modify interrupts from checking

pull/580/head
Dongliang Mu 6 years ago
parent 72c71c2560
commit 193bc74254

@ -303,7 +303,7 @@ static inline void raw_write_seqcount_end(seqcount_t *s)
and in the end we just call the `spin_unlock` macro to give access for other readers or writers. and in the end we just call the `spin_unlock` macro to give access for other readers or writers.
That's all about `sequential lock` mechanism in the Linux kernel. Of course we did not consider full [API](https://en.wikipedia.org/wiki/Application_programming_interface) of this mechanism in this part. But all other functions are based on these which we described here. For example, Linux kernel also provides some safe macros/functions to use `sequential lock` mechanism in [interrupt handlers](https://en.wikipedia.org/wiki/Interrupt_handler) of [softirq](https://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html): `write_seqclock_irq` and `write_sequnlock_irq`: That's all about `sequential lock` mechanism in the Linux kernel. Of course we did not consider full [API](https://en.wikipedia.org/wiki/Application_programming_interface) of this mechanism in this part. But all other functions are based on these which we described here. For example, Linux kernel also provides some safe macros/functions to use `sequential lock` mechanism in [interrupt handlers](https://en.wikipedia.org/wiki/Interrupt_handler) of [softirq](https://0xax.gitbooks.io/linux-insides/content/Interrupts/linux-interrupts-9.html): `write_seqclock_irq` and `write_sequnlock_irq`:
```C ```C
static inline void write_seqlock_irq(seqlock_t *sl) static inline void write_seqlock_irq(seqlock_t *sl)
@ -347,6 +347,6 @@ Links
* [x86_64](https://en.wikipedia.org/wiki/X86-64) * [x86_64](https://en.wikipedia.org/wiki/X86-64)
* [Timers and time management in the Linux kernel](https://0xax.gitbooks.io/linux-insides/content/Timers/) * [Timers and time management in the Linux kernel](https://0xax.gitbooks.io/linux-insides/content/Timers/)
* [interrupt handlers](https://en.wikipedia.org/wiki/Interrupt_handler) * [interrupt handlers](https://en.wikipedia.org/wiki/Interrupt_handler)
* [softirq](https://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html) * [softirq](https://0xax.gitbooks.io/linux-insides/content/Interrupts/linux-interrupts-9.html)
* [IRQ](https://en.wikipedia.org/wiki/Interrupt_request_\(PC_architecture\)) * [IRQ](https://en.wikipedia.org/wiki/Interrupt_request_\(PC_architecture\))
* [Previous part](https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-5.html) * [Previous part](https://0xax.gitbooks.io/linux-insides/content/SyncPrim/sync-5.html)

@ -240,7 +240,7 @@ The last step in the `init_timers` function is the call of the:
open_softirq(TIMER_SOFTIRQ, run_timer_softirq); open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
``` ```
function. The `open_softirq` function may be already familiar to you if you have read the ninth [part](https://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html) about the interrupts and interrupt handling in the Linux kernel. In short words, the `open_softirq` function defined in the [kernel/softirq.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/softirq.c) source code file and executes initialization of the deferred interrupt handler. function. The `open_softirq` function may be already familiar to you if you have read the ninth [part](https://0xax.gitbooks.io/linux-insides/content/Interrupts/linux-interrupts-9.html) about the interrupts and interrupt handling in the Linux kernel. In short words, the `open_softirq` function defined in the [kernel/softirq.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/softirq.c) source code file and executes initialization of the deferred interrupt handler.
In our case the deferred function is the `run_timer_softirq` function that is will be called after a hardware interrupt in the `do_IRQ` function which defined in the [arch/x86/kernel/irq.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/irq.c) source code file. The main point of this function is to handle a software dynamic timer. The Linux kernel does not do this thing during the hardware timer interrupt handling because this is time consuming operation. In our case the deferred function is the `run_timer_softirq` function that is will be called after a hardware interrupt in the `do_IRQ` function which defined in the [arch/x86/kernel/irq.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/irq.c) source code file. The main point of this function is to handle a software dynamic timer. The Linux kernel does not do this thing during the hardware timer interrupt handling because this is time consuming operation.

Loading…
Cancel
Save