... */
handle_kill_signal(False);
got_kill_signal = -1;
return ret;
}
void start_write_batch(int fd)
{
/* Some communication has already taken place, but we don't
* enable batch writing until here so that we can write a
* canonical record of the communication even though the
* actual communication so far depends on whether a daemon
* is involved. */
write_int(batch_fd, protocol_version);
if (protocol_version >= 30)
write_byte(batch_fd, compat_flags);
write_int(batch_fd, checksum_seed);
if (am_sender)
write_batch_monitor_out = fd;
else
write_batch_monitor_in = fd;
}
void stop_write_batch(void)
{
write_batch_monitor_out = -1;
write_batch_monitor_in = -1;
}