first commit
This commit is contained in:
commit
fe354e2fe5
1
README.md
Normal file
1
README.md
Normal file
@ -0,0 +1 @@
|
||||
RSA Key Generation, Encryption and Decryption example in python
|
185
rsatest.py
Executable file
185
rsatest.py
Executable file
@ -0,0 +1,185 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# -------------------------------------
|
||||
# RSA Key Generation, Encryption and Decryption example
|
||||
# Copyright (C) 2014 Andrey Arapov
|
||||
#
|
||||
# This program is free software: you can redistribute it and/or modify
|
||||
# it under the terms of the GNU General Public License as published by
|
||||
# the Free Software Foundation, either version 3 of the License, or
|
||||
# (at your option) any later version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful,
|
||||
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
# GNU General Public License for more details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License
|
||||
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
# -------------------------------------
|
||||
#
|
||||
#
|
||||
# Notes:
|
||||
# - Based on the https://en.wikipedia.org/wiki/RSA_%28cryptosystem%29#Key_generation
|
||||
# - The parameters used here are artificially small
|
||||
# - I've tried to apply KISS principle here
|
||||
#
|
||||
#
|
||||
|
||||
import random
|
||||
from fractions import gcd
|
||||
|
||||
class bcolors:
|
||||
RED = '\033[91m'
|
||||
DRED = '\033[31m'
|
||||
GREEN = '\033[92m'
|
||||
YELLOW = '\033[93m'
|
||||
BLUE = '\033[94m'
|
||||
PURPLE = '\033[95m'
|
||||
CYAN = '\033[96m'
|
||||
ENDC = '\033[0m'
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Generating the Public/Private keypair
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
|
||||
# Primality test
|
||||
# https://en.wikipedia.org/wiki/Primality_test#Python_implementation
|
||||
|
||||
def is_prime(num):
|
||||
if num <= 3:
|
||||
if num <= 1:
|
||||
return False
|
||||
return True
|
||||
if not num % 2 or not num % 3:
|
||||
return False
|
||||
for i in range(5, int(num ** 0.5) + 1, 6):
|
||||
if not num % i or not num % (i + 2):
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
# 1. Choose two distinct prime numbers p and q.
|
||||
|
||||
print "1. looking for two distinct prime numbers p and q in artificially small range..."
|
||||
i = 0
|
||||
while i < 2:
|
||||
rand = random.randint(100, 999)
|
||||
if is_prime(rand):
|
||||
if i == 1:
|
||||
q=rand
|
||||
break
|
||||
p=rand
|
||||
i += 1
|
||||
|
||||
print "p =", bcolors.DRED, p, bcolors.ENDC, "\tprime?", is_prime(p)
|
||||
print "q =", bcolors.DRED, q, bcolors.ENDC, "\tprime?", is_prime(q)
|
||||
print
|
||||
|
||||
|
||||
# 2. Compute n = pq.
|
||||
|
||||
print "2. computing n = pq ..."
|
||||
n = p * q
|
||||
print "n = p * q =", bcolors.DRED, p, bcolors.ENDC, "*", bcolors.DRED, q, bcolors.ENDC, "=", bcolors.BLUE, n, bcolors.ENDC
|
||||
print
|
||||
|
||||
|
||||
# 3. Compute φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q - 1), where φ is Euler's totient function.
|
||||
|
||||
print "3. computing φ(n) = φ(p)φ(q) = (p − 1)(q − 1) = n - (p + q -1), where φ is Euler's totient function ..."
|
||||
f_n = n - (p + q - 1)
|
||||
print "φ(n) =", bcolors.DRED, f_n, bcolors.ENDC
|
||||
print
|
||||
|
||||
|
||||
# 4. Choose an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and φ(n) are coprime.
|
||||
|
||||
print "4. looking for an integer e such that 1 < e < φ(n) and gcd(e, φ(n)) = 1; i.e., e and φ(n) are coprime ..."
|
||||
e_gcd = 2
|
||||
# TOFIX: add smth like --> while (e_gcd != 1) and (e > 3): as e should be > than 3
|
||||
while e_gcd != 1:
|
||||
e = random.randint(1, f_n)
|
||||
e_gcd = gcd(e, f_n)
|
||||
|
||||
print "e =", bcolors.CYAN, e, bcolors.ENDC
|
||||
print
|
||||
|
||||
|
||||
# 5. Determine d as d ≡ e^−1 (mod φ(n)); i.e., d is the multiplicative inverse of e (modulo φ(n)).
|
||||
# http://en.wikibooks.org/wiki/Algorithm_Implementation/Mathematics/Extended_Euclidean_algorithm#Modular_inverse
|
||||
|
||||
def egcd(a, b):
|
||||
if a == 0:
|
||||
return (b, 0, 1)
|
||||
else:
|
||||
g, y, x = egcd(b % a, a)
|
||||
return (g, x - (b // a) * y, y)
|
||||
|
||||
def modinv(a, m):
|
||||
gcd, x, y = egcd(a, m)
|
||||
if gcd != 1:
|
||||
return None # modular inverse does not exist
|
||||
else:
|
||||
return x % m
|
||||
|
||||
print "5. Determining d as d ≡ e^−1 (mod φ(n)); i.e., d is the multiplicative inverse of e (modulo φ(n)) ..."
|
||||
d = modinv(e, f_n)
|
||||
print "d =", bcolors.RED, d, bcolors.ENDC
|
||||
print
|
||||
|
||||
print "Public key is modulus n =", bcolors.BLUE, n, bcolors.ENDC, "and the public (or encryption) exponent e =", \
|
||||
bcolors.CYAN, e, bcolors.ENDC
|
||||
print
|
||||
print "Private key is modulus n =", bcolors.BLUE, n, bcolors.ENDC, "and the private (or decryption) exponent d =", \
|
||||
bcolors.RED, d, bcolors.ENDC, "and it must be kept secret"
|
||||
print bcolors.DRED+"p"+bcolors.ENDC+","+bcolors.DRED+" q"+bcolors.ENDC+", and"+bcolors.DRED+" φ(n) "+bcolors.ENDC+ \
|
||||
"must also be kept secret because they can be used to calculate "+bcolors.RED+"d"+bcolors.ENDC+"."
|
||||
print
|
||||
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Encrypting: c = m^e (mod n)
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
print "To encrypt message m: c = m^e (mod n)"
|
||||
|
||||
#mstr = "hi"
|
||||
cstr = ""
|
||||
mstr = raw_input("Enter your message m: ")
|
||||
for m in [elem.encode("hex") for elem in mstr]:
|
||||
print ":: encrypting ", bcolors.YELLOW, '"'+chr(int(m, 16))+'"', \
|
||||
int(m, 16), bcolors.ENDC, " >>>", bcolors.YELLOW, int(m, 16), bcolors.ENDC, "^", bcolors.CYAN, e, bcolors.ENDC, \
|
||||
"( mod", bcolors.BLUE, n, bcolors.ENDC, ")", ">>> ",
|
||||
c = ( int(m, 16) ** e ) % n
|
||||
print bcolors.PURPLE, c, bcolors.ENDC
|
||||
cstr += str(c)
|
||||
cstr += ","
|
||||
|
||||
cstr = cstr[:-1]
|
||||
print "Your encrypted message m is now a ciphertext c =", bcolors.YELLOW, cstr, bcolors.ENDC
|
||||
print
|
||||
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Decrypting: m = c^d (mod n)
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
print "To decrypt ciphertext c: m = c^d (mod n)"
|
||||
mstr = ""
|
||||
for c in cstr.split(","):
|
||||
print ":: decrypting ", bcolors.PURPLE, c, bcolors.ENDC, " >>>", \
|
||||
bcolors.PURPLE, int(c), "^", bcolors.ENDC, bcolors.RED, \
|
||||
d, bcolors.ENDC, "( mod", bcolors.BLUE, n, bcolors.ENDC, ")", ">>>",
|
||||
m = ( int(c) ** d ) % n
|
||||
print bcolors.YELLOW, m, '"'+chr(m)+'"', bcolors.ENDC
|
||||
mstr += chr(m)
|
||||
|
||||
print "Decrypted ciphertext is now m =", bcolors.YELLOW, mstr, bcolors.ENDC
|
||||
print
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user