1
0
mirror of https://github.com/hashcat/hashcat.git synced 2024-11-27 02:18:21 +00:00
hashcat/OpenCL/inc_luks_serpent.cl
2022-06-25 13:54:20 +02:00

4008 lines
94 KiB
Common Lisp

/**
* Author......: See docs/credits.txt
* License.....: MIT
*/
#include "inc_vendor.h"
#include "inc_types.h"
#include "inc_platform.h"
#include "inc_common.h"
#include "inc_luks_serpent.h"
// cbc-essiv
DECLSPEC void serpent128_decrypt_cbc (PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS u32 *essiv)
{
serpent128_decrypt (ks1, in, out);
out[0] ^= essiv[0];
out[1] ^= essiv[1];
out[2] ^= essiv[2];
out[3] ^= essiv[3];
essiv[0] = in[0];
essiv[1] = in[1];
essiv[2] = in[2];
essiv[3] = in[3];
}
DECLSPEC void serpent256_decrypt_cbc (PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS u32 *essiv)
{
serpent256_decrypt (ks1, in, out);
out[0] ^= essiv[0];
out[1] ^= essiv[1];
out[2] ^= essiv[2];
out[3] ^= essiv[3];
essiv[0] = in[0];
essiv[1] = in[1];
essiv[2] = in[2];
essiv[3] = in[3];
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
int idx_out = 0;
for (int i = 0; i < 32; i++)
{
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
out[idx_out++] = data_out[0];
out[idx_out++] = data_out[1];
out[idx_out++] = data_out[2];
out[idx_out++] = data_out[3];
}
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128_mk_sha1 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 32; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse16 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128_mk_sha1_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 32 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse16 (mk);
}
// this one has no AF_sha1_diffuse16()
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128_mk_sha256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 32; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse16 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128_mk_sha256_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 32 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse16 (mk);
}
// this one has no AF_sha256_diffuse16()
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128_mk_sha512 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 32; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse16 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128_mk_sha512_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 32 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse16 (mk);
}
// this one has no AF_sha512_diffuse16()
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128_mk_ripemd160 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 32; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse16 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv128_mk_ripemd160_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 32 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse16 (mk);
}
// this one has no AF_ripemd160_diffuse16()
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
int idx_out = 0;
for (int i = 0; i < 16; i++)
{
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
out[idx_out++] = data_out[0];
out[idx_out++] = data_out[1];
out[idx_out++] = data_out[2];
out[idx_out++] = data_out[3];
}
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256_mk_sha1 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256_mk_sha1_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse32 (mk);
}
// this one has no AF_sha1_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256_mk_sha256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256_mk_sha256_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse32 (mk);
}
// this one has no AF_sha256_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256_mk_sha512 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256_mk_sha512_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse32 (mk);
}
// this one has no AF_sha512_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256_mk_ripemd160 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_essiv256_mk_ripemd160_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 essiv[4];
serpent256_encrypt (ks2, S, essiv);
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse32 (mk);
}
// this one has no AF_ripemd160_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, essiv);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
// cbc-plain
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
int idx_out = 0;
for (int i = 0; i < 32; i++)
{
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
out[idx_out++] = data_out[0];
out[idx_out++] = data_out[1];
out[idx_out++] = data_out[2];
out[idx_out++] = data_out[3];
}
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128_mk_sha1 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 32; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse16 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128_mk_sha1_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 32 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse16 (mk);
}
// this one has no AF_sha1_diffuse16()
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128_mk_sha256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 32; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse16 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128_mk_sha256_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 32 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse16 (mk);
}
// this one has no AF_sha256_diffuse16()
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128_mk_sha512 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 32; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse16 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128_mk_sha512_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 32 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse16 (mk);
}
// this one has no AF_sha512_diffuse16()
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128_mk_ripemd160 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 32; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse16 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain128_mk_ripemd160_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 32 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse16 (mk);
}
// this one has no AF_ripemd160_diffuse16()
int idx_mk = 0;
for (int block = 0; block < 1; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
int idx_out = 0;
for (int i = 0; i < 16; i++)
{
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
out[idx_out++] = data_out[0];
out[idx_out++] = data_out[1];
out[idx_out++] = data_out[2];
out[idx_out++] = data_out[3];
}
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256_mk_sha1 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256_mk_sha1_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse32 (mk);
}
// this one has no AF_sha1_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256_mk_sha256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256_mk_sha256_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse32 (mk);
}
// this one has no AF_sha256_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256_mk_sha512 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256_mk_sha512_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse32 (mk);
}
// this one has no AF_sha512_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256_mk_ripemd160 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_cbc_plain256_mk_ripemd160_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse32 (mk);
}
// this one has no AF_ripemd160_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_cbc (ks1, data_in, data_out, S);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
// xts-plain
DECLSPEC void serpent128_decrypt_xts (PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS u32 *T)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
out[0] ^= T[0];
out[1] ^= T[1];
out[2] ^= T[2];
out[3] ^= T[3];
serpent128_decrypt (ks1, out, out);
out[0] ^= T[0];
out[1] ^= T[1];
out[2] ^= T[2];
out[3] ^= T[3];
xts_mul2 (T, T);
}
DECLSPEC void serpent256_decrypt_xts (PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS u32 *T)
{
out[0] = in[0];
out[1] = in[1];
out[2] = in[2];
out[3] = in[3];
out[0] ^= T[0];
out[1] ^= T[1];
out[2] ^= T[2];
out[3] ^= T[3];
serpent256_decrypt (ks1, out, out);
out[0] ^= T[0];
out[1] ^= T[1];
out[2] ^= T[2];
out[3] ^= T[3];
xts_mul2 (T, T);
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
int idx_out = 0;
for (int i = 0; i < 16; i++)
{
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
out[idx_out++] = data_out[0];
out[idx_out++] = data_out[1];
out[idx_out++] = data_out[2];
out[idx_out++] = data_out[3];
}
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256_mk_sha1 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256_mk_sha1_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse32 (mk);
}
// this one has no AF_sha1_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256_mk_sha256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256_mk_sha256_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse32 (mk);
}
// this one has no AF_sha256_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256_mk_sha512 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256_mk_sha512_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse32 (mk);
}
// this one has no AF_sha512_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256_mk_ripemd160 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 16; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse32 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain256_mk_ripemd160_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent128_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 16 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse32 (mk);
}
// this one has no AF_ripemd160_diffuse32()
int idx_mk = 0;
for (int block = 0; block < 2; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent128_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *out, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
int idx_out = 0;
for (int i = 0; i < 8; i++)
{
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
out[idx_out++] = data_out[0];
out[idx_out++] = data_out[1];
out[idx_out++] = data_out[2];
out[idx_out++] = data_out[3];
}
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512_mk_sha1 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 8; i++)
{
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse64 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512_mk_sha1_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 8 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha1_diffuse64 (mk);
}
// this one has no AF_sha1_diffuse64()
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512_mk_sha256 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 8; i++)
{
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse64 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512_mk_sha256_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 8 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha256_diffuse64 (mk);
}
// this one has no AF_sha256_diffuse64()
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512_mk_sha512 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 8; i++)
{
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse64 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512_mk_sha512_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 8 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_sha512_diffuse64 (mk);
}
// this one has no AF_sha512_diffuse64()
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512_mk_ripemd160 (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 8; i++)
{
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse64 (mk);
}
}
DECLSPEC void luks_decrypt_sector_serpent_xts_plain512_mk_ripemd160_final (GLOBAL_AS const u32 *in, PRIVATE_AS u32 *mk, PRIVATE_AS const u32 *ks1, PRIVATE_AS const u32 *ks2, const u32 sector)
{
u32 S[4] = { sector, 0, 0, 0 };
u32 T[4];
serpent256_encrypt (ks2, S, T);
int idx_in = 0;
for (int i = 0; i < 8 - 1; i++)
{
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
AF_ripemd160_diffuse64 (mk);
}
// this one has no AF_ripemd160_diffuse64()
int idx_mk = 0;
for (int block = 0; block < 4; block++)
{
u32 data_in[4];
data_in[0] = in[idx_in++];
data_in[1] = in[idx_in++];
data_in[2] = in[idx_in++];
data_in[3] = in[idx_in++];
u32 data_out[4];
serpent256_decrypt_xts (ks1, data_in, data_out, T);
mk[idx_mk++] ^= data_out[0];
mk[idx_mk++] ^= data_out[1];
mk[idx_mk++] ^= data_out[2];
mk[idx_mk++] ^= data_out[3];
}
}
// luks helper
DECLSPEC void luks_af_sha1_then_serpent_decrypt (GLOBAL_AS const luks_t *luks_bufs, GLOBAL_AS luks_tmp_t *tmps, PRIVATE_AS u32 *pt_buf)
{
const u32 key_size = luks_bufs->key_size;
const u32 cipher_mode = luks_bufs->cipher_mode;
#define BITS_PER_AF (key_size * LUKS_STRIPES)
#define BITS_PER_SECTOR (512 * 8)
#define SECTOR_PER_AF (BITS_PER_AF / BITS_PER_SECTOR)
#define BLOCKS_PER_SECTOR (512 / 16)
#define OFFSET_PER_BLOCK (16 / 4)
#define OFFSET_PER_SECTOR (BLOCKS_PER_SECTOR * OFFSET_PER_BLOCK)
// decrypt AF data and do the AF merge inline
u32 mk[16] = { 0 };
if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_ESSIV_SHA256)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = hc_swap32_S (tmps->out32[0]);
ukey[1] = hc_swap32_S (tmps->out32[1]);
ukey[2] = hc_swap32_S (tmps->out32[2]);
ukey[3] = hc_swap32_S (tmps->out32[3]);
u32 essivhash[8];
ESSIV_sha256_init128 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_essiv128_mk_sha1 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_cbc_essiv128_mk_sha1_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = hc_swap32_S (tmps->out32[0]);
ukey[1] = hc_swap32_S (tmps->out32[1]);
ukey[2] = hc_swap32_S (tmps->out32[2]);
ukey[3] = hc_swap32_S (tmps->out32[3]);
ukey[4] = hc_swap32_S (tmps->out32[4]);
ukey[5] = hc_swap32_S (tmps->out32[5]);
ukey[6] = hc_swap32_S (tmps->out32[6]);
ukey[7] = hc_swap32_S (tmps->out32[7]);
u32 essivhash[8];
ESSIV_sha256_init256 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_essiv256_mk_sha1 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_cbc_essiv256_mk_sha1_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = hc_swap32_S (tmps->out32[0]);
ukey[1] = hc_swap32_S (tmps->out32[1]);
ukey[2] = hc_swap32_S (tmps->out32[2]);
ukey[3] = hc_swap32_S (tmps->out32[3]);
u32 ks1[140];
serpent128_set_key (ks1, ukey);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_plain128_mk_sha1 (luks_bufs->af_buf + offset, mk, ks1, sector);
}
luks_decrypt_sector_serpent_cbc_plain128_mk_sha1_final (luks_bufs->af_buf + offset, mk, ks1, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = hc_swap32_S (tmps->out32[0]);
ukey[1] = hc_swap32_S (tmps->out32[1]);
ukey[2] = hc_swap32_S (tmps->out32[2]);
ukey[3] = hc_swap32_S (tmps->out32[3]);
ukey[4] = hc_swap32_S (tmps->out32[4]);
ukey[5] = hc_swap32_S (tmps->out32[5]);
ukey[6] = hc_swap32_S (tmps->out32[6]);
ukey[7] = hc_swap32_S (tmps->out32[7]);
u32 ks1[140];
serpent256_set_key (ks1, ukey);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_plain256_mk_sha1 (luks_bufs->af_buf + offset, mk, ks1, sector);
}
luks_decrypt_sector_serpent_cbc_plain256_mk_sha1_final (luks_bufs->af_buf + offset, mk, ks1, sector);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey1[4];
ukey1[0] = hc_swap32_S (tmps->out32[0]);
ukey1[1] = hc_swap32_S (tmps->out32[1]);
ukey1[2] = hc_swap32_S (tmps->out32[2]);
ukey1[3] = hc_swap32_S (tmps->out32[3]);
u32 ukey2[4];
ukey2[0] = hc_swap32_S (tmps->out32[4]);
ukey2[1] = hc_swap32_S (tmps->out32[5]);
ukey2[2] = hc_swap32_S (tmps->out32[6]);
ukey2[3] = hc_swap32_S (tmps->out32[7]);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey1);
serpent128_set_key (ks2, ukey2);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_xts_plain256_mk_sha1 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_xts_plain256_mk_sha1_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_512)
{
u32 ukey1[8];
ukey1[0] = hc_swap32_S (tmps->out32[ 0]);
ukey1[1] = hc_swap32_S (tmps->out32[ 1]);
ukey1[2] = hc_swap32_S (tmps->out32[ 2]);
ukey1[3] = hc_swap32_S (tmps->out32[ 3]);
ukey1[4] = hc_swap32_S (tmps->out32[ 4]);
ukey1[5] = hc_swap32_S (tmps->out32[ 5]);
ukey1[6] = hc_swap32_S (tmps->out32[ 6]);
ukey1[7] = hc_swap32_S (tmps->out32[ 7]);
u32 ukey2[8];
ukey2[0] = hc_swap32_S (tmps->out32[ 8]);
ukey2[1] = hc_swap32_S (tmps->out32[ 9]);
ukey2[2] = hc_swap32_S (tmps->out32[10]);
ukey2[3] = hc_swap32_S (tmps->out32[11]);
ukey2[4] = hc_swap32_S (tmps->out32[12]);
ukey2[5] = hc_swap32_S (tmps->out32[13]);
ukey2[6] = hc_swap32_S (tmps->out32[14]);
ukey2[7] = hc_swap32_S (tmps->out32[15]);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey1);
serpent256_set_key (ks2, ukey2);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_xts_plain512_mk_sha1 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_xts_plain512_mk_sha1_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
}
// decrypt payload data
if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_ESSIV_SHA256)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
u32 essivhash[8];
ESSIV_sha256_init128 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
luks_decrypt_sector_serpent_cbc_essiv128 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
ukey[4] = mk[4];
ukey[5] = mk[5];
ukey[6] = mk[6];
ukey[7] = mk[7];
u32 essivhash[8];
ESSIV_sha256_init256 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
luks_decrypt_sector_serpent_cbc_essiv256 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
u32 ks1[140];
serpent128_set_key (ks1, ukey);
luks_decrypt_sector_serpent_cbc_plain128 (luks_bufs->ct_buf, pt_buf, ks1, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
ukey[4] = mk[4];
ukey[5] = mk[5];
ukey[6] = mk[6];
ukey[7] = mk[7];
u32 ks1[140];
serpent256_set_key (ks1, ukey);
luks_decrypt_sector_serpent_cbc_plain256 (luks_bufs->ct_buf, pt_buf, ks1, 0);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey1[4];
ukey1[0] = mk[0];
ukey1[1] = mk[1];
ukey1[2] = mk[2];
ukey1[3] = mk[3];
u32 ukey2[4];
ukey2[0] = mk[4];
ukey2[1] = mk[5];
ukey2[2] = mk[6];
ukey2[3] = mk[7];
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey1);
serpent128_set_key (ks2, ukey2);
luks_decrypt_sector_serpent_xts_plain256 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_512)
{
u32 ukey1[8];
ukey1[0] = mk[ 0];
ukey1[1] = mk[ 1];
ukey1[2] = mk[ 2];
ukey1[3] = mk[ 3];
ukey1[4] = mk[ 4];
ukey1[5] = mk[ 5];
ukey1[6] = mk[ 6];
ukey1[7] = mk[ 7];
u32 ukey2[8];
ukey2[0] = mk[ 8];
ukey2[1] = mk[ 9];
ukey2[2] = mk[10];
ukey2[3] = mk[11];
ukey2[4] = mk[12];
ukey2[5] = mk[13];
ukey2[6] = mk[14];
ukey2[7] = mk[15];
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey1);
serpent256_set_key (ks2, ukey2);
luks_decrypt_sector_serpent_xts_plain512 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
}
}
DECLSPEC void luks_af_sha256_then_serpent_decrypt (GLOBAL_AS const luks_t *luks_bufs, GLOBAL_AS luks_tmp_t *tmps, PRIVATE_AS u32 *pt_buf)
{
const u32 key_size = luks_bufs->key_size;
const u32 cipher_mode = luks_bufs->cipher_mode;
#define BITS_PER_AF (key_size * LUKS_STRIPES)
#define BITS_PER_SECTOR (512 * 8)
#define SECTOR_PER_AF (BITS_PER_AF / BITS_PER_SECTOR)
#define BLOCKS_PER_SECTOR (512 / 16)
#define OFFSET_PER_BLOCK (16 / 4)
#define OFFSET_PER_SECTOR (BLOCKS_PER_SECTOR * OFFSET_PER_BLOCK)
// decrypt AF data and do the AF merge inline
u32 mk[16] = { 0 };
if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_ESSIV_SHA256)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = hc_swap32_S (tmps->out32[0]);
ukey[1] = hc_swap32_S (tmps->out32[1]);
ukey[2] = hc_swap32_S (tmps->out32[2]);
ukey[3] = hc_swap32_S (tmps->out32[3]);
u32 essivhash[8];
ESSIV_sha256_init128 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_essiv128_mk_sha256 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_cbc_essiv128_mk_sha256_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = hc_swap32_S (tmps->out32[0]);
ukey[1] = hc_swap32_S (tmps->out32[1]);
ukey[2] = hc_swap32_S (tmps->out32[2]);
ukey[3] = hc_swap32_S (tmps->out32[3]);
ukey[4] = hc_swap32_S (tmps->out32[4]);
ukey[5] = hc_swap32_S (tmps->out32[5]);
ukey[6] = hc_swap32_S (tmps->out32[6]);
ukey[7] = hc_swap32_S (tmps->out32[7]);
u32 essivhash[8];
ESSIV_sha256_init256 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_essiv256_mk_sha256 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_cbc_essiv256_mk_sha256_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = hc_swap32_S (tmps->out32[0]);
ukey[1] = hc_swap32_S (tmps->out32[1]);
ukey[2] = hc_swap32_S (tmps->out32[2]);
ukey[3] = hc_swap32_S (tmps->out32[3]);
u32 ks1[140];
serpent128_set_key (ks1, ukey);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_plain128_mk_sha256 (luks_bufs->af_buf + offset, mk, ks1, sector);
}
luks_decrypt_sector_serpent_cbc_plain128_mk_sha256_final (luks_bufs->af_buf + offset, mk, ks1, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = hc_swap32_S (tmps->out32[0]);
ukey[1] = hc_swap32_S (tmps->out32[1]);
ukey[2] = hc_swap32_S (tmps->out32[2]);
ukey[3] = hc_swap32_S (tmps->out32[3]);
ukey[4] = hc_swap32_S (tmps->out32[4]);
ukey[5] = hc_swap32_S (tmps->out32[5]);
ukey[6] = hc_swap32_S (tmps->out32[6]);
ukey[7] = hc_swap32_S (tmps->out32[7]);
u32 ks1[140];
serpent256_set_key (ks1, ukey);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_plain256_mk_sha256 (luks_bufs->af_buf + offset, mk, ks1, sector);
}
luks_decrypt_sector_serpent_cbc_plain256_mk_sha256_final (luks_bufs->af_buf + offset, mk, ks1, sector);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey1[4];
ukey1[0] = hc_swap32_S (tmps->out32[0]);
ukey1[1] = hc_swap32_S (tmps->out32[1]);
ukey1[2] = hc_swap32_S (tmps->out32[2]);
ukey1[3] = hc_swap32_S (tmps->out32[3]);
u32 ukey2[4];
ukey2[0] = hc_swap32_S (tmps->out32[4]);
ukey2[1] = hc_swap32_S (tmps->out32[5]);
ukey2[2] = hc_swap32_S (tmps->out32[6]);
ukey2[3] = hc_swap32_S (tmps->out32[7]);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey1);
serpent128_set_key (ks2, ukey2);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_xts_plain256_mk_sha256 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_xts_plain256_mk_sha256_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_512)
{
u32 ukey1[8];
ukey1[0] = hc_swap32_S (tmps->out32[ 0]);
ukey1[1] = hc_swap32_S (tmps->out32[ 1]);
ukey1[2] = hc_swap32_S (tmps->out32[ 2]);
ukey1[3] = hc_swap32_S (tmps->out32[ 3]);
ukey1[4] = hc_swap32_S (tmps->out32[ 4]);
ukey1[5] = hc_swap32_S (tmps->out32[ 5]);
ukey1[6] = hc_swap32_S (tmps->out32[ 6]);
ukey1[7] = hc_swap32_S (tmps->out32[ 7]);
u32 ukey2[8];
ukey2[0] = hc_swap32_S (tmps->out32[ 8]);
ukey2[1] = hc_swap32_S (tmps->out32[ 9]);
ukey2[2] = hc_swap32_S (tmps->out32[10]);
ukey2[3] = hc_swap32_S (tmps->out32[11]);
ukey2[4] = hc_swap32_S (tmps->out32[12]);
ukey2[5] = hc_swap32_S (tmps->out32[13]);
ukey2[6] = hc_swap32_S (tmps->out32[14]);
ukey2[7] = hc_swap32_S (tmps->out32[15]);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey1);
serpent256_set_key (ks2, ukey2);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_xts_plain512_mk_sha256 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_xts_plain512_mk_sha256_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
}
// decrypt payload data
if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_ESSIV_SHA256)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
u32 essivhash[8];
ESSIV_sha256_init128 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
luks_decrypt_sector_serpent_cbc_essiv128 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
ukey[4] = mk[4];
ukey[5] = mk[5];
ukey[6] = mk[6];
ukey[7] = mk[7];
u32 essivhash[8];
ESSIV_sha256_init256 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
luks_decrypt_sector_serpent_cbc_essiv256 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
u32 ks1[140];
serpent128_set_key (ks1, ukey);
luks_decrypt_sector_serpent_cbc_plain128 (luks_bufs->ct_buf, pt_buf, ks1, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
ukey[4] = mk[4];
ukey[5] = mk[5];
ukey[6] = mk[6];
ukey[7] = mk[7];
u32 ks1[140];
serpent256_set_key (ks1, ukey);
luks_decrypt_sector_serpent_cbc_plain256 (luks_bufs->ct_buf, pt_buf, ks1, 0);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey1[4];
ukey1[0] = mk[0];
ukey1[1] = mk[1];
ukey1[2] = mk[2];
ukey1[3] = mk[3];
u32 ukey2[4];
ukey2[0] = mk[4];
ukey2[1] = mk[5];
ukey2[2] = mk[6];
ukey2[3] = mk[7];
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey1);
serpent128_set_key (ks2, ukey2);
luks_decrypt_sector_serpent_xts_plain256 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_512)
{
u32 ukey1[8];
ukey1[0] = mk[ 0];
ukey1[1] = mk[ 1];
ukey1[2] = mk[ 2];
ukey1[3] = mk[ 3];
ukey1[4] = mk[ 4];
ukey1[5] = mk[ 5];
ukey1[6] = mk[ 6];
ukey1[7] = mk[ 7];
u32 ukey2[8];
ukey2[0] = mk[ 8];
ukey2[1] = mk[ 9];
ukey2[2] = mk[10];
ukey2[3] = mk[11];
ukey2[4] = mk[12];
ukey2[5] = mk[13];
ukey2[6] = mk[14];
ukey2[7] = mk[15];
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey1);
serpent256_set_key (ks2, ukey2);
luks_decrypt_sector_serpent_xts_plain512 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
}
}
DECLSPEC void luks_af_sha512_then_serpent_decrypt (GLOBAL_AS const luks_t *luks_bufs, GLOBAL_AS luks_tmp_t *tmps, PRIVATE_AS u32 *pt_buf)
{
const u32 key_size = luks_bufs->key_size;
const u32 cipher_mode = luks_bufs->cipher_mode;
#define BITS_PER_AF (key_size * LUKS_STRIPES)
#define BITS_PER_SECTOR (512 * 8)
#define SECTOR_PER_AF (BITS_PER_AF / BITS_PER_SECTOR)
#define BLOCKS_PER_SECTOR (512 / 16)
#define OFFSET_PER_BLOCK (16 / 4)
#define OFFSET_PER_SECTOR (BLOCKS_PER_SECTOR * OFFSET_PER_BLOCK)
// move data from out64 to out32
tmps->out32[ 0] = l32_from_64_S (tmps->out64[0]);
tmps->out32[ 1] = h32_from_64_S (tmps->out64[0]);
tmps->out32[ 2] = l32_from_64_S (tmps->out64[1]);
tmps->out32[ 3] = h32_from_64_S (tmps->out64[1]);
tmps->out32[ 4] = l32_from_64_S (tmps->out64[2]);
tmps->out32[ 5] = h32_from_64_S (tmps->out64[2]);
tmps->out32[ 6] = l32_from_64_S (tmps->out64[3]);
tmps->out32[ 7] = h32_from_64_S (tmps->out64[3]);
tmps->out32[ 8] = l32_from_64_S (tmps->out64[4]);
tmps->out32[ 9] = h32_from_64_S (tmps->out64[4]);
tmps->out32[10] = l32_from_64_S (tmps->out64[5]);
tmps->out32[11] = h32_from_64_S (tmps->out64[5]);
tmps->out32[12] = l32_from_64_S (tmps->out64[6]);
tmps->out32[13] = h32_from_64_S (tmps->out64[6]);
tmps->out32[14] = l32_from_64_S (tmps->out64[7]);
tmps->out32[15] = h32_from_64_S (tmps->out64[7]);
// decrypt AF data and do the AF merge inline
u32 mk[16] = { 0 };
if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_ESSIV_SHA256)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = hc_swap32_S (tmps->out32[1]);
ukey[1] = hc_swap32_S (tmps->out32[0]);
ukey[2] = hc_swap32_S (tmps->out32[3]);
ukey[3] = hc_swap32_S (tmps->out32[2]);
u32 essivhash[8];
ESSIV_sha256_init128 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_essiv128_mk_sha512 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_cbc_essiv128_mk_sha512_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = hc_swap32_S (tmps->out32[1]);
ukey[1] = hc_swap32_S (tmps->out32[0]);
ukey[2] = hc_swap32_S (tmps->out32[3]);
ukey[3] = hc_swap32_S (tmps->out32[2]);
ukey[4] = hc_swap32_S (tmps->out32[5]);
ukey[5] = hc_swap32_S (tmps->out32[4]);
ukey[6] = hc_swap32_S (tmps->out32[7]);
ukey[7] = hc_swap32_S (tmps->out32[6]);
u32 essivhash[8];
ESSIV_sha256_init256 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_essiv256_mk_sha512 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_cbc_essiv256_mk_sha512_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = hc_swap32_S (tmps->out32[1]);
ukey[1] = hc_swap32_S (tmps->out32[0]);
ukey[2] = hc_swap32_S (tmps->out32[3]);
ukey[3] = hc_swap32_S (tmps->out32[2]);
u32 ks1[140];
serpent128_set_key (ks1, ukey);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_plain128_mk_sha512 (luks_bufs->af_buf + offset, mk, ks1, sector);
}
luks_decrypt_sector_serpent_cbc_plain128_mk_sha512_final (luks_bufs->af_buf + offset, mk, ks1, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = hc_swap32_S (tmps->out32[1]);
ukey[1] = hc_swap32_S (tmps->out32[0]);
ukey[2] = hc_swap32_S (tmps->out32[3]);
ukey[3] = hc_swap32_S (tmps->out32[2]);
ukey[4] = hc_swap32_S (tmps->out32[5]);
ukey[5] = hc_swap32_S (tmps->out32[4]);
ukey[6] = hc_swap32_S (tmps->out32[7]);
ukey[7] = hc_swap32_S (tmps->out32[6]);
u32 ks1[140];
serpent256_set_key (ks1, ukey);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_plain256_mk_sha512 (luks_bufs->af_buf + offset, mk, ks1, sector);
}
luks_decrypt_sector_serpent_cbc_plain256_mk_sha512_final (luks_bufs->af_buf + offset, mk, ks1, sector);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey1[4];
ukey1[0] = hc_swap32_S (tmps->out32[1]);
ukey1[1] = hc_swap32_S (tmps->out32[0]);
ukey1[2] = hc_swap32_S (tmps->out32[3]);
ukey1[3] = hc_swap32_S (tmps->out32[2]);
u32 ukey2[4];
ukey2[0] = hc_swap32_S (tmps->out32[5]);
ukey2[1] = hc_swap32_S (tmps->out32[4]);
ukey2[2] = hc_swap32_S (tmps->out32[7]);
ukey2[3] = hc_swap32_S (tmps->out32[6]);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey1);
serpent128_set_key (ks2, ukey2);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_xts_plain256_mk_sha512 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_xts_plain256_mk_sha512_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_512)
{
u32 ukey1[8];
ukey1[0] = hc_swap32_S (tmps->out32[ 1]);
ukey1[1] = hc_swap32_S (tmps->out32[ 0]);
ukey1[2] = hc_swap32_S (tmps->out32[ 3]);
ukey1[3] = hc_swap32_S (tmps->out32[ 2]);
ukey1[4] = hc_swap32_S (tmps->out32[ 5]);
ukey1[5] = hc_swap32_S (tmps->out32[ 4]);
ukey1[6] = hc_swap32_S (tmps->out32[ 7]);
ukey1[7] = hc_swap32_S (tmps->out32[ 6]);
u32 ukey2[8];
ukey2[0] = hc_swap32_S (tmps->out32[ 9]);
ukey2[1] = hc_swap32_S (tmps->out32[ 8]);
ukey2[2] = hc_swap32_S (tmps->out32[11]);
ukey2[3] = hc_swap32_S (tmps->out32[10]);
ukey2[4] = hc_swap32_S (tmps->out32[13]);
ukey2[5] = hc_swap32_S (tmps->out32[12]);
ukey2[6] = hc_swap32_S (tmps->out32[15]);
ukey2[7] = hc_swap32_S (tmps->out32[14]);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey1);
serpent256_set_key (ks2, ukey2);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_xts_plain512_mk_sha512 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_xts_plain512_mk_sha512_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
}
// decrypt payload data
if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_ESSIV_SHA256)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
u32 essivhash[8];
ESSIV_sha256_init128 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
luks_decrypt_sector_serpent_cbc_essiv128 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
ukey[4] = mk[4];
ukey[5] = mk[5];
ukey[6] = mk[6];
ukey[7] = mk[7];
u32 essivhash[8];
ESSIV_sha256_init256 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
luks_decrypt_sector_serpent_cbc_essiv256 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
u32 ks1[140];
serpent128_set_key (ks1, ukey);
luks_decrypt_sector_serpent_cbc_plain128 (luks_bufs->ct_buf, pt_buf, ks1, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
ukey[4] = mk[4];
ukey[5] = mk[5];
ukey[6] = mk[6];
ukey[7] = mk[7];
u32 ks1[140];
serpent256_set_key (ks1, ukey);
luks_decrypt_sector_serpent_cbc_plain256 (luks_bufs->ct_buf, pt_buf, ks1, 0);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey1[4];
ukey1[0] = mk[0];
ukey1[1] = mk[1];
ukey1[2] = mk[2];
ukey1[3] = mk[3];
u32 ukey2[4];
ukey2[0] = mk[4];
ukey2[1] = mk[5];
ukey2[2] = mk[6];
ukey2[3] = mk[7];
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey1);
serpent128_set_key (ks2, ukey2);
luks_decrypt_sector_serpent_xts_plain256 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_512)
{
u32 ukey1[8];
ukey1[0] = mk[ 0];
ukey1[1] = mk[ 1];
ukey1[2] = mk[ 2];
ukey1[3] = mk[ 3];
ukey1[4] = mk[ 4];
ukey1[5] = mk[ 5];
ukey1[6] = mk[ 6];
ukey1[7] = mk[ 7];
u32 ukey2[8];
ukey2[0] = mk[ 8];
ukey2[1] = mk[ 9];
ukey2[2] = mk[10];
ukey2[3] = mk[11];
ukey2[4] = mk[12];
ukey2[5] = mk[13];
ukey2[6] = mk[14];
ukey2[7] = mk[15];
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey1);
serpent256_set_key (ks2, ukey2);
luks_decrypt_sector_serpent_xts_plain512 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
}
}
DECLSPEC void luks_af_ripemd160_then_serpent_decrypt (GLOBAL_AS const luks_t *luks_bufs, GLOBAL_AS luks_tmp_t *tmps, PRIVATE_AS u32 *pt_buf)
{
const u32 key_size = luks_bufs->key_size;
const u32 cipher_mode = luks_bufs->cipher_mode;
#define BITS_PER_AF (key_size * LUKS_STRIPES)
#define BITS_PER_SECTOR (512 * 8)
#define SECTOR_PER_AF (BITS_PER_AF / BITS_PER_SECTOR)
#define BLOCKS_PER_SECTOR (512 / 16)
#define OFFSET_PER_BLOCK (16 / 4)
#define OFFSET_PER_SECTOR (BLOCKS_PER_SECTOR * OFFSET_PER_BLOCK)
// decrypt AF data and do the AF merge inline
u32 mk[16] = { 0 };
if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_ESSIV_SHA256)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = tmps->out32[0];
ukey[1] = tmps->out32[1];
ukey[2] = tmps->out32[2];
ukey[3] = tmps->out32[3];
u32 essivhash[8];
ESSIV_sha256_init128 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_essiv128_mk_ripemd160 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_cbc_essiv128_mk_ripemd160_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = tmps->out32[0];
ukey[1] = tmps->out32[1];
ukey[2] = tmps->out32[2];
ukey[3] = tmps->out32[3];
ukey[4] = tmps->out32[4];
ukey[5] = tmps->out32[5];
ukey[6] = tmps->out32[6];
ukey[7] = tmps->out32[7];
u32 essivhash[8];
ESSIV_sha256_init256 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_essiv256_mk_ripemd160 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_cbc_essiv256_mk_ripemd160_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = tmps->out32[0];
ukey[1] = tmps->out32[1];
ukey[2] = tmps->out32[2];
ukey[3] = tmps->out32[3];
u32 ks1[140];
serpent128_set_key (ks1, ukey);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_plain128_mk_ripemd160 (luks_bufs->af_buf + offset, mk, ks1, sector);
}
luks_decrypt_sector_serpent_cbc_plain128_mk_ripemd160_final (luks_bufs->af_buf + offset, mk, ks1, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = tmps->out32[0];
ukey[1] = tmps->out32[1];
ukey[2] = tmps->out32[2];
ukey[3] = tmps->out32[3];
ukey[4] = tmps->out32[4];
ukey[5] = tmps->out32[5];
ukey[6] = tmps->out32[6];
ukey[7] = tmps->out32[7];
u32 ks1[140];
serpent256_set_key (ks1, ukey);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_cbc_plain256_mk_ripemd160 (luks_bufs->af_buf + offset, mk, ks1, sector);
}
luks_decrypt_sector_serpent_cbc_plain256_mk_ripemd160_final (luks_bufs->af_buf + offset, mk, ks1, sector);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey1[4];
ukey1[0] = tmps->out32[0];
ukey1[1] = tmps->out32[1];
ukey1[2] = tmps->out32[2];
ukey1[3] = tmps->out32[3];
u32 ukey2[4];
ukey2[0] = tmps->out32[4];
ukey2[1] = tmps->out32[5];
ukey2[2] = tmps->out32[6];
ukey2[3] = tmps->out32[7];
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey1);
serpent128_set_key (ks2, ukey2);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_xts_plain256_mk_ripemd160 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_xts_plain256_mk_ripemd160_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
else if (key_size == HC_LUKS_KEY_SIZE_512)
{
u32 ukey1[8];
ukey1[0] = tmps->out32[ 0];
ukey1[1] = tmps->out32[ 1];
ukey1[2] = tmps->out32[ 2];
ukey1[3] = tmps->out32[ 3];
ukey1[4] = tmps->out32[ 4];
ukey1[5] = tmps->out32[ 5];
ukey1[6] = tmps->out32[ 6];
ukey1[7] = tmps->out32[ 7];
u32 ukey2[8];
ukey2[0] = tmps->out32[ 8];
ukey2[1] = tmps->out32[ 9];
ukey2[2] = tmps->out32[10];
ukey2[3] = tmps->out32[11];
ukey2[4] = tmps->out32[12];
ukey2[5] = tmps->out32[13];
ukey2[6] = tmps->out32[14];
ukey2[7] = tmps->out32[15];
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey1);
serpent256_set_key (ks2, ukey2);
int sector = 0;
int offset = 0;
for (sector = 0; sector < SECTOR_PER_AF - 1; sector++, offset += OFFSET_PER_SECTOR)
{
luks_decrypt_sector_serpent_xts_plain512_mk_ripemd160 (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
luks_decrypt_sector_serpent_xts_plain512_mk_ripemd160_final (luks_bufs->af_buf + offset, mk, ks1, ks2, sector);
}
}
// decrypt payload data
if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_ESSIV_SHA256)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
u32 essivhash[8];
ESSIV_sha256_init128 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
luks_decrypt_sector_serpent_cbc_essiv128 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
ukey[4] = mk[4];
ukey[5] = mk[5];
ukey[6] = mk[6];
ukey[7] = mk[7];
u32 essivhash[8];
ESSIV_sha256_init256 (ukey, essivhash);
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey);
serpent256_set_key (ks2, essivhash);
luks_decrypt_sector_serpent_cbc_essiv256 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_CBC_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_128)
{
u32 ukey[4];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
u32 ks1[140];
serpent128_set_key (ks1, ukey);
luks_decrypt_sector_serpent_cbc_plain128 (luks_bufs->ct_buf, pt_buf, ks1, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey[8];
ukey[0] = mk[0];
ukey[1] = mk[1];
ukey[2] = mk[2];
ukey[3] = mk[3];
ukey[4] = mk[4];
ukey[5] = mk[5];
ukey[6] = mk[6];
ukey[7] = mk[7];
u32 ks1[140];
serpent256_set_key (ks1, ukey);
luks_decrypt_sector_serpent_cbc_plain256 (luks_bufs->ct_buf, pt_buf, ks1, 0);
}
}
else if (cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN || cipher_mode == HC_LUKS_CIPHER_MODE_XTS_PLAIN64)
{
if (key_size == HC_LUKS_KEY_SIZE_256)
{
u32 ukey1[4];
ukey1[0] = mk[0];
ukey1[1] = mk[1];
ukey1[2] = mk[2];
ukey1[3] = mk[3];
u32 ukey2[4];
ukey2[0] = mk[4];
ukey2[1] = mk[5];
ukey2[2] = mk[6];
ukey2[3] = mk[7];
u32 ks1[140];
u32 ks2[140];
serpent128_set_key (ks1, ukey1);
serpent128_set_key (ks2, ukey2);
luks_decrypt_sector_serpent_xts_plain256 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
else if (key_size == HC_LUKS_KEY_SIZE_512)
{
u32 ukey1[8];
ukey1[0] = mk[ 0];
ukey1[1] = mk[ 1];
ukey1[2] = mk[ 2];
ukey1[3] = mk[ 3];
ukey1[4] = mk[ 4];
ukey1[5] = mk[ 5];
ukey1[6] = mk[ 6];
ukey1[7] = mk[ 7];
u32 ukey2[8];
ukey2[0] = mk[ 8];
ukey2[1] = mk[ 9];
ukey2[2] = mk[10];
ukey2[3] = mk[11];
ukey2[4] = mk[12];
ukey2[5] = mk[13];
ukey2[6] = mk[14];
ukey2[7] = mk[15];
u32 ks1[140];
u32 ks2[140];
serpent256_set_key (ks1, ukey1);
serpent256_set_key (ks2, ukey2);
luks_decrypt_sector_serpent_xts_plain512 (luks_bufs->ct_buf, pt_buf, ks1, ks2, 0);
}
}
}