You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
isso/isso/js/app/lib/pbkdf2.js

201 lines
7.2 KiB

define(["q", "app/lib/sha1"], function(Q, sha1) {
/*
* JavaScript implementation of Password-Based Key Derivation Function 2
* (PBKDF2) as defined in RFC 2898.
* Version 1.5
* Copyright (c) 2007, 2008, 2009, 2010, 2011, 2012, 2013 Parvez Anandam
* parvez@anandam.com
* http://anandam.com/pbkdf2
*
* Distributed under the BSD license
*
* Uses Paul Johnston's excellent SHA-1 JavaScript library sha1.js:
* http://pajhome.org.uk/crypt/md5/sha1.html
* (uses the binb_sha1(), rstr2binb(), binb2str(), rstr2hex() functions from that libary)
*
* Thanks to Felix Gartsman for pointing out a bug in version 1.0
* Thanks to Thijs Van der Schaeghe for pointing out a bug in version 1.1
* Thanks to Richard Gautier for asking to clarify dependencies in version 1.2
* Updated contact information from version 1.3
* Thanks to Stuart Heinrich for pointing out updates to PAJ's SHA-1 library in version 1.4
*/
/*
* The four arguments to the constructor of the PBKDF2 object are
* the password, salt, number of iterations and number of bytes in
* generated key. This follows the RFC 2898 definition: PBKDF2 (P, S, c, dkLen)
*
* The method deriveKey takes two parameters, both callback functions:
* the first is used to provide status on the computation, the second
* is called with the result of the computation (the generated key in hex).
*
* Example of use:
*
* <script src="sha1.js"></script>
* <script src="pbkdf2.js"></script>
* <script>
* var mypbkdf2 = new PBKDF2("mypassword", "saltines", 1000, 16);
* var status_callback = function(percent_done) {
* document.getElementById("status").innerHTML = "Computed " + percent_done + "%"};
* var result_callback = function(key) {
* document.getElementById("status").innerHTML = "The derived key is: " + key};
* mypbkdf2.deriveKey(status_callback, result_callback);
* </script>
* <div id="status"></div>
*
*/
var PBKDF2 = function(password, salt, num_iterations, num_bytes)
{
// Remember the password and salt
var m_bpassword = sha1.rstr2binb(password);
var m_salt = salt;
// Total number of iterations
var m_total_iterations = num_iterations;
// Run iterations in chunks instead of all at once, so as to not block.
// Define size of chunk here; adjust for slower or faster machines if necessary.
var m_iterations_in_chunk = 10;
// Iteration counter
var m_iterations_done = 0;
// Key length, as number of bytes
var m_key_length = num_bytes;
// The hash cache
var m_hash = null;
// The length (number of bytes) of the output of the pseudo-random function.
// Since HMAC-SHA1 is the standard, and what is used here, it's 20 bytes.
var m_hash_length = 20;
// Number of hash-sized blocks in the derived key (called 'l' in RFC2898)
var m_total_blocks = Math.ceil(m_key_length/m_hash_length);
// Start computation with the first block
var m_current_block = 1;
// Used in the HMAC-SHA1 computations
var m_ipad = new Array(16);
var m_opad = new Array(16);
// This is where the result of the iterations gets sotred
var m_buffer = new Array(0x0,0x0,0x0,0x0,0x0);
// The result
var m_key = "";
// This object
var m_this_object = this;
// The function to call with the result
var m_result_func;
// The function to call with status after computing every chunk
var m_status_func;
// Set up the HMAC-SHA1 computations
if (m_bpassword.length > 16) m_bpassword = sha1.binb_sha1(m_bpassword, password.length * chrsz);
for(var i = 0; i < 16; ++i)
{
m_ipad[i] = m_bpassword[i] ^ 0x36363636;
m_opad[i] = m_bpassword[i] ^ 0x5C5C5C5C;
}
// Starts the computation
this.deriveKey = function(status_callback, result_callback)
{
m_status_func = status_callback;
m_result_func = result_callback;
setTimeout(function() { m_this_object.do_PBKDF2_iterations() }, 0);
}
// The workhorse
this.do_PBKDF2_iterations = function()
{
var iterations = m_iterations_in_chunk;
if (m_total_iterations - m_iterations_done < m_iterations_in_chunk)
iterations = m_total_iterations - m_iterations_done;
for(var i=0; i<iterations; ++i)
{
// compute HMAC-SHA1
if (m_iterations_done == 0)
{
var salt_block = m_salt +
String.fromCharCode(m_current_block >> 24 & 0xF) +
String.fromCharCode(m_current_block >> 16 & 0xF) +
String.fromCharCode(m_current_block >> 8 & 0xF) +
String.fromCharCode(m_current_block & 0xF);
m_hash = sha1.binb_sha1(m_ipad.concat(sha1.rstr2binb(salt_block)),
512 + salt_block.length * 8);
m_hash = sha1.binb_sha1(m_opad.concat(m_hash), 512 + 160);
}
else
{
m_hash = sha1.binb_sha1(m_ipad.concat(m_hash),
512 + m_hash.length * 32);
m_hash = sha1.binb_sha1(m_opad.concat(m_hash), 512 + 160);
}
for(var j=0; j<m_hash.length; ++j)
m_buffer[j] ^= m_hash[j];
m_iterations_done++;
}
// Call the status callback function
m_status_func( (m_current_block - 1 + m_iterations_done/m_total_iterations) / m_total_blocks * 100);
if (m_iterations_done < m_total_iterations)
{
setTimeout(function() { m_this_object.do_PBKDF2_iterations() }, 0);
}
else
{
if (m_current_block < m_total_blocks)
{
// Compute the next block (T_i in RFC 2898)
m_key += sha1.rstr2hex(sha1.binb2rstr(m_buffer));
m_current_block++;
m_buffer = new Array(0x0,0x0,0x0,0x0,0x0);
m_iterations_done = 0;
setTimeout(function() { m_this_object.do_PBKDF2_iterations() }, 0);
}
else
{
// We've computed the final block T_l; we're done.
var tmp = sha1.rstr2hex(sha1.binb2rstr(m_buffer));
m_key += tmp.substr(0, (m_key_length - (m_total_blocks - 1) * m_hash_length) * 2 );
// Call the result callback function
m_result_func(m_key);
}
}
}
}
return function(text, salt, iterations, size) {
var deferred = Q.defer();
Q.when(text, function(text) {
var pbkdf2 = new PBKDF2(text, salt, iterations, size);
pbkdf2.deriveKey(function(bla) {}, function(rv) {
deferred.resolve(rv);
});
})
return deferred.promise;
}
})