mirror of
http://galexander.org/git/simplesshd.git
synced 2025-01-19 11:30:55 +00:00
168 lines
4.8 KiB
C
168 lines
4.8 KiB
C
|
#include <tommath.h>
|
||
|
#ifdef BN_MP_KARATSUBA_MUL_C
|
||
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||
|
*
|
||
|
* LibTomMath is a library that provides multiple-precision
|
||
|
* integer arithmetic as well as number theoretic functionality.
|
||
|
*
|
||
|
* The library was designed directly after the MPI library by
|
||
|
* Michael Fromberger but has been written from scratch with
|
||
|
* additional optimizations in place.
|
||
|
*
|
||
|
* The library is free for all purposes without any express
|
||
|
* guarantee it works.
|
||
|
*
|
||
|
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
|
||
|
*/
|
||
|
|
||
|
/* c = |a| * |b| using Karatsuba Multiplication using
|
||
|
* three half size multiplications
|
||
|
*
|
||
|
* Let B represent the radix [e.g. 2**DIGIT_BIT] and
|
||
|
* let n represent half of the number of digits in
|
||
|
* the min(a,b)
|
||
|
*
|
||
|
* a = a1 * B**n + a0
|
||
|
* b = b1 * B**n + b0
|
||
|
*
|
||
|
* Then, a * b =>
|
||
|
a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
|
||
|
*
|
||
|
* Note that a1b1 and a0b0 are used twice and only need to be
|
||
|
* computed once. So in total three half size (half # of
|
||
|
* digit) multiplications are performed, a0b0, a1b1 and
|
||
|
* (a1+b1)(a0+b0)
|
||
|
*
|
||
|
* Note that a multiplication of half the digits requires
|
||
|
* 1/4th the number of single precision multiplications so in
|
||
|
* total after one call 25% of the single precision multiplications
|
||
|
* are saved. Note also that the call to mp_mul can end up back
|
||
|
* in this function if the a0, a1, b0, or b1 are above the threshold.
|
||
|
* This is known as divide-and-conquer and leads to the famous
|
||
|
* O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
|
||
|
* the standard O(N**2) that the baseline/comba methods use.
|
||
|
* Generally though the overhead of this method doesn't pay off
|
||
|
* until a certain size (N ~ 80) is reached.
|
||
|
*/
|
||
|
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
|
||
|
{
|
||
|
mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
|
||
|
int B, err;
|
||
|
|
||
|
/* default the return code to an error */
|
||
|
err = MP_MEM;
|
||
|
|
||
|
/* min # of digits */
|
||
|
B = MIN (a->used, b->used);
|
||
|
|
||
|
/* now divide in two */
|
||
|
B = B >> 1;
|
||
|
|
||
|
/* init copy all the temps */
|
||
|
if (mp_init_size (&x0, B) != MP_OKAY)
|
||
|
goto ERR;
|
||
|
if (mp_init_size (&x1, a->used - B) != MP_OKAY)
|
||
|
goto X0;
|
||
|
if (mp_init_size (&y0, B) != MP_OKAY)
|
||
|
goto X1;
|
||
|
if (mp_init_size (&y1, b->used - B) != MP_OKAY)
|
||
|
goto Y0;
|
||
|
|
||
|
/* init temps */
|
||
|
if (mp_init_size (&t1, B * 2) != MP_OKAY)
|
||
|
goto Y1;
|
||
|
if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
|
||
|
goto T1;
|
||
|
if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
|
||
|
goto X0Y0;
|
||
|
|
||
|
/* now shift the digits */
|
||
|
x0.used = y0.used = B;
|
||
|
x1.used = a->used - B;
|
||
|
y1.used = b->used - B;
|
||
|
|
||
|
{
|
||
|
register int x;
|
||
|
register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
|
||
|
|
||
|
/* we copy the digits directly instead of using higher level functions
|
||
|
* since we also need to shift the digits
|
||
|
*/
|
||
|
tmpa = a->dp;
|
||
|
tmpb = b->dp;
|
||
|
|
||
|
tmpx = x0.dp;
|
||
|
tmpy = y0.dp;
|
||
|
for (x = 0; x < B; x++) {
|
||
|
*tmpx++ = *tmpa++;
|
||
|
*tmpy++ = *tmpb++;
|
||
|
}
|
||
|
|
||
|
tmpx = x1.dp;
|
||
|
for (x = B; x < a->used; x++) {
|
||
|
*tmpx++ = *tmpa++;
|
||
|
}
|
||
|
|
||
|
tmpy = y1.dp;
|
||
|
for (x = B; x < b->used; x++) {
|
||
|
*tmpy++ = *tmpb++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* only need to clamp the lower words since by definition the
|
||
|
* upper words x1/y1 must have a known number of digits
|
||
|
*/
|
||
|
mp_clamp (&x0);
|
||
|
mp_clamp (&y0);
|
||
|
|
||
|
/* now calc the products x0y0 and x1y1 */
|
||
|
/* after this x0 is no longer required, free temp [x0==t2]! */
|
||
|
if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
|
||
|
goto X1Y1; /* x0y0 = x0*y0 */
|
||
|
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
|
||
|
goto X1Y1; /* x1y1 = x1*y1 */
|
||
|
|
||
|
/* now calc x1+x0 and y1+y0 */
|
||
|
if (s_mp_add (&x1, &x0, &t1) != MP_OKAY)
|
||
|
goto X1Y1; /* t1 = x1 - x0 */
|
||
|
if (s_mp_add (&y1, &y0, &x0) != MP_OKAY)
|
||
|
goto X1Y1; /* t2 = y1 - y0 */
|
||
|
if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
|
||
|
goto X1Y1; /* t1 = (x1 + x0) * (y1 + y0) */
|
||
|
|
||
|
/* add x0y0 */
|
||
|
if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
|
||
|
goto X1Y1; /* t2 = x0y0 + x1y1 */
|
||
|
if (s_mp_sub (&t1, &x0, &t1) != MP_OKAY)
|
||
|
goto X1Y1; /* t1 = (x1+x0)*(y1+y0) - (x1y1 + x0y0) */
|
||
|
|
||
|
/* shift by B */
|
||
|
if (mp_lshd (&t1, B) != MP_OKAY)
|
||
|
goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
|
||
|
if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
|
||
|
goto X1Y1; /* x1y1 = x1y1 << 2*B */
|
||
|
|
||
|
if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
|
||
|
goto X1Y1; /* t1 = x0y0 + t1 */
|
||
|
if (mp_add (&t1, &x1y1, c) != MP_OKAY)
|
||
|
goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
|
||
|
|
||
|
/* Algorithm succeeded set the return code to MP_OKAY */
|
||
|
err = MP_OKAY;
|
||
|
|
||
|
X1Y1:mp_clear (&x1y1);
|
||
|
X0Y0:mp_clear (&x0y0);
|
||
|
T1:mp_clear (&t1);
|
||
|
Y1:mp_clear (&y1);
|
||
|
Y0:mp_clear (&y0);
|
||
|
X1:mp_clear (&x1);
|
||
|
X0:mp_clear (&x0);
|
||
|
ERR:
|
||
|
return err;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* $Source: /cvs/libtom/libtommath/bn_mp_karatsuba_mul.c,v $ */
|
||
|
/* $Revision: 1.5 $ */
|
||
|
/* $Date: 2006/03/31 14:18:44 $ */
|