mirror of
https://github.com/0xAX/linux-insides.git
synced 2025-01-03 12:20:56 +00:00
Merge pull request #535 from NeoCui/master
update the "kernel stack" link in the linux-initialization-5.md
This commit is contained in:
commit
cf32dc6c81
@ -31,7 +31,7 @@ We already saw implementation of the `set_intr_gate` in the previous part about
|
|||||||
* base address of the interrupt/exception handler;
|
* base address of the interrupt/exception handler;
|
||||||
* third parameter is - `Interrupt Stack Table`. `IST` is a new mechanism in the `x86_64` and part of the [TSS](http://en.wikipedia.org/wiki/Task_state_segment). Every active thread in kernel mode has own kernel stack which is `16` kilobytes. While a thread in user space, this kernel stack is empty.
|
* third parameter is - `Interrupt Stack Table`. `IST` is a new mechanism in the `x86_64` and part of the [TSS](http://en.wikipedia.org/wiki/Task_state_segment). Every active thread in kernel mode has own kernel stack which is `16` kilobytes. While a thread in user space, this kernel stack is empty.
|
||||||
|
|
||||||
In addition to per-thread stacks, there are a couple of specialized stacks associated with each CPU. All about these stack you can read in the linux kernel documentation - [Kernel stacks](https://www.kernel.org/doc/Documentation/x86/x86_64/kernel-stacks). `x86_64` provides feature which allows to switch to a new `special` stack for during any events as non-maskable interrupt and etc... And the name of this feature is - `Interrupt Stack Table`. There can be up to 7 `IST` entries per CPU and every entry points to the dedicated stack. In our case this is `DEBUG_STACK`.
|
In addition to per-thread stacks, there are a couple of specialized stacks associated with each CPU. All about these stack you can read in the linux kernel documentation - [Kernel stacks](https://www.kernel.org/doc/Documentation/x86/kernel-stacks). `x86_64` provides feature which allows to switch to a new `special` stack for during any events as non-maskable interrupt and etc... And the name of this feature is - `Interrupt Stack Table`. There can be up to 7 `IST` entries per CPU and every entry points to the dedicated stack. In our case this is `DEBUG_STACK`.
|
||||||
|
|
||||||
`set_intr_gate_ist` and `set_system_intr_gate_ist` work by the same principle as `set_intr_gate` with only one difference. Both of these functions checks
|
`set_intr_gate_ist` and `set_system_intr_gate_ist` work by the same principle as `set_intr_gate` with only one difference. Both of these functions checks
|
||||||
interrupt number and call `_set_gate` inside:
|
interrupt number and call `_set_gate` inside:
|
||||||
@ -54,7 +54,7 @@ As you can read above, we passed address of the `#DB` handler as `&debug` in the
|
|||||||
asmlinkage void debug(void);
|
asmlinkage void debug(void);
|
||||||
```
|
```
|
||||||
|
|
||||||
We can see `asmlinkage` attribute which tells to us that `debug` is function written with [assembly](http://en.wikipedia.org/wiki/Assembly_language). Yeah, again and again assembly :). Implementation of the `#DB` handler as other handlers is in this [arch/x86/kernel/entry_64.S](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/entry_64.S) and defined with the `idtentry` assembly macro:
|
We can see `asmlinkage` attribute which tells to us that `debug` is function written with [assembly](http://en.wikipedia.org/wiki/Assembly_language). Yeah, again and again assembly :). Implementation of the `#DB` handler as other handlers is in this [arch/x86/entry/entry_64.S](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S) and defined with the `idtentry` assembly macro:
|
||||||
|
|
||||||
```assembly
|
```assembly
|
||||||
idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
|
idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
|
||||||
|
Loading…
Reference in New Issue
Block a user