1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-12-24 07:28:10 +00:00
hashcat/OpenCL/m12500-optimized.cl

398 lines
8.0 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#ifdef KERNEL_STATIC
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.cl"
#include "inc_common.cl"
#include "inc_hash_sha1.cl"
#include "inc_cipher_aes.cl"
#endif
#define COMPARE_S "inc_comp_single.cl"
#define COMPARE_M "inc_comp_multi.cl"
#define ROUNDS 0x40000
#define PUTCHAR(a,p,c) ((u8 *)(a))[(p)] = (u8) (c)
#define GETCHAR(a,p) ((u8 *)(a))[(p)]
#define PUTCHAR_BE(a,p,c) ((u8 *)(a))[(p) ^ 3] = (u8) (c)
#define GETCHAR_BE(a,p) ((u8 *)(a))[(p) ^ 3]
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
typedef struct pbkdf2_sha1
{
u32 salt_buf[64];
} pbkdf2_sha1_t;
typedef struct rar3_tmp
{
u32 dgst[17][5];
} rar3_tmp_t;
KERNEL_FQ void m12500_init (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, pbkdf2_sha1_t))
{
/**
* base
*/
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
tmps[gid].dgst[0][0] = SHA1M_A;
tmps[gid].dgst[0][1] = SHA1M_B;
tmps[gid].dgst[0][2] = SHA1M_C;
tmps[gid].dgst[0][3] = SHA1M_D;
tmps[gid].dgst[0][4] = SHA1M_E;
}
KERNEL_FQ void m12500_loop (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, pbkdf2_sha1_t))
{
const u64 gid = get_global_id (0);
if (gid >= gid_max) return;
u32 pw_buf[5];
pw_buf[0] = pws[gid].i[0];
pw_buf[1] = pws[gid].i[1];
pw_buf[2] = pws[gid].i[2];
pw_buf[3] = pws[gid].i[3];
pw_buf[4] = pws[gid].i[4];
const u32 pw_len = MIN (pws[gid].pw_len, 20);
u32 salt_buf[2];
salt_buf[0] = salt_bufs[salt_pos].salt_buf[0];
salt_buf[1] = salt_bufs[salt_pos].salt_buf[1];
const u32 salt_len = 8;
// this is large enough to hold all possible w[] arrays for 64 iterations
#define LARGEBLOCK_ELEMS ((40 + 8 + 3) * 16)
u32 largeblock[LARGEBLOCK_ELEMS];
for (u32 i = 0; i < LARGEBLOCK_ELEMS; i++) largeblock[i] = 0;
for (u32 i = 0, p = 0; i < 64; i++)
{
for (u32 j = 0; j < pw_len; j++, p += 2)
{
PUTCHAR_BE (largeblock, p, GETCHAR (pw_buf, j));
}
for (u32 j = 0; j < salt_len; j++, p += 1)
{
PUTCHAR_BE (largeblock, p, GETCHAR (salt_buf, j));
}
PUTCHAR_BE (largeblock, p + 2, (loop_pos >> 16) & 0xff);
p += 3;
}
const u32 p3 = (pw_len * 2) + salt_len + 3;
const u32 init_pos = loop_pos / (ROUNDS / 16);
u32 dgst[5];
dgst[0] = tmps[gid].dgst[init_pos][0];
dgst[1] = tmps[gid].dgst[init_pos][1];
dgst[2] = tmps[gid].dgst[init_pos][2];
dgst[3] = tmps[gid].dgst[init_pos][3];
dgst[4] = tmps[gid].dgst[init_pos][4];
u32 iter = loop_pos;
for (u32 i = 0; i < 256; i += 4)
{
for (u32 j = 0; j < 64; j++)
{
const u32 p = ((j + 1) * p3) - 2;
PUTCHAR_BE (largeblock, p, iter >> 8);
}
for (u32 k = 0; k < 4; k++)
{
for (u32 j = 0; j < 64; j++)
{
const u32 p = ((j + 1) * p3) - 3;
PUTCHAR_BE (largeblock, p, iter >> 0);
iter++;
}
for (u32 j = 0; j < p3; j++)
{
const u32 j16 = j * 16;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = largeblock[j16 + 0];
w0[1] = largeblock[j16 + 1];
w0[2] = largeblock[j16 + 2];
w0[3] = largeblock[j16 + 3];
w1[0] = largeblock[j16 + 4];
w1[1] = largeblock[j16 + 5];
w1[2] = largeblock[j16 + 6];
w1[3] = largeblock[j16 + 7];
w2[0] = largeblock[j16 + 8];
w2[1] = largeblock[j16 + 9];
w2[2] = largeblock[j16 + 10];
w2[3] = largeblock[j16 + 11];
w3[0] = largeblock[j16 + 12];
w3[1] = largeblock[j16 + 13];
w3[2] = largeblock[j16 + 14];
w3[3] = largeblock[j16 + 15];
sha1_transform (w0, w1, w2, w3, dgst);
}
}
}
tmps[gid].dgst[init_pos + 1][0] = dgst[0];
tmps[gid].dgst[init_pos + 1][1] = dgst[1];
tmps[gid].dgst[init_pos + 1][2] = dgst[2];
tmps[gid].dgst[init_pos + 1][3] = dgst[3];
tmps[gid].dgst[init_pos + 1][4] = dgst[4];
}
KERNEL_FQ void m12500_comp (KERN_ATTR_TMPS_ESALT (rar3_tmp_t, pbkdf2_sha1_t))
{
const u64 gid = get_global_id (0);
const u64 lid = get_local_id (0);
const u64 lsz = get_local_size (0);
/**
* aes shared
*/
#ifdef REAL_SHM
LOCAL_VK u32 s_td0[256];
LOCAL_VK u32 s_td1[256];
LOCAL_VK u32 s_td2[256];
LOCAL_VK u32 s_td3[256];
LOCAL_VK u32 s_td4[256];
LOCAL_VK u32 s_te0[256];
LOCAL_VK u32 s_te1[256];
LOCAL_VK u32 s_te2[256];
LOCAL_VK u32 s_te3[256];
LOCAL_VK u32 s_te4[256];
for (u32 i = lid; i < 256; i += lsz)
{
s_td0[i] = td0[i];
s_td1[i] = td1[i];
s_td2[i] = td2[i];
s_td3[i] = td3[i];
s_td4[i] = td4[i];
s_te0[i] = te0[i];
s_te1[i] = te1[i];
s_te2[i] = te2[i];
s_te3[i] = te3[i];
s_te4[i] = te4[i];
}
SYNC_THREADS ();
#else
CONSTANT_AS u32a *s_td0 = td0;
CONSTANT_AS u32a *s_td1 = td1;
CONSTANT_AS u32a *s_td2 = td2;
CONSTANT_AS u32a *s_td3 = td3;
CONSTANT_AS u32a *s_td4 = td4;
CONSTANT_AS u32a *s_te0 = te0;
CONSTANT_AS u32a *s_te1 = te1;
CONSTANT_AS u32a *s_te2 = te2;
CONSTANT_AS u32a *s_te3 = te3;
CONSTANT_AS u32a *s_te4 = te4;
#endif
if (gid >= gid_max) return;
/**
* base
*/
const u32 pw_len = MIN (pws[gid].pw_len, 20);
const u32 salt_len = 8;
const u32 p3 = (pw_len * 2) + salt_len + 3;
u32 w0[4];
u32 w1[4];
u32 w2[4];
u32 w3[4];
w0[0] = 0x80000000;
w0[1] = 0;
w0[2] = 0;
w0[3] = 0;
w1[0] = 0;
w1[1] = 0;
w1[2] = 0;
w1[3] = 0;
w2[0] = 0;
w2[1] = 0;
w2[2] = 0;
w2[3] = 0;
w3[0] = 0;
w3[1] = 0;
w3[2] = 0;
w3[3] = (p3 * ROUNDS) * 8;
u32 dgst[5];
dgst[0] = tmps[gid].dgst[16][0];
dgst[1] = tmps[gid].dgst[16][1];
dgst[2] = tmps[gid].dgst[16][2];
dgst[3] = tmps[gid].dgst[16][3];
dgst[4] = tmps[gid].dgst[16][4];
sha1_transform (w0, w1, w2, w3, dgst);
u32 ukey[4];
ukey[0] = hc_swap32_S (dgst[0]);
ukey[1] = hc_swap32_S (dgst[1]);
ukey[2] = hc_swap32_S (dgst[2]);
ukey[3] = hc_swap32_S (dgst[3]);
u32 ks[44];
AES128_set_decrypt_key (ks, ukey, s_te0, s_te1, s_te2, s_te3, s_td0, s_td1, s_td2, s_td3);
u32 data[4];
data[0] = salt_bufs[salt_pos].salt_buf[2];
data[1] = salt_bufs[salt_pos].salt_buf[3];
data[2] = salt_bufs[salt_pos].salt_buf[4];
data[3] = salt_bufs[salt_pos].salt_buf[5];
u32 out[4];
AES128_decrypt (ks, data, out, s_td0, s_td1, s_td2, s_td3, s_td4);
u32 iv[4];
iv[0] = 0;
iv[1] = 0;
iv[2] = 0;
iv[3] = 0;
for (int i = 0; i < 16; i++)
{
u32 pw_buf[5];
pw_buf[0] = pws[gid].i[0];
pw_buf[1] = pws[gid].i[1];
pw_buf[2] = pws[gid].i[2];
pw_buf[3] = pws[gid].i[3];
pw_buf[4] = pws[gid].i[4];
//const u32 pw_len = pws[gid].pw_len;
u32 salt_buf[2];
salt_buf[0] = salt_bufs[salt_pos].salt_buf[0];
salt_buf[1] = salt_bufs[salt_pos].salt_buf[1];
//const u32 salt_len = 8;
//const u32 p3 = (pw_len * 2) + salt_len + 3;
u32 w[16];
w[ 0] = 0;
w[ 1] = 0;
w[ 2] = 0;
w[ 3] = 0;
w[ 4] = 0;
w[ 5] = 0;
w[ 6] = 0;
w[ 7] = 0;
w[ 8] = 0;
w[ 9] = 0;
w[10] = 0;
w[11] = 0;
w[12] = 0;
w[13] = 0;
w[14] = 0;
w[15] = 0;
u32 p = 0;
for (u32 j = 0; j < pw_len; j++, p += 2)
{
PUTCHAR_BE (w, p, GETCHAR (pw_buf, j));
}
for (u32 j = 0; j < salt_len; j++, p += 1)
{
PUTCHAR_BE (w, p, GETCHAR (salt_buf, j));
}
const u32 iter_pos = i * (ROUNDS / 16);
PUTCHAR_BE (w, p + 0, (iter_pos >> 0) & 0xff);
PUTCHAR_BE (w, p + 1, (iter_pos >> 8) & 0xff);
PUTCHAR_BE (w, p + 2, (iter_pos >> 16) & 0xff);
PUTCHAR_BE (w, p3, 0x80);
w[15] = ((iter_pos + 1) * p3) * 8;
u32 dgst[5];
dgst[0] = tmps[gid].dgst[i][0];
dgst[1] = tmps[gid].dgst[i][1];
dgst[2] = tmps[gid].dgst[i][2];
dgst[3] = tmps[gid].dgst[i][3];
dgst[4] = tmps[gid].dgst[i][4];
sha1_transform (w + 0, w + 4, w + 8, w + 12, dgst);
PUTCHAR (iv, i, dgst[4] & 0xff);
}
out[0] ^= hc_swap32_S (iv[0]);
out[1] ^= hc_swap32_S (iv[1]);
out[2] ^= hc_swap32_S (iv[2]);
out[3] ^= hc_swap32_S (iv[3]);
const u32 r0 = out[0];
const u32 r1 = out[1];
const u32 r2 = 0;
const u32 r3 = 0;
#define il_pos 0
#ifdef KERNEL_STATIC
#include COMPARE_M
#endif
}