first commit

This commit is contained in:
Andy 2014-09-11 14:24:43 +02:00
commit fe354e2fe5
2 changed files with 186 additions and 0 deletions

1
README.md Normal file
View File

@ -0,0 +1 @@
RSA Key Generation, Encryption and Decryption example in python

185
rsatest.py Executable file
View File

@ -0,0 +1,185 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# -------------------------------------
# RSA Key Generation, Encryption and Decryption example
# Copyright (C) 2014 Andrey Arapov
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# -------------------------------------
#
#
# Notes:
# - Based on the https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Key_generation
# - The parameters used here are artificially small
# - I've tried to apply KISS principle here
#
#
import random
from fractions import gcd
class bcolors:
RED = '\033[91m'
DRED = '\033[31m'
GREEN = '\033[92m'
YELLOW = '\033[93m'
BLUE = '\033[94m'
PURPLE = '\033[95m'
CYAN = '\033[96m'
ENDC = '\033[0m'
# -----------------------------------------------------------------------------
# Generating the Public/Private keypair
# -----------------------------------------------------------------------------
# Primality test
# https://en.wikipedia.org/wiki/Primality_test#Python_implementation
def is_prime(num):
if num <= 3:
if num <= 1:
return False
return True
if not num % 2 or not num % 3:
return False
for i in range(5, int(num ** 0.5) + 1, 6):
if not num % i or not num % (i + 2):
return False
return True
# 1. Choose two distinct prime numbers p and q.
print "1. looking for two distinct prime numbers p and q in artificially small range..."
i = 0
while i < 2:
rand = random.randint(100, 999)
if is_prime(rand):
if i == 1:
q=rand
break
p=rand
i += 1
print "p =", bcolors.DRED, p, bcolors.ENDC, "\tprime?", is_prime(p)
print "q =", bcolors.DRED, q, bcolors.ENDC, "\tprime?", is_prime(q)
print
# 2. Compute n = pq.
print "2. computing n = pq ..."
n = p * q
print "n = p * q =", bcolors.DRED, p, bcolors.ENDC, "*", bcolors.DRED, q, bcolors.ENDC, "=", bcolors.BLUE, n, bcolors.ENDC
print
# 3. Compute φ(n) = φ(p)φ(q) = (p 1)(q 1) = n - (p + q - 1), where φ is Euler's totient function.
print "3. computing φ(n) = φ(p)φ(q) = (p 1)(q 1) = n - (p + q -1), where φ is Euler's totient function ..."
f_n = n - (p + q - 1)
print "φ(n) =", bcolors.DRED, f_n, bcolors.ENDC
print
# 4. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and φ(n) are coprime.
print "4. looking for an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and φ(n) are coprime ..."
e_gcd = 2
# TOFIX: add smth like --> while (e_gcd != 1) and (e > 3): as e should be > than 3
while e_gcd != 1:
e = random.randint(1, f_n)
e_gcd = gcd(e, f_n)
print "e =", bcolors.CYAN, e, bcolors.ENDC
print
# 5. Determine d as d ≡ e^1 (mod φ(n)); i.e., d is the multiplicative inverse of e (modulo φ(n)).
# http://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Extended_Euclidean_algorithm#Modular_inverse
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
gcd, x, y = egcd(a, m)
if gcd != 1:
return None # modular inverse does not exist
else:
return x % m
print "5. Determining d as d ≡ e^1 (mod φ(n)); i.e., d is the multiplicative inverse of e (modulo φ(n)) ..."
d = modinv(e, f_n)
print "d =", bcolors.RED, d, bcolors.ENDC
print
print "Public key is modulus n =", bcolors.BLUE, n, bcolors.ENDC, "and the public (or encryption) exponent e =", \
bcolors.CYAN, e, bcolors.ENDC
print
print "Private key is modulus n =", bcolors.BLUE, n, bcolors.ENDC, "and the private (or decryption) exponent d =", \
bcolors.RED, d, bcolors.ENDC, "and it must be kept secret"
print bcolors.DRED+"p"+bcolors.ENDC+","+bcolors.DRED+" q"+bcolors.ENDC+", and"+bcolors.DRED+" φ(n) "+bcolors.ENDC+ \
"must also be kept secret because they can be used to calculate "+bcolors.RED+"d"+bcolors.ENDC+"."
print
# -----------------------------------------------------------------------------
# Encrypting: c = m^e (mod n)
# -----------------------------------------------------------------------------
print "To encrypt message m: c = m^e (mod n)"
#mstr = "hi"
cstr = ""
mstr = raw_input("Enter your message m: ")
for m in [elem.encode("hex") for elem in mstr]:
print ":: encrypting ", bcolors.YELLOW, '"'+chr(int(m, 16))+'"', \
int(m, 16), bcolors.ENDC, " >>>", bcolors.YELLOW, int(m, 16), bcolors.ENDC, "^", bcolors.CYAN, e, bcolors.ENDC, \
"( mod", bcolors.BLUE, n, bcolors.ENDC, ")", ">>> ",
c = ( int(m, 16) ** e ) % n
print bcolors.PURPLE, c, bcolors.ENDC
cstr += str(c)
cstr += ","
cstr = cstr[:-1]
print "Your encrypted message m is now a ciphertext c =", bcolors.YELLOW, cstr, bcolors.ENDC
print
# -----------------------------------------------------------------------------
# Decrypting: m = c^d (mod n)
# -----------------------------------------------------------------------------
print "To decrypt ciphertext c: m = c^d (mod n)"
mstr = ""
for c in cstr.split(","):
print ":: decrypting ", bcolors.PURPLE, c, bcolors.ENDC, " >>>", \
bcolors.PURPLE, int(c), "^", bcolors.ENDC, bcolors.RED, \
d, bcolors.ENDC, "( mod", bcolors.BLUE, n, bcolors.ENDC, ")", ">>>",
m = ( int(c) ** d ) % n
print bcolors.YELLOW, m, '"'+chr(m)+'"', bcolors.ENDC
mstr += chr(m)
print "Decrypted ciphertext is now m =", bcolors.YELLOW, mstr, bcolors.ENDC
print