mirror of
https://github.com/0xAX/linux-insides.git
synced 2025-01-20 12:41:09 +00:00
Merge pull request #810 from renaudgermain/copyedit-system-calls
copyedit: system calls chapter
This commit is contained in:
commit
93f50a69fa
@ -51,7 +51,7 @@ asmlinkage const sys_call_ptr_t sys_call_table[__NR_syscall_max+1] = {
|
|||||||
};
|
};
|
||||||
```
|
```
|
||||||
|
|
||||||
As we can see, the `sys_call_table` is an array of `__NR_syscall_max + 1` size where the `__NR_syscall_max` macro represents the maximum number of system calls for the given [architecture](https://en.wikipedia.org/wiki/List_of_CPU_architectures). This book is about the [x86_64](https://en.wikipedia.org/wiki/X86-64) architecture, so for our case the `__NR_syscall_max` is `547` and this is the correct number at the time of writing (current Linux kernel version is `5.0.0-rc7`). We can see this macro in the header file generated by [Kbuild](https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt) during kernel compilation - include/generated/asm-offsets.h`:
|
As we can see, the `sys_call_table` is an array of `__NR_syscall_max + 1` size where the `__NR_syscall_max` macro represents the maximum number of system calls for the given [architecture](https://en.wikipedia.org/wiki/List_of_CPU_architectures). This book is about the [x86_64](https://en.wikipedia.org/wiki/X86-64) architecture, so for our case the `__NR_syscall_max` is `547` and this is the correct number at the time of writing (current Linux kernel version is `5.0.0-rc7`). We can see this macro in the header file generated by [Kbuild](https://www.kernel.org/doc/Documentation/kbuild/makefiles.txt) during kernel compilation - `include/generated/asm-offsets.h`:
|
||||||
|
|
||||||
```C
|
```C
|
||||||
#define __NR_syscall_max 547
|
#define __NR_syscall_max 547
|
||||||
@ -126,7 +126,7 @@ SYSCALL invokes an OS system-call handler at privilege level 0.
|
|||||||
It does so by loading RIP from the IA32_LSTAR MSR
|
It does so by loading RIP from the IA32_LSTAR MSR
|
||||||
```
|
```
|
||||||
|
|
||||||
it means that we need to put the system call entry in to the `IA32_LSTAR` [model specific register](https://en.wikipedia.org/wiki/Model-specific_register). This operation takes place during the Linux kernel initialization process. If you have read the fourth [part](https://0xax.gitbook.io/linux-insides/summary/interrupts/linux-interrupts-4) of the chapter that describes interrupts and interrupt handling in the Linux kernel, you know that the Linux kernel calls the `trap_init` function during the initialization process. This function is defined in the [arch/x86/kernel/setup.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c) source code file and executes the initialization of the `non-early` exception handlers like divide error, [coprocessor](https://en.wikipedia.org/wiki/Coprocessor) error etc. Besides the initialization of the `non-early` exceptions handlers, this function calls the `cpu_init` function from the [arch/x86/kernel/cpu/common.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c) source code file which besides initialization of `per-cpu` state, calls the `syscall_init` function from the same source code file.
|
It means that we need to put the system call entry in to the `IA32_LSTAR` [model specific register](https://en.wikipedia.org/wiki/Model-specific_register). This operation takes place during the Linux kernel initialization process. If you have read the fourth [part](https://0xax.gitbook.io/linux-insides/summary/interrupts/linux-interrupts-4) of the chapter that describes interrupts and interrupt handling in the Linux kernel, you know that the Linux kernel calls the `trap_init` function during the initialization process. This function is defined in the [arch/x86/kernel/setup.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup.c) source code file and executes the initialization of the `non-early` exception handlers like divide error, [coprocessor](https://en.wikipedia.org/wiki/Coprocessor) error, etc. Besides the initialization of the `non-early` exceptions handlers, this function calls the `cpu_init` function from the [arch/x86/kernel/cpu/common.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/cpu/common.c) source code file which besides initialization of `per-cpu` state, calls the `syscall_init` function from the same source code file.
|
||||||
|
|
||||||
This function performs the initialization of the system call entry point. Let's look on the implementation of this function. It does not take parameters and first of all it fills two model specific registers:
|
This function performs the initialization of the system call entry point. Let's look on the implementation of this function. It does not take parameters and first of all it fills two model specific registers:
|
||||||
|
|
||||||
@ -135,7 +135,7 @@ wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
|
|||||||
wrmsrl(MSR_LSTAR, entry_SYSCALL_64);
|
wrmsrl(MSR_LSTAR, entry_SYSCALL_64);
|
||||||
```
|
```
|
||||||
|
|
||||||
The first model specific register - `MSR_STAR` contains `63:48` bits of the user code segment. These bits will be loaded to the `CS` and `SS` segment registers for the `sysret` instruction which provides functionality to return from a system call to user code with the related privilege. Also the `MSR_STAR` contains `47:32` bits from the kernel code that will be used as the base selector for `CS` and `SS` segment registers when user space applications execute a system call. In the second line of code we fill the `MSR_LSTAR` register with the `entry_SYSCALL_64` symbol that represents system call entry. The `entry_SYSCALL_64` is defined in the [arch/x86/entry/entry_64.S](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S) assembly file and contains code related to the preparation performed before a system call handler will be executed (I already wrote about these preparations, read above). We will not consider the `entry_SYSCALL_64` now, but will return to it later in this chapter.
|
The first model specific register - `MSR_STAR` contains `63:48` bits of the user code segment. These bits will be loaded to the `CS` and `SS` segment registers for the `sysret` instruction which provides functionality to return from a system call to user code with the related privilege. Also the `MSR_STAR` contains `47:32` bits from the kernel code that will be used as the base selector for `CS` and `SS` segment registers when user space applications execute a system call. In the second line of code we fill the `MSR_LSTAR` register with the `entry_SYSCALL_64` symbol that represents system call entry. The `entry_SYSCALL_64` is defined in the [arch/x86/entry/entry_64.S](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S) assembly file and contains code related to the preparation performed before a system call handler is executed (I already wrote about these preparations, read above). We will not consider the `entry_SYSCALL_64` now, but will return to it later in this chapter.
|
||||||
|
|
||||||
After we have set the entry point for system calls, we need to set the following model specific registers:
|
After we have set the entry point for system calls, we need to set the following model specific registers:
|
||||||
|
|
||||||
@ -193,10 +193,10 @@ wrmsrl(MSR_SYSCALL_MASK,
|
|||||||
|
|
||||||
These flags will be cleared during syscall initialization. That's all, it is the end of the `syscall_init` function and it means that system call entry is ready to work. Now we can see what will occur when a user application executes the `syscall` instruction.
|
These flags will be cleared during syscall initialization. That's all, it is the end of the `syscall_init` function and it means that system call entry is ready to work. Now we can see what will occur when a user application executes the `syscall` instruction.
|
||||||
|
|
||||||
Preparation before system call handler will be called
|
Preparation before system call handler is called
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
As I already wrote, before a system call or an interrupt handler will be called by the Linux kernel we need to do some preparations. The `idtentry` macro performs the preparations required before an exception handler will be executed, the `interrupt` macro performs the preparations required before an interrupt handler will be called and the `entry_SYSCALL_64` will do the preparations required before a system call handler will be executed.
|
As I already wrote, before a system call or an interrupt handler is called by the Linux kernel we need to do some preparations. The `idtentry` macro performs the preparations required before an exception handler is executed, the `interrupt` macro performs the preparations required before an interrupt handler is called and the `entry_SYSCALL_64` will do the preparations required before a system call handler is executed.
|
||||||
|
|
||||||
The `entry_SYSCALL_64` is defined in the [arch/x86/entry/entry_64.S](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S) assembly file and starts from the following macro:
|
The `entry_SYSCALL_64` is defined in the [arch/x86/entry/entry_64.S](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/entry_64.S) assembly file and starts from the following macro:
|
||||||
|
|
||||||
|
@ -266,7 +266,7 @@ static int __init init_vdso(void)
|
|||||||
#endif
|
#endif
|
||||||
```
|
```
|
||||||
|
|
||||||
Both functions initialize the `vdso_image` structure. This structure is defined in the two generated source code files: the [arch/x86/entry/vdso/vdso-image-64.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/vdso/vdso-image-64.c) and the [arch/x86/entry/vdso/vdso-image-32.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/vdso/vdso-image-32.c). These source code files generated by the [vdso2c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/vdso/vdso2c.c) program from the different source code files, represent different approaches to call a system call like `int 0x80`, `sysenter` and etc. The full set of the images depends on the kernel configuration.
|
Both functions initialize the `vdso_image` structure. This structure is defined in the two generated source code files: the [arch/x86/entry/vdso/vdso-image-64.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/vdso/vdso-image-64.c) and the [arch/x86/entry/vdso/vdso-image-32.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/vdso/vdso-image-32.c). These source code files generated by the [vdso2c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/entry/vdso/vdso2c.c) program from the different source code files, represent different approaches to call a system call like `int 0x80`, `sysenter`, etc. The full set of the images depends on the kernel configuration.
|
||||||
|
|
||||||
For example for the `x86_64` Linux kernel it will contain `vdso_image_64`:
|
For example for the `x86_64` Linux kernel it will contain `vdso_image_64`:
|
||||||
|
|
||||||
@ -296,7 +296,7 @@ If our kernel is configured for the `x86` architecture or for the `x86_64` and c
|
|||||||
#endif
|
#endif
|
||||||
```
|
```
|
||||||
|
|
||||||
As we can understand from the name of the `vdso_image` structure, it represents image of the `vDSO` for the certain mode of the system call entry. This structure contains information about size in bytes of the `vDSO` area that always a multiple of `PAGE_SIZE` (`4096` bytes), pointer to the text mapping, start and end address of the `alternatives` (set of instructions with better alternatives for the certain type of the processor) and etc. For example `vdso_image_64` looks like this:
|
As we can understand from the name of the `vdso_image` structure, it represents image of the `vDSO` for the certain mode of the system call entry. This structure contains information about size in bytes of the `vDSO` area that's always a multiple of `PAGE_SIZE` (`4096` bytes), pointer to the text mapping, start and end address of the `alternatives` (set of instructions with better alternatives for the certain type of the processor), etc. For example `vdso_image_64` looks like this:
|
||||||
|
|
||||||
```C
|
```C
|
||||||
const struct vdso_image vdso_image_64 = {
|
const struct vdso_image vdso_image_64 = {
|
||||||
|
@ -98,9 +98,9 @@ struct user_arg_ptr envp = { .ptr.native = __envp };
|
|||||||
return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
|
return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
|
||||||
```
|
```
|
||||||
|
|
||||||
The `do_execveat_common` function does main work - it executes a new program. This function takes similar set of arguments, but as you can see it takes five arguments instead of three. The first argument is the file descriptor that represent directory with our application, in our case the `AT_FDCWD` means that the given pathname is interpreted relative to the current working directory of the calling process. The fifth argument is flags. In our case we passed `0` to the `do_execveat_common`. We will check in a next step, so will see it latter.
|
The `do_execveat_common` function does main work - it executes a new program. This function takes similar set of arguments, but as you can see it takes five arguments instead of three. The first argument is the file descriptor that represent directory with our application, in our case the `AT_FDCWD` means that the given pathname is interpreted relative to the current working directory of the calling process. The fifth argument is flags. In our case we passed `0` to the `do_execveat_common`. We will check in a next step, so will see it later.
|
||||||
|
|
||||||
First of all the `do_execveat_common` function checks the `filename` pointer and returns if it is `NULL`. After this we check flags of the current process that limit of running processes is not exceed:
|
First of all the `do_execveat_common` function checks the `filename` pointer and returns if it is `NULL`. After this we check flags of the current process that limit of running processes is not exceeded:
|
||||||
|
|
||||||
```C
|
```C
|
||||||
if (IS_ERR(filename))
|
if (IS_ERR(filename))
|
||||||
@ -201,7 +201,7 @@ if (retval)
|
|||||||
|
|
||||||
The `bprm_mm_init` defined in the same source code file and as we can understand from the function's name, it makes initialization of the memory descriptor or in other words the `bprm_mm_init` function initializes `mm_struct` structure. This structure defined in the [include/linux/mm_types.h](https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h) header file and represents address space of a process. We will not consider implementation of the `bprm_mm_init` function because we do not know many important stuff related to the Linux kernel memory manager, but we just need to know that this function initializes `mm_struct` and populate it with a temporary stack `vm_area_struct`.
|
The `bprm_mm_init` defined in the same source code file and as we can understand from the function's name, it makes initialization of the memory descriptor or in other words the `bprm_mm_init` function initializes `mm_struct` structure. This structure defined in the [include/linux/mm_types.h](https://github.com/torvalds/linux/blob/master/include/linux/mm_types.h) header file and represents address space of a process. We will not consider implementation of the `bprm_mm_init` function because we do not know many important stuff related to the Linux kernel memory manager, but we just need to know that this function initializes `mm_struct` and populate it with a temporary stack `vm_area_struct`.
|
||||||
|
|
||||||
After this we calculate the count of the command line arguments which are were passed to the our executable binary, the count of the environment variables and set it to the `bprm->argc` and `bprm->envc` respectively:
|
After this we calculate the count of the command line arguments which were passed to our executable binary, the count of the environment variables and set it to the `bprm->argc` and `bprm->envc` respectively:
|
||||||
|
|
||||||
```C
|
```C
|
||||||
bprm->argc = count(argv, MAX_ARG_STRINGS);
|
bprm->argc = count(argv, MAX_ARG_STRINGS);
|
||||||
@ -274,7 +274,7 @@ and call the:
|
|||||||
search_binary_handler(bprm);
|
search_binary_handler(bprm);
|
||||||
```
|
```
|
||||||
|
|
||||||
function. This function goes through the list of handlers that contains different binary formats. Currently the Linux kernel supports following binary formats:
|
function. This function goes through the list of handlers that contains different binary formats. Currently the Linux kernel supports the following binary formats:
|
||||||
|
|
||||||
* `binfmt_script` - support for interpreted scripts that are starts from the [#!](https://en.wikipedia.org/wiki/Shebang_%28Unix%29) line;
|
* `binfmt_script` - support for interpreted scripts that are starts from the [#!](https://en.wikipedia.org/wiki/Shebang_%28Unix%29) line;
|
||||||
* `binfmt_misc` - support different binary formats, according to runtime configuration of the Linux kernel;
|
* `binfmt_misc` - support different binary formats, according to runtime configuration of the Linux kernel;
|
||||||
@ -385,9 +385,9 @@ start_thread_common(struct pt_regs *regs, unsigned long new_ip,
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
The `start_thread_common` function fills `fs` segment register with zero and `es` and `ds` with the value of the data segment register. After this we set new values to the [instruction pointer](https://en.wikipedia.org/wiki/Program_counter), `cs` segments etc. In the end of the `start_thread_common` function we can see the `force_iret` macro that force a system call return via `iret` instruction. Ok, we prepared new thread to run in userspace and now we can return from the `exec_binprm` and now we are in the `do_execveat_common` again. After the `exec_binprm` will finish its execution we release memory for structures that was allocated before and return.
|
The `start_thread_common` function fills `fs` segment register with zero and `es` and `ds` with the value of the data segment register. After this we set new values to the [instruction pointer](https://en.wikipedia.org/wiki/Program_counter), `cs` segments etc. In the end of the `start_thread_common` function we can see the `force_iret` macro that forces a system call return via `iret` instruction. Ok, we prepared new thread to run in userspace and now we can return from the `exec_binprm` and now we are in the `do_execveat_common` again. After the `exec_binprm` will finish its execution we release memory for structures that was allocated before and return.
|
||||||
|
|
||||||
After we returned from the `execve` system call handler, execution of our program will be started. We can do it, because all context related information already configured for this purpose. As we saw the `execve` system call does not return control to a process, but code, data and other segments of the caller process are just overwritten of the program segments. The exit from our application will be implemented through the `exit` system call.
|
After we returned from the `execve` system call handler, execution of our program will be started. We can do it, because all context related information is already configured for this purpose. As we saw the `execve` system call does not return control to a process, but code, data and other segments of the caller process are just overwritten of the program segments. The exit from our application will be implemented through the `exit` system call.
|
||||||
|
|
||||||
That's all. From this point our program will be executed.
|
That's all. From this point our program will be executed.
|
||||||
|
|
||||||
|
@ -6,9 +6,9 @@ Introduction
|
|||||||
|
|
||||||
This is the fifth part of the chapter that describes [system calls](https://en.wikipedia.org/wiki/System_call) mechanism in the Linux kernel. Previous parts of this chapter described this mechanism in general. Now I will try to describe implementation of different system calls in the Linux kernel. Previous parts from this chapter and parts from other chapters of the books describe mostly deep parts of the Linux kernel that are faintly visible or fully invisible from the userspace. But the Linux kernel code is not only about itself. The vast of the Linux kernel code provides ability to our code. Due to the linux kernel our programs can read/write from/to files and don't know anything about sectors, tracks and other parts of a disk structures, we can send data over network and don't build encapsulated network packets by hand and etc.
|
This is the fifth part of the chapter that describes [system calls](https://en.wikipedia.org/wiki/System_call) mechanism in the Linux kernel. Previous parts of this chapter described this mechanism in general. Now I will try to describe implementation of different system calls in the Linux kernel. Previous parts from this chapter and parts from other chapters of the books describe mostly deep parts of the Linux kernel that are faintly visible or fully invisible from the userspace. But the Linux kernel code is not only about itself. The vast of the Linux kernel code provides ability to our code. Due to the linux kernel our programs can read/write from/to files and don't know anything about sectors, tracks and other parts of a disk structures, we can send data over network and don't build encapsulated network packets by hand and etc.
|
||||||
|
|
||||||
I don't know how about you, but it is interesting to me not only how an operating system works, but how do my software interacts with it. As you may know, our programs interacts with the kernel through the special mechanism which is called [system call](https://en.wikipedia.org/wiki/System_call). So, I've decided to write series of parts which will describe implementation and behavior of system calls which we are using every day like `read`, `write`, `open`, `close`, `dup` and etc.
|
I don't know about you, but it is interesting to me not only how an operating system works, but how does my software interact with it. As you may know, our programs interacts with the kernel through the special mechanism which is called [system call](https://en.wikipedia.org/wiki/System_call). So, I've decided to write series of parts which will describe implementation and behavior of system calls which we are using every day like `read`, `write`, `open`, `close`, `dup` and etc.
|
||||||
|
|
||||||
I have decided to start from the description of the [open](http://man7.org/linux/man-pages/man2/open.2.html) system call. if you have written at least one `C` program, you should know that before we are able to read/write or execute other manipulations with a file we need to open it with the `open` function:
|
I have decided to start from the description of the [open](http://man7.org/linux/man-pages/man2/open.2.html) system call. If you have written at least one `C` program, you should know that before we are able to read/write or execute other manipulations with a file we need to open it with the `open` function:
|
||||||
|
|
||||||
```C
|
```C
|
||||||
#include <fcntl.h>
|
#include <fcntl.h>
|
||||||
@ -42,14 +42,14 @@ $ sudo ls /proc/1/fd/
|
|||||||
1 11 13 15 19 20 22 24 26 28 3 31 33 35 37 39 40 42 44 46 48 5 51 54 57 59 60 62 65 7 9
|
1 11 13 15 19 20 22 24 26 28 3 31 33 35 37 39 40 42 44 46 48 5 51 54 57 59 60 62 65 7 9
|
||||||
```
|
```
|
||||||
|
|
||||||
I am not going to describe more details about the `open` routine from the userspace view in this post, but mostly from the kernel side. if you are not very familiar with, you can get more info in the [man page](http://man7.org/linux/man-pages/man2/open.2.html).
|
I am not going to describe more details about the `open` routine from the userspace view in this post, but mostly from the kernel side. If you are not very familiar with, you can get more info in the [man page](http://man7.org/linux/man-pages/man2/open.2.html).
|
||||||
|
|
||||||
So let's start.
|
So let's start.
|
||||||
|
|
||||||
Definition of the open system call
|
Definition of the open system call
|
||||||
--------------------------------------------------------------------------------
|
--------------------------------------------------------------------------------
|
||||||
|
|
||||||
If you have read the [fourth part](https://github.com/0xAX/linux-insides/blob/master/SysCall/linux-syscall-4.md) of the [linux-insides](https://github.com/0xAX/linux-insides/blob/master/SUMMARY.md) book, you should know that system calls are defined with the help of `SYSCALL_DEFINE` macro. So, the `open` system call is not exception.
|
If you have read the [fourth part](https://github.com/0xAX/linux-insides/blob/master/SysCall/linux-syscall-4.md) of the [linux-insides](https://github.com/0xAX/linux-insides/blob/master/SUMMARY.md) book, you should know that system calls are defined with the help of `SYSCALL_DEFINE` macro. So, the `open` system call is no exception.
|
||||||
|
|
||||||
Definition of the `open` system call is located in the [fs/open.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c) source code file and looks pretty small for the first view:
|
Definition of the `open` system call is located in the [fs/open.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c) source code file and looks pretty small for the first view:
|
||||||
|
|
||||||
@ -63,7 +63,7 @@ SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode)
|
|||||||
}
|
}
|
||||||
```
|
```
|
||||||
|
|
||||||
As you may guess, the `do_sys_open` function from the [same](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c) source code file does the main job. But before this function will be called, let's consider the `if` clause from which the implementation of the `open` system call starts:
|
As you may guess, the `do_sys_open` function from the [same](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/open.c) source code file does the main job. But before this function is called, let's consider the `if` clause from which the implementation of the `open` system call starts:
|
||||||
|
|
||||||
```C
|
```C
|
||||||
if (force_o_largefile())
|
if (force_o_largefile())
|
||||||
@ -204,7 +204,7 @@ else
|
|||||||
op->mode = 0;
|
op->mode = 0;
|
||||||
```
|
```
|
||||||
|
|
||||||
Here we reset permissions in `open_flags` instance if a opened file wasn't temporary and wasn't open for creation. This is because:
|
Here we reset permissions in `open_flags` instance if an open file wasn't temporary and wasn't open for creation. This is because:
|
||||||
|
|
||||||
> if neither O_CREAT nor O_TMPFILE is specified, then mode is ignored.
|
> if neither O_CREAT nor O_TMPFILE is specified, then mode is ignored.
|
||||||
|
|
||||||
@ -216,7 +216,7 @@ At the next step we check that a file is not tried to be opened via [fanotify](h
|
|||||||
flags &= ~FMODE_NONOTIFY & ~O_CLOEXEC;
|
flags &= ~FMODE_NONOTIFY & ~O_CLOEXEC;
|
||||||
```
|
```
|
||||||
|
|
||||||
We do this to not leak a [file descriptor](https://en.wikipedia.org/wiki/File_descriptor). By default, the new file descriptor is set to remain open across an `execve` system call, but the `open` system call supports `O_CLOEXEC` flag that can be used to change this default behaviour. So we do this to prevent leaking of a file descriptor when one thread opens a file to set `O_CLOEXEC` flag and in the same time the second process does a [fork](https://en.wikipedia.org/wiki/Fork_\(system_call\)) + [execve](https://en.wikipedia.org/wiki/Exec_\(system_call\)) and as you may remember that child will have copies of the parent's set of open file descriptors.
|
We do this to not leak a [file descriptor](https://en.wikipedia.org/wiki/File_descriptor). By default, the new file descriptor is set to remain open across an `execve` system call, but the `open` system call supports `O_CLOEXEC` flag that can be used to change this default behaviour. So we do this to prevent leaking of a file descriptor when one thread opens a file to set `O_CLOEXEC` flag and in the same time the second process does a [fork](https://en.wikipedia.org/wiki/Fork_(system_call)) + [execve](https://en.wikipedia.org/wiki/Exec_(system_call)) and as you may remember that child will have copies of the parent's set of open file descriptors.
|
||||||
|
|
||||||
At the next step we check that if our flags contains `O_SYNC` flag, we apply `O_DSYNC` flag too:
|
At the next step we check that if our flags contains `O_SYNC` flag, we apply `O_DSYNC` flag too:
|
||||||
|
|
||||||
@ -256,7 +256,7 @@ So, in this case the file itself is not opened, but operations like `dup`, `fcnt
|
|||||||
op->open_flag = flags;
|
op->open_flag = flags;
|
||||||
```
|
```
|
||||||
|
|
||||||
Now we have filled `open_flag` field which represents flags that will control opening of a file and `mode` that will represent `umask` of a new file if we open file for creation. There are still to fill last flags in the our `open_flags` structure. The next is `op->acc_mode` which represents access mode to a opened file. We already filled the `acc_mode` local variable with the initial value at the beginning of the `build_open_flags` and now we check last two flags related to access mode:
|
Now we have filled `open_flag` field which represents flags that will control opening of a file and `mode` that will represent `umask` of a new file if we open file for creation. There are still to fill last flags in our `open_flags` structure. The next is `op->acc_mode` which represents access mode to a opened file. We already filled the `acc_mode` local variable with the initial value at the beginning of the `build_open_flags` and now we check last two flags related to access mode:
|
||||||
|
|
||||||
```C
|
```C
|
||||||
if (flags & O_TRUNC)
|
if (flags & O_TRUNC)
|
||||||
@ -364,9 +364,9 @@ if (unlikely(filp == ERR_PTR(-ESTALE)))
|
|||||||
|
|
||||||
Note that it is called three times. Actually, the Linux kernel will open the file in [RCU](https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt) mode. This is the most efficient way to open a file. If this try will be failed, the kernel enters the normal mode. The third call is relatively rare, only in the [nfs](https://en.wikipedia.org/wiki/Network_File_System) file system is likely to be used. The `path_openat` function executes `path lookup` or in other words it tries to find a `dentry` (what the Linux kernel uses to keep track of the hierarchy of files in directories) corresponding to a path.
|
Note that it is called three times. Actually, the Linux kernel will open the file in [RCU](https://www.kernel.org/doc/Documentation/RCU/whatisRCU.txt) mode. This is the most efficient way to open a file. If this try will be failed, the kernel enters the normal mode. The third call is relatively rare, only in the [nfs](https://en.wikipedia.org/wiki/Network_File_System) file system is likely to be used. The `path_openat` function executes `path lookup` or in other words it tries to find a `dentry` (what the Linux kernel uses to keep track of the hierarchy of files in directories) corresponding to a path.
|
||||||
|
|
||||||
The `path_openat` function starts from the call of the `get_empty_flip()` function that allocates a new `file` structure with some additional checks like do we exceed amount of opened files in the system or not and etc. After we have got allocated new `file` structure we call the `do_tmpfile` or `do_o_path` functions in a case if we have passed `O_TMPFILE | O_CREATE` or `O_PATH` flags during call of the `open` system call. These both cases are quite specific, so let's consider quite usual case when we want to open already existed file and want to read/write from/to it.
|
The `path_openat` function starts from the call of the `get_empty_flip()` function that allocates a new `file` structure with some additional checks like do we exceed amount of opened files in the system or not and etc. After we have got allocated new `file` structure we call the `do_tmpfile` or `do_o_path` functions in a case if we have passed `O_TMPFILE | O_CREATE` or `O_PATH` flags during call of the `open` system call. Both these cases are quite specific, so let's consider quite usual case when we want to open already existed file and want to read/write from/to it.
|
||||||
|
|
||||||
In this case the `path_init` function will be called. This function performs some preporatory work before actual path lookup. This includes search of start position of path traversal and its metadata like `inode` of the path, `dentry inode` and etc. This can be `root` directory - `/` or current directory as in our case, because we use `AT_CWD` as starting point (see call of the `do_sys_open` at the beginning of the post).
|
In this case the `path_init` function will be called. This function performs some preparatory work before actual path lookup. This includes search of start position of path traversal and its metadata like `inode` of the path, `dentry inode` and etc. This can be `root` directory - `/` or current directory as in our case, because we use `AT_CWD` as starting point (see call of the `do_sys_open` at the beginning of the post).
|
||||||
|
|
||||||
The next step after the `path_init` is the [loop](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/namei.c#L3457) which executes the `link_path_walk` and `do_last`. The first function executes name resolution or in other words this function starts process of walking along a given path. It handles everything step by step except the last component of a file path. This handling includes checking of a permissions and getting a file component. As a file component is gotten, it is passed to `walk_component` that updates current directory entry from the `dcache` or asks underlying filesystem. This repeats before all path's components will not be handled in such way. After the `link_path_walk` will be executed, the `do_last` function will populate a `file` structure based on the result of the `link_path_walk`. As we reached last component of the given file path the `vfs_open` function from the `do_last` will be called.
|
The next step after the `path_init` is the [loop](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/fs/namei.c#L3457) which executes the `link_path_walk` and `do_last`. The first function executes name resolution or in other words this function starts process of walking along a given path. It handles everything step by step except the last component of a file path. This handling includes checking of a permissions and getting a file component. As a file component is gotten, it is passed to `walk_component` that updates current directory entry from the `dcache` or asks underlying filesystem. This repeats before all path's components will not be handled in such way. After the `link_path_walk` will be executed, the `do_last` function will populate a `file` structure based on the result of the `link_path_walk`. As we reached last component of the given file path the `vfs_open` function from the `do_last` will be called.
|
||||||
|
|
||||||
|
@ -3,7 +3,7 @@ Limits on resources in Linux
|
|||||||
|
|
||||||
Each process in the system uses certain amount of different resources like files, CPU time, memory and so on.
|
Each process in the system uses certain amount of different resources like files, CPU time, memory and so on.
|
||||||
|
|
||||||
Such resources are not infinite and each process and we should have an instrument to manage it. Sometimes it is useful to know current limits for a certain resource or to change it's value. In this post we will consider such instruments that allow us to get information about limits for a process and increase or decrease such limits.
|
Such resources are not infinite and each process and we should have an instrument to manage it. Sometimes it is useful to know current limits for a certain resource or to change its value. In this post we will consider such instruments that allow us to get information about limits for a process and increase or decrease such limits.
|
||||||
|
|
||||||
We will start from userspace view and then we will look how it is implemented in the Linux kernel.
|
We will start from userspace view and then we will look how it is implemented in the Linux kernel.
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user