mirror of
http://galexander.org/git/simplesshd.git
synced 2025-01-16 01:50:54 +00:00
171 lines
4.7 KiB
C
171 lines
4.7 KiB
C
|
#include <tommath.h>
|
||
|
#ifdef BN_MP_PRIME_NEXT_PRIME_C
|
||
|
/* LibTomMath, multiple-precision integer library -- Tom St Denis
|
||
|
*
|
||
|
* LibTomMath is a library that provides multiple-precision
|
||
|
* integer arithmetic as well as number theoretic functionality.
|
||
|
*
|
||
|
* The library was designed directly after the MPI library by
|
||
|
* Michael Fromberger but has been written from scratch with
|
||
|
* additional optimizations in place.
|
||
|
*
|
||
|
* The library is free for all purposes without any express
|
||
|
* guarantee it works.
|
||
|
*
|
||
|
* Tom St Denis, tomstdenis@gmail.com, http://math.libtomcrypt.com
|
||
|
*/
|
||
|
|
||
|
/* finds the next prime after the number "a" using "t" trials
|
||
|
* of Miller-Rabin.
|
||
|
*
|
||
|
* bbs_style = 1 means the prime must be congruent to 3 mod 4
|
||
|
*/
|
||
|
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
|
||
|
{
|
||
|
int err, res, x, y;
|
||
|
mp_digit res_tab[PRIME_SIZE], step, kstep;
|
||
|
mp_int b;
|
||
|
|
||
|
/* ensure t is valid */
|
||
|
if (t <= 0 || t > PRIME_SIZE) {
|
||
|
return MP_VAL;
|
||
|
}
|
||
|
|
||
|
/* force positive */
|
||
|
a->sign = MP_ZPOS;
|
||
|
|
||
|
/* simple algo if a is less than the largest prime in the table */
|
||
|
if (mp_cmp_d(a, ltm_prime_tab[PRIME_SIZE-1]) == MP_LT) {
|
||
|
/* find which prime it is bigger than */
|
||
|
for (x = PRIME_SIZE - 2; x >= 0; x--) {
|
||
|
if (mp_cmp_d(a, ltm_prime_tab[x]) != MP_LT) {
|
||
|
if (bbs_style == 1) {
|
||
|
/* ok we found a prime smaller or
|
||
|
* equal [so the next is larger]
|
||
|
*
|
||
|
* however, the prime must be
|
||
|
* congruent to 3 mod 4
|
||
|
*/
|
||
|
if ((ltm_prime_tab[x + 1] & 3) != 3) {
|
||
|
/* scan upwards for a prime congruent to 3 mod 4 */
|
||
|
for (y = x + 1; y < PRIME_SIZE; y++) {
|
||
|
if ((ltm_prime_tab[y] & 3) == 3) {
|
||
|
mp_set(a, ltm_prime_tab[y]);
|
||
|
return MP_OKAY;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
mp_set(a, ltm_prime_tab[x + 1]);
|
||
|
return MP_OKAY;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* at this point a maybe 1 */
|
||
|
if (mp_cmp_d(a, 1) == MP_EQ) {
|
||
|
mp_set(a, 2);
|
||
|
return MP_OKAY;
|
||
|
}
|
||
|
/* fall through to the sieve */
|
||
|
}
|
||
|
|
||
|
/* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
|
||
|
if (bbs_style == 1) {
|
||
|
kstep = 4;
|
||
|
} else {
|
||
|
kstep = 2;
|
||
|
}
|
||
|
|
||
|
/* at this point we will use a combination of a sieve and Miller-Rabin */
|
||
|
|
||
|
if (bbs_style == 1) {
|
||
|
/* if a mod 4 != 3 subtract the correct value to make it so */
|
||
|
if ((a->dp[0] & 3) != 3) {
|
||
|
if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
|
||
|
}
|
||
|
} else {
|
||
|
if (mp_iseven(a) == 1) {
|
||
|
/* force odd */
|
||
|
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
|
||
|
return err;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* generate the restable */
|
||
|
for (x = 1; x < PRIME_SIZE; x++) {
|
||
|
if ((err = mp_mod_d(a, ltm_prime_tab[x], res_tab + x)) != MP_OKAY) {
|
||
|
return err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* init temp used for Miller-Rabin Testing */
|
||
|
if ((err = mp_init(&b)) != MP_OKAY) {
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
for (;;) {
|
||
|
/* skip to the next non-trivially divisible candidate */
|
||
|
step = 0;
|
||
|
do {
|
||
|
/* y == 1 if any residue was zero [e.g. cannot be prime] */
|
||
|
y = 0;
|
||
|
|
||
|
/* increase step to next candidate */
|
||
|
step += kstep;
|
||
|
|
||
|
/* compute the new residue without using division */
|
||
|
for (x = 1; x < PRIME_SIZE; x++) {
|
||
|
/* add the step to each residue */
|
||
|
res_tab[x] += kstep;
|
||
|
|
||
|
/* subtract the modulus [instead of using division] */
|
||
|
if (res_tab[x] >= ltm_prime_tab[x]) {
|
||
|
res_tab[x] -= ltm_prime_tab[x];
|
||
|
}
|
||
|
|
||
|
/* set flag if zero */
|
||
|
if (res_tab[x] == 0) {
|
||
|
y = 1;
|
||
|
}
|
||
|
}
|
||
|
} while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
|
||
|
|
||
|
/* add the step */
|
||
|
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
|
||
|
goto LBL_ERR;
|
||
|
}
|
||
|
|
||
|
/* if didn't pass sieve and step == MAX then skip test */
|
||
|
if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* is this prime? */
|
||
|
for (x = 0; x < t; x++) {
|
||
|
mp_set(&b, ltm_prime_tab[x]);
|
||
|
if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
|
||
|
goto LBL_ERR;
|
||
|
}
|
||
|
if (res == MP_NO) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (res == MP_YES) {
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
err = MP_OKAY;
|
||
|
LBL_ERR:
|
||
|
mp_clear(&b);
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
/* $Source: /cvs/libtom/libtommath/bn_mp_prime_next_prime.c,v $ */
|
||
|
/* $Revision: 1.3 $ */
|
||
|
/* $Date: 2006/03/31 14:18:44 $ */
|