Per-CPU variables are one of the kernel features. You can understand what this feature means by reading its name. We can create a variable and each processor core will have its own copy of this variable. We take a closer look on this feature and try to understand how it is implemented and how it works in this part.
This macro defined in the [include/linux/percpu-defs.h](https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h) as many other macros for work with per-cpu variables. Now we will see how this feature is implemented.
Take a look at the `DECLARE_PER_CPU` definition. We see that it takes 2 parameters: `type` and `name`, so we can use it to create per-cpu variable, for example like this:
We pass the type and the name of our variable. `DEFI_PER_CPU` calls `DEFINE_PER_CPU_SECTION` macro and passes the same two paramaters and empty string to it. Let's look at the definition of the `DEFINE_PER_CPU_SECTION`:
Ok, now we know that when we use `DEFINE_PER_CPU` macro, per-cpu variable in the `.data..percpu` section will be created. When the kernel initilizes it calls `setup_per_cpu_areas` function which loads `.data..percpu` section multiply times, one section per CPU.
Let's look on the per-CPU areas initialization process. It start in the [init/main.c](https://github.com/torvalds/linux/blob/master/init/main.c) from the call of the `setup_per_cpu_areas` function which defined in the [arch/x86/kernel/setup_percpu.c](https://github.com/torvalds/linux/blob/master/arch/x86/kernel/setup_percpu.c).
The `setup_per_cpu_areas` starts from the output information about the Maximum number of CPUs set during kernel configuration with `CONFIG_NR_CPUS` configuration option, actual number of CPUs, `nr_cpumask_bits` is the same that `NR_CPUS` bit for the new `cpumask` operators and number of `NUMA` nodes.
In the next step we check `percpu` first chunk allocator. All percpu areas are allocated in chunks. First chunk is used for the static percpu variables. Linux kernel has `percpu_alloc` command line parameters which provides type of the first chunk allocator. We can read about it in the kernel documentation:
```
percpu_alloc= Select which percpu first chunk allocator to use.
Currently supported values are "embed" and "page".
Archs may support subset or none of the selections.
See comments in mm/percpu.c for details on each
allocator. This parameter is primarily for debugging
and performance comparison.
```
The [mm/percpu.c](https://github.com/torvalds/linux/blob/master/mm/percpu.c) contains handler of this command line option:
```C
early_param("percpu_alloc", percpu_alloc_setup);
```
Where `percpu_alloc_setup` function sets the `pcpu_chosen_fc` variable depends on the `percpu_alloc` parameter value. By default first chunk allocator is `auto`:
If `percpu_alooc` parameter not given to the kernel command line, the `embed` allocator will be used wich as you can understand embed the first percpu chunk into bootmem with the [memblock](http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-1.html). The last allocator is first chunk `page` allocator which maps first chunk with `PAGE_SIZE` pages.
As I wrote about first of all we make a check of the first chunk allocator type in the `setup_per_cpu_areas`. First of all we check that first chunk allocator is not page:
```C
if (pcpu_chosen_fc != PCPU_FC_PAGE) {
...
...
...
}
```
If it is not `PCPU_FC_PAGE`, we will use `embed` allocator and allocate space for the first chunk with the `pcpu_embed_first_chunk` function:
As I wrote above, the `pcpu_embed_first_chunk` function embeds the first percpu chunk into bootmem. As you can see we pass a couple of parameters to the `pcup_embed_first_chunk`, they are
*`PERCPU_FIRST_CHUNK_RESERVE` - the size of the reserved space for the static `percpu` variables;
*`dyn_size` - minimum free size for dynamic allocation in byte;
*`atom_size` - all allocations are whole multiples of this and aligned to this parameter;
*`pcpu_cpu_distance` - callback to determine distance between cpus;
*`pcpu_fc_alloc` - function to allocate `percpu` page;
*`pcpu_fc_free` - function to release `percpu` page.
All of this parameters we calculat before the call of the `pcpu_embed_first_chunk`:
If first chunk allocator is `PCPU_FC_PAGE`, we will use the `pcpu_page_first_chunk` instead of the `pcpu_embed_first_chunk`. After that `percpu` areas up, we setup `percpu` offset and its segment for the every CPU with the `setup_percpu_segment` function (only for `x86` systems) and move some early data from the arrays to the `percpu` variables (`x86_cpu_to_apicid`, `irq_stack_ptr` and etc...). After the kernel finished the initialization process, we have loaded N `.data..percpu` sections, where N is the number of CPU, and section used by bootstrap processor will contain uninitialized variable created with `DEFINE_PER_CPU` macro.
Linux kernel is preemptible and accessing a per-cpu variable requires to know which processor kernel running on. So, current code must not be preempted and moved to the another CPU while accessing a per-cpu variable. That's why first of all we can see call of the `preempt_disable` function. After this we can see call of the `this_cpu_ptr` macro, which looks as:
where `per_cpu_ptr` returns a pointer to the per-cpu variable for the given cpu (second parameter). After that we got per-cpu variables and made any manipulations on it, we must call `put_cpu_var` macro which enables preemption with call of `preempt_enable` function. So the typical usage of a per-cpu variable is following:
After this we can see the call of the `SHIFT_PERCPU_PTR` macro with two parameters. At first parameter we pass our ptr and sencond we pass cpu number to the `per_cpu_offset` macro which:
where `NR_CPUS` is the number of CPUs. `__per_cpu_offset` array filled with the distances between cpu-variables copies. For example all per-cpu data is `X` bytes size, so if we access `__per_cpu_offset[Y]`, so `X*Y` will be accessed. Let's look at the `SHIFT_PERCPU_PTR` implementation:
That's all! Of course it is not the full API, but the general part. It can be hard for the start, but to understand per-cpu variables feature need to understand mainly [include/linux/percpu-defs.h](https://github.com/torvalds/linux/blob/master/include/linux/percpu-defs.h) magic.
* All variables created with the `DEFINE_PER_CPU` macro will be reloacated to the first section or for CPU0;
*`__per_cpu_offset` array filled with the distance (`BOOT_PERCPU_OFFSET`) between `.data..percpu` sections;
* When `per_cpu_ptr` called for example for getting pointer on the certain per-cpu variable for the third CPU, `__per_cpu_offset` array will be accessed, where every index points to the certain CPU.