1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-27 02:18:21 +00:00
hashcat/deps/xxHash/tests/collisions/main.c

1125 lines
36 KiB
C

/*
* Brute force collision tester for 64-bit hashes
* Part of the xxHash project
* Copyright (C) 2019-2020 Yann Collet
*
* GPL v2 License
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* You can contact the author at:
* - xxHash homepage: https://www.xxhash.com
* - xxHash source repository: https://github.com/Cyan4973/xxHash
*/
/*
* The collision tester will generate 24 billion hashes (by default),
* and count how many collisions were produced by the 64-bit hash algorithm.
* The optimal amount of collisions for 64-bit is ~18 collisions.
* A good hash should be close to this figure.
*
* This program requires a lot of memory:
* - Either store hash values directly => 192 GB
* - Or use a filter:
* - 32 GB (by default) for the filter itself
* - + ~14 GB for the list of hashes (depending on the filter's outcome)
* Due to these memory constraints, it requires a 64-bit system.
*/
/* === Dependencies === */
#include <stdint.h> /* uint64_t */
#include <stdlib.h> /* malloc, free, qsort, exit */
#include <string.h> /* memset */
#include <stdio.h> /* printf, fflush */
#undef NDEBUG /* ensure assert is _not_ disabled */
#include <assert.h>
#include "hashes.h" /* UniHash, hashfn, hashfnTable */
#include "sort.hh" /* sort64 */
typedef enum { ht32, ht64, ht128 } Htype_e;
/* === Debug === */
#define EXIT(...) { printf(__VA_ARGS__); printf("\n"); exit(1); }
static void hexRaw(const void* buffer, size_t size)
{
const unsigned char* p = (const unsigned char*)buffer;
for (size_t i=0; i<size; i++) {
printf("%02X", p[i]);
}
}
void hexDisp(const void* buffer, size_t size)
{
hexRaw(buffer, size);
printf("\n");
}
static void printHash(const void* table, size_t n, Htype_e htype)
{
if ((htype == ht64) || (htype == ht32)){
uint64_t const h64 = ((const uint64_t*)table)[n];
hexRaw(&h64, sizeof(h64));
} else {
assert(htype == ht128);
XXH128_hash_t const h128 = ((const XXH128_hash_t*)table)[n];
hexRaw(&h128, sizeof(h128));
}
}
/* === Generate Random unique Samples to hash === */
/*
* These functions will generate and update a sample to hash.
* initSample() will fill a buffer with random bytes,
* updateSample() will modify one slab in the input buffer.
* updateSample() guarantees it will produce unique samples,
* but it needs to know the total number of samples.
*/
static const uint64_t prime64_1 = 11400714785074694791ULL; /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
static const uint64_t prime64_2 = 14029467366897019727ULL; /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
static const uint64_t prime64_3 = 1609587929392839161ULL; /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
static uint64_t avalanche64(uint64_t h64)
{
h64 ^= h64 >> 33;
h64 *= prime64_2;
h64 ^= h64 >> 29;
h64 *= prime64_3;
h64 ^= h64 >> 32;
return h64;
}
static unsigned char randomByte(size_t n)
{
uint64_t n64 = avalanche64(n+1);
n64 *= prime64_1;
return (unsigned char)(n64 >> 56);
}
typedef enum { sf_slab5, sf_sparse } sf_genMode;
#ifdef SLAB5
/*
* Slab5 sample generation.
* This algorithm generates unique inputs flipping on average 16 bits per candidate.
* It is generally much more friendly for most hash algorithms, especially
* weaker ones, as it shuffles more the input.
* The algorithm also avoids overfitting the per4 or per8 ingestion patterns.
*/
#define SLAB_SIZE 5
typedef struct {
void* buffer;
size_t size;
sf_genMode mode;
size_t prngSeed;
uint64_t hnb;
} sampleFactory;
static void init_sampleFactory(sampleFactory* sf, uint64_t htotal)
{
uint64_t const minNbSlabs = ((htotal-1) >> 32) + 1;
uint64_t const minSize = minNbSlabs * SLAB_SIZE;
if (sf->size < minSize)
EXIT("sample size must be >= %i bytes for this amount of hashes",
(int)minSize);
unsigned char* const p = (unsigned char*)sf->buffer;
for (size_t n=0; n < sf->size; n++)
p[n] = randomByte(n);
sf->hnb = 0;
}
static sampleFactory*
create_sampleFactory(size_t size, uint64_t htotal, uint64_t seed)
{
sampleFactory* const sf = malloc(sizeof(sampleFactory));
if (!sf) EXIT("not enough memory");
void* const buffer = malloc(size);
if (!buffer) EXIT("not enough memory");
sf->buffer = buffer;
sf->size = size;
sf->mode = sf_slab5;
sf->prngSeed = seed;
init_sampleFactory(sf, htotal);
return sf;
}
static void free_sampleFactory(sampleFactory* sf)
{
if (!sf) return;
free(sf->buffer);
free(sf);
}
static inline void update_sampleFactory(sampleFactory* sf)
{
size_t const nbSlabs = sf->size / SLAB_SIZE;
size_t const SlabNb = sf->hnb % nbSlabs;
sf->hnb++;
char* const ptr = (char*)sf->buffer;
size_t const start = (SlabNb * SLAB_SIZE) + 1;
uint32_t val32;
memcpy(&val32, ptr+start, sizeof(val32));
static const uint32_t prime32_5 = 374761393U;
val32 += prime32_5;
memcpy(ptr+start, &val32, sizeof(val32));
}
#else
/*
* Sparse sample generation.
* This is the default pattern generator.
* It only flips one bit at a time (mostly).
* Low hamming distance scenario is more difficult for weak hash algorithms.
* Note that CRC is immune to this scenario, since they are specifically
* designed to detect low hamming distances.
* Prefer the Slab5 pattern generator for collisions on CRC algorithms.
*/
#define SPARSE_LEVEL_MAX 15
/* Nb of combinations of m bits in a register of n bits */
static double Cnm(int n, int m)
{
assert(n > 0);
assert(m > 0);
assert(m <= m);
double acc = 1;
for (int i=0; i<m; i++) {
acc *= n - i;
acc /= 1 + i;
}
return acc;
}
static int enoughCombos(size_t size, uint64_t htotal)
{
if (size < 2) return 0; /* ensure no multiplication by negative */
uint64_t acc = 0;
uint64_t const srcBits = size * 8; assert(srcBits < INT_MAX);
int nbBitsSet = 0;
while (acc < htotal) {
nbBitsSet++;
if (nbBitsSet >= SPARSE_LEVEL_MAX) return 0;
acc += (uint64_t)Cnm((int)srcBits, nbBitsSet);
}
return 1;
}
typedef struct {
void* buffer;
size_t size;
sf_genMode mode;
/* sparse */
size_t bitIdx[SPARSE_LEVEL_MAX];
int level;
size_t maxBitIdx;
/* slab5 */
size_t nbSlabs;
size_t current;
size_t prngSeed;
} sampleFactory;
static void init_sampleFactory(sampleFactory* sf, uint64_t htotal)
{
if (!enoughCombos(sf->size, htotal)) {
EXIT("sample size must be larger for this amount of hashes");
}
memset(sf->bitIdx, 0, sizeof(sf->bitIdx));
sf->level = 0;
unsigned char* const p = (unsigned char*)sf->buffer;
for (size_t n=0; n<sf->size; n++)
p[n] = randomByte(sf->prngSeed + n);
}
static sampleFactory*
create_sampleFactory(size_t size, uint64_t htotal, uint64_t seed)
{
sampleFactory* const sf = malloc(sizeof(sampleFactory));
if (!sf) EXIT("not enough memory");
void* const buffer = malloc(size);
if (!buffer) EXIT("not enough memory");
sf->buffer = buffer;
sf->size = size;
sf->mode = sf_sparse;
sf->maxBitIdx = size * 8;
sf->prngSeed = seed;
init_sampleFactory(sf, htotal);
return sf;
}
static void free_sampleFactory(sampleFactory* sf)
{
if (!sf) return;
free(sf->buffer);
free(sf);
}
static void flipbit(void* buffer, uint64_t bitID)
{
size_t const pos = bitID >> 3;
unsigned char const mask = (unsigned char)(1 << (bitID & 7));
unsigned char* const p = (unsigned char*)buffer;
p[pos] ^= mask;
}
static int updateBit(void* buffer, size_t* bitIdx, int level, size_t max)
{
if (level==0) return 0; /* can't progress further */
flipbit(buffer, bitIdx[level]); /* erase previous bits */
if (bitIdx[level] < max-1) { /* simple case: go to next bit */
bitIdx[level]++;
flipbit(buffer, bitIdx[level]); /* set new bit */
return 1;
}
/* reached last bit: need to update a bit from lower level */
if (!updateBit(buffer, bitIdx, level-1, max-1)) return 0;
bitIdx[level] = bitIdx[level-1] + 1;
flipbit(buffer, bitIdx[level]); /* set new bit */
return 1;
}
static inline void update_sampleFactory(sampleFactory* sf)
{
if (!updateBit(sf->buffer, sf->bitIdx, sf->level, sf->maxBitIdx)) {
/* no more room => move to next level */
sf->level++;
assert(sf->level < SPARSE_LEVEL_MAX);
/* set new bits */
for (int i=1; i <= sf->level; i++) {
sf->bitIdx[i] = (size_t)(i-1);
flipbit(sf->buffer, sf->bitIdx[i]);
}
}
}
#endif /* pattern generator selection */
/* === Candidate Filter === */
typedef unsigned char Filter;
Filter* create_Filter(int bflog)
{
assert(bflog < 64 && bflog > 1);
size_t bfsize = (size_t)1 << bflog;
Filter* bf = malloc(bfsize);
assert(((void)"Filter creation failed", bf));
memset(bf, 0, bfsize);
return bf;
}
void free_Filter(Filter* bf)
{
free(bf);
}
#ifdef FILTER_1_PROBE
/*
* Attach hash to a slot
* return: Nb of potential collision candidates detected
* 0: position not yet occupied
* 2: position previously occupied by a single candidate
* 1: position already occupied by multiple candidates
*/
inline int Filter_insert(Filter* bf, int bflog, uint64_t hash)
{
int const slotNb = hash & 3;
int const shift = slotNb * 2 ;
size_t const bfmask = ((size_t)1 << bflog) - 1;
size_t const pos = (hash >> 2) & bfmask;
int const existingCandidates = ((((unsigned char*)bf)[pos]) >> shift) & 3;
static const int addCandidates[4] = { 0, 2, 1, 1 };
static const int nextValue[4] = { 1, 2, 3, 3 };
((unsigned char*)bf)[pos] |= (unsigned char)(nextValue[existingCandidates] << shift);
return addCandidates[existingCandidates];
}
/*
* Check if provided 64-bit hash is a collision candidate
* Requires the slot to be occupied by at least 2 candidates.
* return >0 if hash is a collision candidate
* 0 otherwise (slot unoccupied, or only one candidate)
* note: unoccupied slots should not happen in this algorithm,
* since all hashes are supposed to have been inserted at least once.
*/
inline int Filter_check(const Filter* bf, int bflog, uint64_t hash)
{
int const slotNb = hash & 3;
int const shift = slotNb * 2;
size_t const bfmask = ((size_t)1 << bflog) - 1;
size_t const pos = (hash >> 2) & bfmask;
return (((const unsigned char*)bf)[pos]) >> (shift+1) & 1;
}
#else
/*
* 2-probes strategy,
* more efficient at filtering candidates,
* requires filter size to be > nb of hashes
*/
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#define MAX(a,b) ((a) > (b) ? (a) : (b))
/*
* Attach hash to 2 slots
* return: Nb of potential candidates detected
* 0: position not yet occupied
* 2: position previously occupied by a single candidate (at most)
* 1: position already occupied by multiple candidates
*/
static inline int Filter_insert(Filter* bf, int bflog, uint64_t hash)
{
hash = avalanche64(hash);
unsigned const slot1 = hash & 255;
hash >>= 8;
unsigned const slot2 = hash & 255;
hash >>= 8;
size_t const fclmask = ((size_t)1 << (bflog-6)) - 1;
size_t const cacheLineNb = hash & fclmask;
size_t const pos1 = (cacheLineNb << 6) + (slot1 >> 2);
unsigned const shift1 = (slot1 & 3) * 2;
unsigned const ex1 = (bf[pos1] >> shift1) & 3;
size_t const pos2 = (cacheLineNb << 6) + (slot2 >> 2);
unsigned const shift2 = (slot2 & 3) * 2;
unsigned const ex2 = (bf[pos2] >> shift2) & 3;
unsigned const existing = MIN(ex1, ex2);
static const int addCandidates[4] = { 0, 2, 1, 1 };
static const unsigned nextValue[4] = { 1, 2, 3, 3 };
bf[pos1] &= (Filter)(~(3 << shift1)); /* erase previous value */
bf[pos1] |= (Filter)(MAX(ex1, nextValue[existing]) << shift1);
bf[pos2] |= (Filter)(MAX(ex2, nextValue[existing]) << shift2);
return addCandidates[existing];
}
/*
* Check if provided 64-bit hash is a collision candidate
* Requires the slot to be occupied by at least 2 candidates.
* return >0 if hash is a collision candidate
* 0 otherwise (slot unoccupied, or only one candidate)
* note: unoccupied slots should not happen in this algorithm,
* since all hashes are supposed to have been inserted at least once.
*/
static inline int Filter_check(const Filter* bf, int bflog, uint64_t hash)
{
hash = avalanche64(hash);
unsigned const slot1 = hash & 255;
hash >>= 8;
unsigned const slot2 = hash & 255;
hash >>= 8;
size_t const fclmask = ((size_t)1 << (bflog-6)) - 1;
size_t const cacheLineNb = hash & fclmask;
size_t const pos1 = (cacheLineNb << 6) + (slot1 >> 2);
unsigned const shift1 = (slot1 & 3) * 2;
unsigned const ex1 = (bf[pos1] >> shift1) & 3;
size_t const pos2 = (cacheLineNb << 6) + (slot2 >> 2);
unsigned const shift2 = (slot2 & 3) * 2;
unsigned const ex2 = (bf[pos2] >> shift2) & 3;
return (ex1 >= 2) && (ex2 >= 2);
}
#endif // FILTER_1_PROBE
/* === Display === */
#include <time.h> /* clock_t, clock, time_t, time, difftime */
void update_indicator(uint64_t v, uint64_t total)
{
static clock_t start = 0;
if (start==0) start = clock();
clock_t const updateRate = CLOCKS_PER_SEC / 2;
clock_t const clockSpan = (clock_t)(clock() - start);
if (clockSpan > updateRate) {
start = clock();
assert(v <= total);
assert(total > 0);
double share = ((double)v / (double)total) * 100;
printf("%6.2f%% (%llu) \r", share, (unsigned long long)v);
fflush(NULL);
}
}
/* note: not thread safe */
const char* displayDelay(double delay_s)
{
static char delayString[50];
memset(delayString, 0, sizeof(delayString));
int const mn = ((int)delay_s / 60) % 60;
int const h = (int)delay_s / 3600;
int const sec = (int)delay_s % 60;
char* p = delayString;
if (h) sprintf(p, "%i h ", h);
if (mn || h) {
p = delayString + strlen(delayString);
sprintf(p, "%i mn ", mn);
}
p = delayString + strlen(delayString);
sprintf(p, "%is ", sec);
return delayString;
}
/* === Math === */
static double power(uint64_t base, int p)
{
double value = 1;
assert(p>=0);
for (int i=0; i<p; i++) {
value *= (double)base;
}
return value;
}
static double estimateNbCollisions(uint64_t nbH, int nbBits)
{
return ((double)nbH * (double)(nbH-1)) / power(2, nbBits+1);
}
static int highestBitSet(uint64_t v)
{
assert(v!=0);
int bitId = 0;
while (v >>= 1) bitId++;
return bitId;
}
/* === Filter and search collisions === */
#undef NDEBUG /* ensure assert is not disabled */
#include <assert.h>
/* will recommend 24 billion samples for 64-bit hashes,
* expecting 18 collisions for a good 64-bit hash */
#define NB_BITS_MAX 64 /* can't store nor analyze hash wider than 64-bits for the time being */
uint64_t select_nbh(int nbBits)
{
assert(nbBits > 0);
if (nbBits > NB_BITS_MAX) nbBits = NB_BITS_MAX;
double targetColls = (double)((128 + 17) - (nbBits * 2));
uint64_t nbH = 24;
while (estimateNbCollisions(nbH, nbBits) < targetColls) nbH *= 2;
return nbH;
}
typedef struct {
uint64_t nbCollisions;
} searchCollisions_results;
typedef struct {
uint64_t nbH;
uint64_t mask;
uint64_t maskSelector;
size_t sampleSize;
uint64_t prngSeed;
int filterLog; /* <0 = disable filter; 0 = auto-size; */
int hashID;
int display;
int nbThreads;
searchCollisions_results* resultPtr;
} searchCollisions_parameters;
#define DISPLAY(...) { if (display) printf(__VA_ARGS__); }
static int isEqual(void* hTablePtr, size_t index1, size_t index2, Htype_e htype)
{
if ((htype == ht64) || (htype == ht32)) {
uint64_t const h1 = ((const uint64_t*)hTablePtr)[index1];
uint64_t const h2 = ((const uint64_t*)hTablePtr)[index2];
return (h1 == h2);
} else {
assert(htype == ht128);
XXH128_hash_t const h1 = ((const XXH128_hash_t*)hTablePtr)[index1];
XXH128_hash_t const h2 = ((const XXH128_hash_t*)hTablePtr)[index2];
return XXH128_isEqual(h1, h2);
}
}
static int isHighEqual(void* hTablePtr, size_t index1, size_t index2, Htype_e htype, int rShift)
{
uint64_t h1, h2;
if ((htype == ht64) || (htype == ht32)) {
h1 = ((const uint64_t*)hTablePtr)[index1];
h2 = ((const uint64_t*)hTablePtr)[index2];
} else {
assert(htype == ht128);
h1 = ((const XXH128_hash_t*)hTablePtr)[index1].high64;
h2 = ((const XXH128_hash_t*)hTablePtr)[index2].high64;
assert(rShift >= 64);
rShift -= 64;
}
assert(0 <= rShift && rShift < 64);
return (h1 >> rShift) == (h2 >> rShift);
}
/* assumption: (htype*)hTablePtr[index] is valid */
static void addHashCandidate(void* hTablePtr, UniHash h, Htype_e htype, size_t index)
{
if ((htype == ht64) || (htype == ht32)) {
((uint64_t*)hTablePtr)[index] = h.h64;
} else {
assert(htype == ht128);
((XXH128_hash_t*)hTablePtr)[index] = h.h128;
}
}
static int getNbBits_fromHtype(Htype_e htype) {
switch(htype) {
case ht32: return 32;
case ht64: return 64;
case ht128:return 128;
default: EXIT("hash size not supported");
}
}
static Htype_e getHtype_fromHbits(int nbBits) {
switch(nbBits) {
case 32 : return ht32;
case 64 : return ht64;
case 128: return ht128;
default: EXIT("hash size not supported");
}
}
static size_t search_collisions(
searchCollisions_parameters param)
{
uint64_t totalH = param.nbH;
const uint64_t hMask = param.mask;
const uint64_t hSelector = param.maskSelector;
int bflog = param.filterLog;
const int filter = (param.filterLog >= 0);
const size_t sampleSize = param.sampleSize;
const int hashID = param.hashID;
const Htype_e htype = getHtype_fromHbits(hashfnTable[hashID].bits);
const int display = param.display;
/* init */
sampleFactory* const sf = create_sampleFactory(sampleSize, totalH, param.prngSeed);
if (!sf) EXIT("not enough memory");
//const char* const hname = hashfnTable[hashID].name;
hashfn const hfunction = hashfnTable[hashID].fn;
int const hwidth = hashfnTable[hashID].bits;
if (totalH == 0) totalH = select_nbh(hwidth);
if (bflog == 0) bflog = highestBitSet(totalH) + 1; /* auto-size filter */
uint64_t const bfsize = (1ULL << bflog);
/* === filter hashes (optional) === */
Filter* bf = NULL;
uint64_t nbPresents = totalH;
if (filter) {
time_t const filterTBegin = time(NULL);
DISPLAY(" Creating filter (%i GB) \n", (int)(bfsize >> 30));
bf = create_Filter(bflog);
if (!bf) EXIT("not enough memory for filter");
DISPLAY(" Generate %llu hashes from samples of %u bytes \n",
(unsigned long long)totalH, (unsigned)sampleSize);
nbPresents = 0;
for (uint64_t n=0; n < totalH; n++) {
if (display && ((n&0xFFFFF) == 1) )
update_indicator(n, totalH);
update_sampleFactory(sf);
UniHash const h = hfunction(sf->buffer, sampleSize);
if ((h.h64 & hMask) != hSelector) continue;
nbPresents += (uint64_t)Filter_insert(bf, bflog, h.h64);
}
if (nbPresents==0) {
DISPLAY(" Analysis completed: No collision detected \n");
if (param.resultPtr) param.resultPtr->nbCollisions = 0;
free_Filter(bf);
free_sampleFactory(sf);
return 0;
}
{ double const filterDelay = difftime(time(NULL), filterTBegin);
DISPLAY(" Generation and filter completed in %s, detected up to %llu candidates \n",
displayDelay(filterDelay), (unsigned long long) nbPresents);
} }
/* === store hash candidates: duplicates will be present here === */
time_t const storeTBegin = time(NULL);
size_t const hashByteSize = (htype == ht128) ? 16 : 8;
size_t const tableSize = (nbPresents+1) * hashByteSize;
assert(tableSize > nbPresents); /* check tableSize calculation overflow */
DISPLAY(" Storing hash candidates (%i MB) \n", (int)(tableSize >> 20));
/* Generate and store hashes */
void* const hashCandidates = malloc(tableSize);
if (!hashCandidates) EXIT("not enough memory to store candidates");
init_sampleFactory(sf, totalH);
size_t nbCandidates = 0;
for (uint64_t n=0; n < totalH; n++) {
if (display && ((n&0xFFFFF) == 1) ) update_indicator(n, totalH);
update_sampleFactory(sf);
UniHash const h = hfunction(sf->buffer, sampleSize);
if ((h.h64 & hMask) != hSelector) continue;
if (filter) {
if (Filter_check(bf, bflog, h.h64)) {
assert(nbCandidates < nbPresents);
addHashCandidate(hashCandidates, h, htype, nbCandidates++);
}
} else {
assert(nbCandidates < nbPresents);
addHashCandidate(hashCandidates, h, htype, nbCandidates++);
}
}
if (nbCandidates < nbPresents) {
/* Try to mitigate gnuc_quicksort behavior, by reducing allocated memory,
* since gnuc_quicksort uses a lot of additional memory for mergesort */
void* const checkPtr = realloc(hashCandidates, nbCandidates * hashByteSize);
assert(checkPtr != NULL);
assert(checkPtr == hashCandidates); /* simplification: since we are reducing the size,
* we hope to keep the same ptr position.
* Otherwise, hashCandidates must be mutable. */
DISPLAY(" List of hashes reduced to %u MB from %u MB (saved %u MB) \n",
(unsigned)((nbCandidates * hashByteSize) >> 20),
(unsigned)(tableSize >> 20),
(unsigned)((tableSize - (nbCandidates * hashByteSize)) >> 20) );
}
double const storeTDelay = difftime(time(NULL), storeTBegin);
DISPLAY(" Stored %llu hash candidates in %s \n",
(unsigned long long) nbCandidates, displayDelay(storeTDelay));
free_Filter(bf);
free_sampleFactory(sf);
/* === step 3: look for duplicates === */
time_t const sortTBegin = time(NULL);
DISPLAY(" Sorting candidates... ");
fflush(NULL);
if ((htype == ht64) || (htype == ht32)) {
/*
* Use C++'s std::sort, as it's faster than C stdlib's qsort, and
* doesn't suffer from gnuc_libsort's memory expansion
*/
sort64(hashCandidates, nbCandidates);
} else {
assert(htype == ht128);
sort128(hashCandidates, nbCandidates); /* sort with custom comparator */
}
double const sortTDelay = difftime(time(NULL), sortTBegin);
DISPLAY(" Completed in %s \n", displayDelay(sortTDelay));
/* scan and count duplicates */
time_t const countBegin = time(NULL);
DISPLAY(" Looking for duplicates: ");
fflush(NULL);
size_t collisions = 0;
for (size_t n=1; n<nbCandidates; n++) {
if (isEqual(hashCandidates, n, n-1, htype)) {
printf("collision: ");
printHash(hashCandidates, n, htype);
printf(" / ");
printHash(hashCandidates, n-1, htype);
printf(" \n");
collisions++;
} }
if (!filter /* all candidates */ && display /*single thead*/ ) {
/* check partial bitfields (high bits) */
DISPLAY(" \n");
int const hashBits = getNbBits_fromHtype(htype);
double worstRatio = 0.;
int worstNbHBits = 0;
for (int nbHBits = 1; nbHBits < hashBits; nbHBits++) {
uint64_t const nbSlots = (uint64_t)1 << nbHBits;
double const expectedCollisions = estimateNbCollisions(nbCandidates, nbHBits);
if ( (nbSlots > nbCandidates * 100) /* within range for meaningfull collision analysis results */
&& (expectedCollisions > 18.0) ) {
int const rShift = hashBits - nbHBits;
size_t HBits_collisions = 0;
for (size_t n=1; n<nbCandidates; n++) {
if (isHighEqual(hashCandidates, n, n-1, htype, rShift)) {
HBits_collisions++;
} }
double const collisionRatio = (double)HBits_collisions / expectedCollisions;
if (collisionRatio > 2.0) DISPLAY("WARNING !!! ===> ");
DISPLAY(" high %i bits: %zu collision (%.1f expected): x%.2f \n",
nbHBits, HBits_collisions, expectedCollisions, collisionRatio);
if (collisionRatio > worstRatio) {
worstNbHBits = nbHBits;
worstRatio = collisionRatio;
} } }
DISPLAY("Worst collision ratio at %i high bits: x%.2f \n",
worstNbHBits, worstRatio);
}
double const countDelay = difftime(time(NULL), countBegin);
DISPLAY(" Completed in %s \n", displayDelay(countDelay));
/* clean and exit */
free (hashCandidates);
#if 0 /* debug */
for (size_t n=0; n<nbCandidates; n++)
printf("0x%016llx \n", (unsigned long long)hashCandidates[n]);
#endif
if (param.resultPtr) param.resultPtr->nbCollisions = collisions;
return collisions;
}
#if defined(__MACH__) || defined(__linux__)
#include <sys/resource.h>
static size_t getProcessMemUsage(int children)
{
struct rusage stats;
if (getrusage(children ? RUSAGE_CHILDREN : RUSAGE_SELF, &stats) == 0)
return (size_t)stats.ru_maxrss;
return 0;
}
#else
static size_t getProcessMemUsage(int ignore) { return 0; }
#endif
void time_collisions(searchCollisions_parameters param)
{
uint64_t totalH = param.nbH;
int hashID = param.hashID;
int display = param.display;
/* init */
assert(0 <= hashID && hashID < HASH_FN_TOTAL);
//const char* const hname = hashfnTable[hashID].name;
int const hwidth = hashfnTable[hashID].bits;
if (totalH == 0) totalH = select_nbh(hwidth);
double const targetColls = estimateNbCollisions(totalH, hwidth);
/* Start the timer to measure start/end of hashing + collision detection. */
time_t const programTBegin = time(NULL);
/* Generate hashes, and count collisions */
size_t const collisions = search_collisions(param);
/* display results */
double const programTDelay = difftime(time(NULL), programTBegin);
size_t const programBytesSelf = getProcessMemUsage(0);
size_t const programBytesChildren = getProcessMemUsage(1);
DISPLAY("\n\n");
DISPLAY("===> Found %llu collisions (x%.2f, %.1f expected) in %s\n",
(unsigned long long)collisions,
(double)collisions / targetColls,
targetColls,
displayDelay(programTDelay));
if (programBytesSelf)
DISPLAY("===> MaxRSS(self) %zuMB, MaxRSS(children) %zuMB\n",
programBytesSelf>>20,
programBytesChildren>>20);
DISPLAY("------------------------------------------ \n");
}
// wrapper for pthread interface
void MT_searchCollisions(void* payload)
{
search_collisions(*(searchCollisions_parameters*)payload);
}
/* === Command Line === */
/*!
* readU64FromChar():
* Allows and interprets K, KB, KiB, M, MB and MiB suffix.
* Will also modify `*stringPtr`, advancing it to the position where it stopped reading.
*/
static uint64_t readU64FromChar(const char** stringPtr)
{
static uint64_t const max = (((uint64_t)(-1)) / 10) - 1;
uint64_t result = 0;
while ((**stringPtr >='0') && (**stringPtr <='9')) {
assert(result < max);
result *= 10;
result += (unsigned)(**stringPtr - '0');
(*stringPtr)++ ;
}
if ((**stringPtr=='K') || (**stringPtr=='M') || (**stringPtr=='G')) {
uint64_t const maxK = ((uint64_t)(-1)) >> 10;
assert(result < maxK);
result <<= 10;
if ((**stringPtr=='M') || (**stringPtr=='G')) {
assert(result < maxK);
result <<= 10;
if (**stringPtr=='G') {
assert(result < maxK);
result <<= 10;
}
}
(*stringPtr)++; /* skip `K` or `M` */
if (**stringPtr=='i') (*stringPtr)++;
if (**stringPtr=='B') (*stringPtr)++;
}
return result;
}
/**
* longCommandWArg():
* Checks if *stringPtr is the same as longCommand.
* If yes, @return 1 and advances *stringPtr to the position which immediately follows longCommand.
* @return 0 and doesn't modify *stringPtr otherwise.
*/
static int longCommandWArg(const char** stringPtr, const char* longCommand)
{
assert(longCommand); assert(stringPtr); assert(*stringPtr);
size_t const comSize = strlen(longCommand);
int const result = !strncmp(*stringPtr, longCommand, comSize);
if (result) *stringPtr += comSize;
return result;
}
#include "pool.h"
/*
* As some hashes use different algorithms depending on input size,
* it can be necessary to test multiple input sizes
* to paint an accurate picture of collision performance
*/
#define SAMPLE_SIZE_DEFAULT 256
#define HASHFN_ID_DEFAULT 0
void help(const char* exeName)
{
printf("usage: %s [hashName] [opt] \n\n", exeName);
printf("list of hashNames:");
printf("%s ", hashfnTable[0].name);
for (int i=1; i < HASH_FN_TOTAL; i++) {
printf(", %s ", hashfnTable[i].name);
}
printf(" \n");
printf("Default hashName is %s\n", hashfnTable[HASHFN_ID_DEFAULT].name);
printf(" \n");
printf("Optional parameters: \n");
printf(" --nbh=NB Select nb of hashes to generate (%llu by default) \n", (unsigned long long)select_nbh(64));
printf(" --filter Activates the filter. Slower, but reduces memory usage for the same nb of hashes.\n");
printf(" --threadlog=NB Use 2^NB threads.\n");
printf(" --len=MB Set length of the input (%i bytes by default) \n", SAMPLE_SIZE_DEFAULT);
}
int bad_argument(const char* exeName)
{
printf("incorrect command: \n");
help(exeName);
return 1;
}
int main(int argc, const char** argv)
{
if (sizeof(size_t) < 8) return 1; // cannot work on systems without ability to allocate objects >= 4 GB
assert(argc > 0);
const char* const exeName = argv[0];
uint64_t totalH = 0; /* auto, based on nbBits */
int bflog = 0; /* auto */
int filter = 0; /* disabled */
size_t sampleSize = SAMPLE_SIZE_DEFAULT;
int hashID = HASHFN_ID_DEFAULT;
int threadlog = 0;
uint64_t prngSeed = 0;
int arg_nb;
for (arg_nb = 1; arg_nb < argc; arg_nb++) {
const char** arg = argv + arg_nb;
if (!strcmp(*arg, "-h")) { help(exeName); return 0; }
if (longCommandWArg(arg, "-T")) { threadlog = (int)readU64FromChar(arg); continue; }
if (!strcmp(*arg, "--filter")) { filter=1; continue; }
if (!strcmp(*arg, "--no-filter")) { filter=0; continue; }
if (longCommandWArg(arg, "--seed")) { prngSeed = readU64FromChar(arg); continue; }
if (longCommandWArg(arg, "--nbh=")) { totalH = readU64FromChar(arg); continue; }
if (longCommandWArg(arg, "--filter=")) { filter=1; bflog = (int)readU64FromChar(arg); assert(bflog < 64); continue; }
if (longCommandWArg(arg, "--filterlog=")) { filter=1; bflog = (int)readU64FromChar(arg); assert(bflog < 64); continue; }
if (longCommandWArg(arg, "--size=")) { sampleSize = (size_t)readU64FromChar(arg); continue; }
if (longCommandWArg(arg, "--len=")) { sampleSize = (size_t)readU64FromChar(arg); continue; }
if (longCommandWArg(arg, "--threadlog=")) { threadlog = (int)readU64FromChar(arg); continue; }
/* argument understood as hash name (must be correct) */
int hnb;
for (hnb=0; hnb < HASH_FN_TOTAL; hnb++) {
if (!strcmp(*arg, hashfnTable[hnb].name)) { hashID = hnb; break; }
}
if (hnb == HASH_FN_TOTAL) return bad_argument(exeName);
}
/* init */
const char* const hname = hashfnTable[hashID].name;
int const hwidth = hashfnTable[hashID].bits;
if (totalH == 0) totalH = select_nbh(hwidth);
double const targetColls = estimateNbCollisions(totalH, hwidth);
if (bflog == 0) bflog = highestBitSet(totalH) + 1; /* auto-size filter */
if (!filter) bflog = -1; // disable filter
if (sizeof(size_t) < 8)
EXIT("This program has not been validated on architectures other than "
"64bit \n");
printf(" *** Collision tester for 64+ bit hashes *** \n\n");
printf("Testing %s algorithm (%i-bit) \n", hname, hwidth);
printf("This program will allocate a lot of memory,\n");
printf("generate %llu %i-bit hashes from samples of %u bytes, \n",
(unsigned long long)totalH, hwidth, (unsigned)sampleSize);
printf("and attempt to produce %.0f collisions. \n\n", targetColls);
int const nbThreads = 1 << threadlog;
if (nbThreads <= 0) EXIT("Invalid --threadlog value.");
if (nbThreads == 1) {
searchCollisions_parameters params;
params.nbH = totalH;
params.mask = 0;
params.maskSelector = 0;
params.sampleSize = sampleSize;
params.filterLog = bflog;
params.hashID = hashID;
params.display = 1;
params.resultPtr = NULL;
params.prngSeed = prngSeed;
params.nbThreads = 1;
time_collisions(params);
} else { /* nbThreads > 1 */
/* use multithreading */
if (threadlog >= 30) EXIT("too many threads requested");
if ((uint64_t)nbThreads > (totalH >> 16))
EXIT("too many threads requested");
if (bflog > 0 && threadlog > (bflog-10))
EXIT("too many threads requested");
printf("using %i threads ... \n", nbThreads);
/* allocation */
time_t const programTBegin = time(NULL);
POOL_ctx* const pt = POOL_create((size_t)nbThreads, 1);
if (!pt) EXIT("not enough memory for threads");
searchCollisions_results* const MTresults = calloc (sizeof(searchCollisions_results), (size_t)nbThreads);
if (!MTresults) EXIT("not enough memory");
searchCollisions_parameters* const MTparams = calloc (sizeof(searchCollisions_parameters), (size_t)nbThreads);
if (!MTparams) EXIT("not enough memory");
/* distribute jobs */
for (int tnb=0; tnb<nbThreads; tnb++) {
MTparams[tnb].nbH = totalH;
MTparams[tnb].mask = (uint64_t)nbThreads - 1;
MTparams[tnb].sampleSize = sampleSize;
MTparams[tnb].filterLog = bflog ? bflog - threadlog : 0;
MTparams[tnb].hashID = hashID;
MTparams[tnb].display = 0;
MTparams[tnb].resultPtr = MTresults+tnb;
MTparams[tnb].prngSeed = prngSeed;
MTparams[tnb].maskSelector = (uint64_t)tnb;
POOL_add(pt, MT_searchCollisions, MTparams + tnb);
}
POOL_free(pt); /* actually joins and free */
/* Gather results */
uint64_t nbCollisions=0;
for (int tnb=0; tnb<nbThreads; tnb++) {
nbCollisions += MTresults[tnb].nbCollisions;
}
double const programTDelay = difftime(time(NULL), programTBegin);
size_t const programBytesSelf = getProcessMemUsage(0);
size_t const programBytesChildren = getProcessMemUsage(1);
printf("\n\n");
printf("===> Found %llu collisions (x%.2f, %.1f expected) in %s\n",
(unsigned long long)nbCollisions,
(double)nbCollisions / targetColls,
targetColls,
displayDelay(programTDelay));
if (programBytesSelf)
printf("===> MaxRSS(self) %zuMB, MaxRSS(children) %zuMB\n",
programBytesSelf>>20,
programBytesChildren>>20);
printf("------------------------------------------ \n");
/* Clean up */
free(MTparams);
free(MTresults);
}
return 0;
}